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Abstract: SMAP/Sentinel-1 soil moisture is the latest SMAP (Soil Moisture Active Passive) product
derived from synergistic utilization of the radiometry observations of SMAP and radar backscattering
data of Sentinel-1. This product is the first and only global soil moisture (SM) map at 1 km and
3 km spatial resolutions. In this paper, we evaluated the SMAP/Sentinel-1 SM product from different
viewpoints to better understand its quality, advantages, and likely limitations. A comparative analysis
of this product and in situ measurements, for the time period March 2015 to January 2022, from
35 dense and sparse SM networks and 561 stations distributed around the world was carried out. We
examined the effects of land cover, vegetation fraction, water bodies, urban areas, soil characteristics,
and seasonal climatic conditions on the performance of active–passive SMAP/Sentinel-1 in estimating
the SM. We also compared the performance metrics of enhanced SMAP (9 km) and SMAP/Sentinel-1
products (3 km) to analyze the effects of the active–passive disaggregation algorithm on various
features of the SMAP SM maps. Results showed satisfactory agreement between SMAP/Sentinel-1
and in situ SM measurements for most sites (r values between 0.19 and 0.95 and ub-RMSE between
0.03 and 0.17), especially for dense sites without representativeness errors. Thanks to the vegetation
effect correction applied in the active–passive algorithm, the SMAP/Sentinel-1 product had the
highest correlation with the reference data in grasslands and croplands. Results also showed that the
accuracy of the SMAP/Sentinel-1 SM product in different networks is independent of the presence of
water bodies, urban areas, and soil types.

Keywords: SMAP; soil moisture; SMAP/Sentinel-1; passive/active microwaves; L-band

1. Introduction

A Soil Moisture Active Passive (SMAP) satellite mission was launched by the National
Aeronautics and Space Administration (NASA) on 31 January 2015, aboard a Delta II
rocket [1]. Modeling of SMAP, a derivative of the formulation studies for the Hydrosphere
State (Hydros) mission [2], was initiated in 2008 [3], followed by design studies, critical
design review, system integration, and test processing in May 2013 [4,5]. The primary
objectives of SMAP were to provide global Soil Moisture (SM) maps, Brightness Tempera-
ture (TB), topsoil layer moisture, and freeze–thaw state using L-band microwave spectrum
observations [6]. SMAP is considered a follow-up of the Soil Moisture and Ocean Salinity
(SMOS) [7,8]. However, the main difference between SMAP and SMOS and, of course, the
earlier passive satellites, was the equipment of both L-band (1.26 GHz) radar and L-band
radiometer instruments [9].
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Microwave emission from the top ~5 cm of soil is measured with a SMAP radiometer
with a spatial resolution of ~36 km. In addition, the L-band SAR, which is more sensi-
tive to irregularities of vegetation [10], measures backscatter at higher spatial resolution
(1–3 km) [11]. Subsequently, radar and radiometer measurements are effectively combined
to produce global SM maps at two higher spatial resolutions: 3 km and 9 km [11–14].
Thus, the developed algorithms for the SMAP observations promised a unique means
of measuring SM with unprecedented accuracy, resolution, and coverage. Unfortunately,
due to an unrecoverable hardware failure, SMAP’s radar instrument was discontinued on
7 July 2015, after about 11 weeks of operation [11], and SMAP’s radiometer remains the
only operating instrument onboard the satellite. Therefore, this satellite lost its ability to
measure the surface SM with a spatial resolution of 3 and 9 km [14].

Using the Backus–Gilbert optimal interpolation technique [15], it became possible to
enhance the antenna temperature measurements of SMAP radiometer and provide TB and
SM products with a higher spatial resolution [16]. Using this technique, the optimal TB of
arbitrary locations is calculated using a linear combination of radiometric measurements
overlapped in along- and across-scan directions [17]. As such, the TB disaggregates to the
new values with a native resolution equal to the 3 dB beamwidth of the radiometer, which
is ~9 km for SMAP [5]. The 9 km TB is then converted to the SM using the Mineralogy-
Based Soil Dielectric Model (MBSDM), also called the Mironov dielectric model [18,19].
Consequently, in addition to the 36 km products of SMAP SM, there are further improved
SMAP SM products with a spatial resolution of 9 km [20].

To date, numerous researchers have studied the accuracy of SMAP SM products across
a wide range of geographic regions and climatic and environmental conditions around
the world. Several studies compared the potential of SMAP in determining SM values
with the performance of earlier passive microwave satellites such as SMOS, AMSR-E, and
ASCAT [21–31].

Moreover, given the data of the SMAP Calibration and Validation (Cal/Val) Core Vali-
dation Site (CVS), post-launch field campaigns (such as SMAPVEX-16, SMAPVEX19-22),
prelaunch field campaigns, and sparse global networks, there is extensive literature quanti-
tatively evaluating global SMAP products at 36 km and 9 km using in situ measurements,
model-based SM estimates, and airborne SM observations [22,32–38]. Most of these studies
demonstrated that SMAP outperforms other passive microwave sensors [8,26,37,39–41].

SMAP/Sentinel-1 SM is the latest SMAP product developed to map SM with spatial
resolutions of 1 km and 3 km and near-global coverage (latitude from −60 to 60 and longi-
tude from −180 to 180) [14]. In this product, 9 km enhanced TB of SMAP are resampled
and downscaled to 3 km and 1 km EASE-Grid using Sentinel-1 radar backscattering data,
aggregated onto 1 km and 3 km EASE-Grid 2.0 pixels [42]. The corresponding combination
of SMAP data and Sentinel-1 measurements is based on the BT-Based Downscaling Algo-
rithm (BTBDA) [43], followed by the Baseline Retrieval Algorithm and the Tau–Omega
algorithm used to generate SM [13].

As SM’s first and only long-term global map with spatial resolutions of 1 km and
3 km, SMAP/Sentinel-1 data represent a turning point for measuring SM with RS systems
because they have adequate spatial resolution, global coverage, and acceptable coverage
repeat time for many applications. As one of the major sources of SM estimation with
Earth Observations (EOs), validation of SMAP/Sentinel-1 products was needed to guide
the community and provide information on the quality of products under different con-
ditions around the world and at different times. Generally, since the footprint of passive
microwave instruments spans over 1000 km2, SMAP estimates of TB and SM are affected
by numerous spatially and temporally variable factors, such as topographic, climatic, land
factors, and the radiometric calibration of the passive microwave instruments [44]. Even
over certain homogeneous regions, the SM retrieval algorithm and downscaling model
applied to combine SMAP and Sentinel-1 data are still influenced by various sources of
uncertainty. Satellite instrument noise, model parameterization errors, errors that occur
when sampling elliptical footprints onto spatial grids, and imperfections in the retrieval
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model are some of the most important sources of uncertainty that eliminate the accuracy
of SM products [45]. These problems cause the SMAP/Sentinel-1 SM to differ from the
true state of SM. Therefore, the comparison of SMAP/Sentinel-1 estimation and the true
value of SM illustrates its strength and weakness. So far, few attempts have been made to
validate the SMAP/Sentinel-1 SM. Das et al. [46] studied the basic idea and methodology
for fusing high-resolution Sentinel-1A/Sentinel-1B data and SMAP products on seven
different CVSs. They evaluated the performance of SMAP/Sentinel-1 SM products using
in situ measurements of the Walnut Gulch and TxSON sites in the United States, Kenaston
in Canada, Monte Buey in Argentina, REMEDHUS and Valencia in Spain, and Yanco in
Australia. In addition, Colliander, Reichle et al. (2021) assessed SMAP/Sentinel-1 estimates
using the in situ measurements of various CVSs from March 2015 to March 2021. They
detailed and investigated the results derived from Monte Buey, Yanco, Kenaston, Valencia,
Walnut Gulch, TxSON, Tonzi Ranch in the United States, and HOBE in Denmark.

In line with the previous studies, the focus of this paper is on a global assessment
of SMAP/Sentinel-1 SM products using in situ measurements across a wide range of
geographic, environmental, and climatic conditions.

The main superiority of this study over the state of the art is the comprehensive
evaluation of the performance of the new SMAP/Sentinel-1 SM products on a global scale
using in situ measurements from a large number of stations. In this paper, we validate
SMAP/Sentinel-1 SM observations using in situ measurements of 561 worldwide stations
from 35 SM networks (13 in Europe, 7 in the Americas, 8 in Asia, 4 in Africa, 2 in Australia,
and 1 in Oceania). From 31 March 2015 to 1 January 2022, SMAP/Sentinel-1 SM products
and in situ measurements were used in this study to analyze the performance of SMAP
from the beginning of the mission to the present.

As another innovation in validating the SMAP/Sentinel-1 products, we examine
several factors that influence the radiometer and radar observations and the downscaling
methods. We compare in situ measurements and SMAP/Sentinel-1 data separately for
different seasons, land covers, vegetation densities, and climate zones. We also compare
the accuracy of enhanced 9 km SMAP SM products and SMAP/Sentinel-1 data in dense
networks to explore to what extent downscaling of SMAP using Sentinel-1 data preserves
the accuracy of the source data. It can be said that this study focuses on the qualification of
uncertainties in the SMAP/Sentinel-1 product and the comparison of this product with in
situ or other suitable reference data across multiple regions and time periods. Consequently,
our specific objectives are: (i) long-term evaluation of the SMAP/Sentinel-1 SM across the
SM networks around the world, (ii) comprehensive investigation of the effect of various
parameters such as land/vegetation cover, water bodies, climate conditions, etc., on the
accuracy of the product, and (iii) comparing the SMAP/Sentinel-1 SM with the 9 km
enhanced SMAP SM to explore the downscaling effects. The results of this evaluation,
along with the official assessment reports conducted by the SMAP science team, enable
researchers to determine what spatial resolution, temporal interval, and accuracy can be
expected from SM products of a RS satellite in different vegetation conditions, soil textures,
seasonal climates, land cover, etc.

2. Study Area and Data
2.1. Validations Sites

Figure 1 represents the central locations and conventional names of 35 SM sites used to
validate the SMAP/Sentinel-1 SM product. The distribution and location of in situ stations
of three sites, including CTP_SMTMN, HOBE, and a part of SOILSCAPE sites, are also
shown in Figure 1. Measurements from these sites were collected by the International Soil
Moisture Network (ISMN) platform and are available through https://ismn.geo.tuwien.
ac.at/en/networks/ (accessed on 19 August 2022). ISMN is one of the critical existing
platforms that has collected data from various SM sites developed by different organizations
and countries [47,48]. From all 72 networks and ~2879 stations available in the ISMN, those
that meet the following criteria are selected: (i) relatively long-time intervals (more than
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one year during SMAP/Sentinel-1 coverage from 31 March 2015 to present), (ii) located
away from water bodies and urban areas, (iii) with an acceptable distribution and density
of stations, and (iv) recording SM at a depth of 0–10 cm of the ground. Table 1 provides the
essential information for the selected sites shown in Figure 1.

Figure 1. Central location of all in situ SM sites examined for the SMAP/Sentinel-1 validation process
with the stations distributed over ARM, HOBE, and CTP_SMTMN.

In Table 1, No. (1) and No. (2) represent the total number of stations at each site
and the number of stations used in this study, respectively. As shown in Figure 1 and
Table 1, this study used the SM measurements from a total of 561 stations as reference data
to investigate the accuracy of the SMAP/Sentinel-1 SM data. The corresponding stations
belong to the 35 dense and sparse networks and are distributed worldwide. Dense networks
have high spatial sampling densities with longer deployment durations. According to [11],
the distribution of stations in a dense network is such that at least eight stations are within
a real footprint of passive microwave sensors (approximately 36 km), five stations are
within a 9 km spatial grid cell, and three stations are within a 3 km grid cell. Generally,
there are 40 SM dense networks, of which eight sites are dense at 3 km pixel size. Based
on the measurements of these dense networks, the accuracy of the SMAP/Sentinel-1 SM
products was comprehensively evaluated by the SMAP Cal/Val team, reported in [46,77].
Compared to dense networks, sparse networks distributed globally have greater spatial
coverage across various climate regimes and biomes [78]. Although sparse networks do
not necessarily meet the condition of distributing stations within a 3 km grid pixel, they
have some unique properties that make them efficient for validation studies of EOs [24].
Adequate global coverage, temporally coherent reports, accurate measurements, and easy
access are some of the features of sparse networks that present them as essential sources
for complementing core validation sites and evaluating various RS-based SM products
and methods [24]. Moreover, the number of networks and their sampling stations around
the world is large enough to present a comprehensive study of the performance of the
SMAP/Sentinel-1 mission in estimating SM.
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Table 1. The main characteristics of the validation sites and their respective stations, together with
the number by which they are represented in Figure 1.

ID Site Name No. (1) No. (2) Data Availability Sampling
Depth (m) SM Detector Reference

1 AMMA-
CATCH 7 7 01/01/2006–31/12/2018 0.05–0.05 CS616 [49]

2 SD_DEM 1 1 08/02/2002–12/11/2020 0.05–0.05 Decagon 5TE [50]

3 TAHMO 70 21 17/06/2015–10/12/2021 0.05–0.05 GS1, TEROS10,
TEROS12 [51]

4 COSMOS_1 8 5 03/02/2014–06/03/2020 00–0.05 Cosmic-ray Probe [52]

5 OZNET 38 18 12/09/2001–27/08/2018 00–0.05

CS615
EnviroSCAN

Stevens Hydra Probe
CS616

[53]

6 COSMOS_2 11 2 28/11/2010–13/10/2019 00–0.17 Cosmic-ray Probe [52]
7 PTSMN 20 20 30/10/2016–15/11/2018 0.07–0.13 AquaCheck [54]
8 CTP_SMTMN 57 54 01/08/2010–19/09/2016 00–0.05 EC-TM, 5TM [55]

9 KIHS_CMC 18 18 28/03/2018–10/12/2019 0.10–0.10
Soilmoisture

Equipment Corp,
Buriable Waveguide

[56]

10 KIHS_SMC 19 19 27/03/2018–05/12/2019 0.10–0.10
Soilmoisture

Equipment Corp,
Buriable Waveguide,

[56]

11 MAQU 27 21 13/05/2008–01/06/2019 0.05–0.05 ECH20 EC-TM [57]
12 NAQU 11 9 15/06/2010–12/09/2019 0.05–0.05 5TM [57]
13 NGARI 23 13 12/07/2010–10/09/2019 0.05–0.05 5TM [57]
14 SMN/SDR 34 21 25/07/2018–31/12/2019 0.03–0.03 5TM [58]

15 VDS 4 4 01/06/2017–13/02/2021 0.01–0.10 GS1 Port 2–5,
TEROS12 [59]

16 BIEBRZA_S-1 30 18 23/04/2015–01/12/2018 0.05–0.05 GS-3 [60]
17 FR_Aqui 5 3 01/01/2012–01/01/2021 0.01–0.01 ThetaProbe ML2X [61]
18 GROW 150 37 08/02/2017–08/10/2019 00–0.10 Flower Power [62]

19 HOAL 33 32 11/07/2013–31/12/2020 0.05–0.05 SPADE Time Domain
Transmissivity [63]

20 HOBE 32 29 08/09/2009–13/03/2019 00–0.05 Decagon 5TE [64]

21 IPE 2 1 03/04/2008–25/03/2020 00–0.06 Campbell
Scientific, CS650, [65]

22 MOL/RAO 2 1 01/01/2003–30/06/2020 0.08–0.08 TRIME-EZ [66]
23 REMEDHUS 24 20 15/03/2005–01/01/2021 00–0.05 Stevens Hydra Probe [48]
24 Ru_CFR 2 2 25/05/2015–31/12/2020 0.05–0.05 Hydraprobe II [67]
25 SMOSMANIA 23 7 01/01/2007–01/01/2020 0.05–0.05 ThetaProbe ML2X [68]
26 TERENO 5 4 31/12/2009–05/08/2021 0.05–0.05 Hydraprobe II Sdi-12 [69]
27 UMBRIA 17 1 09/10/2002–31/12/2017 0.05–0.15 EnviroSCAN [70]
28 WEGENERNET 12 12 01/01/2007–03/11/2021 0.20–0.20 Hydraprobe II [71]

29 LAB-net 4 2 18/07/2014–14/07/2020 0.07–0.07 Campbell
Scientific, CS616 [72]

30 ARM 35 10 29/06/1993–02/10/2021 0.02–0.02 Hydraprobe
II Sdi-12 E [73]

31 COSMOS_3 109 9 28/04/2008–29/03/2020 0.00–0.04 Cosmic-ray Probe [52]
32 FLUXNET/AMERIFLUX8 4 01/01/2000–21/07/2020 0.00–00 ThetaProbe ML2X [67]
33 RISMA 24 21 24/04/2013–25/03/2020 00–0.05 Hydraprobe II Sdi-12 [74]

34 SNOTEL 441 85 01/10/1980–16/11/2021 00–00 Hydraprobe
Analog (2.5 Volt) [75]

35 SOILSCAPE 171 30 08/03/2011–29/03/2017 0.04–0.04 EC5 [76]

2.2. Data
2.2.1. SMAP/Sentinel-1 Soil Moisture

Level 2 of the SMAP/Sentinel-1 product is considered for the validation process.
L2_ SM _SP or SPL2SMAP_S are the abbreviations for this product. SPL2SMAP_S is
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derived from the enhanced SMAP L-band (~1.4 GHz) radiometer half-orbit 9 km observa-
tions and Copernicus Sentinel-1A/1B C-band (~5.405 GHz) radar measurements [79,80].
SMAP/Sentinel-1 retrieves SM over a wide range of vegetation conditions with a temporal
resolution of 12 days (based on Sentinel-1’s repeat cycle) and spatial coverage of 180◦W
to 180◦E and approximately 60◦N to 60◦S [14] (Table 2). For the validation sites, version
3 of SPL2SMAP_S was downloaded from 2015 to 2022. These products are available at
https://search.earthdata.nasa.gov/ (accessed on 19 August 2022). The spatial extent of
each SMAP/Sentinel-1 image provided on the global cylindrical EASE-Grid 2.0 is limited
by the swath width of Sentinel-1A/1B. The image data are in HDF5 format. SPL2SMAP_S
HDF5 files consist of three main groups: (i) SM retrieval data with a spatial resolution
of 1 km, (ii) SM retrieval data with a spatial resolution of 3 km, and (iii) metadata fields
containing all metadata describing the entire contents of each file. Only the 3 km SM and
quality assessment plume closest to the SMAP a.m. data (from 6:00 a.m. descending half
orbits) were downloaded to reduce the volume of downloaded data and achieve better
agreement between reference measurements and observations from RS.

Table 2. Main characteristics of the RS and model-based datasets used in this study.

Dataset Data Type
and Description

Spatial
Resolution Revisit Time Temporal Coverage Reference

L2_ SM _SP
(SPL2SMAP_S)

Remotely sensed SM map
(L-band, C-band,
active/passive)

3 km × 3 km 6–12 days 2015 to present [14]

SPL3SMP_E Remotely sensed SM map
(L band, passive) 9 km × 9 km 1–2 days 2015 to present [81]

CGLSLC100 Model-based
land-cover product 100 m 3 years 2015 to present [82]

HWSD harmonized soil
property dataset 30 arc-second - 2008 to present [83]

Sentinel-2A/B Multispectral/multiresolution
remotely sensed image 10 m to 60 m ~5 days 2015 to present [84]

2.2.2. SMAP Enhanced Soil Moisture

In this study, we examine the performance of SMAP’s 9 km products in estimating
SM and compare it with the accuracy of the 3 km SMAP/Sentinel-1 SM. Enhanced SMAP
products are 9 km radiometer TB and SM derived from native 36 km SMAP measurements
using Backus–Gilbert interpolation [85]. The TBs of the enhanced SMAP are corrected for
the presence of water bodies (up to 0.1 fractions) before being utilized in the active–passive
SM retrieval algorithm. The SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-
Grid Soil Moisture (SPL3SMP_E) is used in this study (Table 2). Since version 3 ended on
27 August 2020 and version 4 then replaced the older version, both version 3 and 4 of these
products were used in this study. SPL3SMP_E covers the geographic range from 85.044◦N
to 85.044◦S and 180◦E to 180◦W. Similar to SPL2SMAP_S, the SM and quality assessment
flags were downloaded for all validation sites.

2.2.3. CGLS Land Cover

To assess the impact of land cover type on the accuracy of SMAP SM, we use the
Copernicus Global Land Service (CGLS) land-cover product with a spatial resolution of
100 m (CGLSLC100) [86]. Version 3 of the CGLS-LC100 products covers the geographic
range from 180◦E to 180◦W and 78.25◦N to 60◦S. The CGLSLC100 map includes 22 classes,
including six different species of closed forest, six different species of open forest, shrubs
herbaceous vegetation, wetland, moss and lichen, sparse vegetation, cropland, urban,
snow and ice, permanent water bodies, and open sea. However, this paper examines
the effects of eight different land-cover types in the accuracy of SMAP/Sentinel-1 SM:
Build-up, Cropland, Forest, Shrubland, Grassland, Bareland, Water, and Wetland. To this

https://search.earthdata.nasa.gov/


Remote Sens. 2022, 14, 4624 7 of 31

end, we reclassified the CGLSLC100 map into the mentioned land-cover classes. Thus, the
land cover of closed and open forests, including evergreen needle leaf, deciduous needle
leaf, evergreen broad leaf, deciduous broad leaf, and mixed deciduous forest, has been
reclassified as forest. In addition, herbaceous vegetation, mosses, and lichens are classified
as grassland. Snow and ice, permanent water bodies, and open seas are also reclassified as
water. Figure 2 shows the global land cover map of CGLSLC100 for the reference year 2015,
downloaded from Google Earth Engine and reclassified to the eight mentioned land-cover
classes.

Figure 2. Global land-cover map including 8 different land-cover classes, retrieved from the
CGLSLC100 version 3, providing the reference year 2015.

2.2.4. Soil Texture and Vegetation Fraction Map

We used the Harmonized World Soil Database (HWSD) to evaluate the effects of soil
properties on the accuracy of SMAP/Sentinel-1 SM. The HWSD is a 30 arc-second grid
database consisting of 21,600 rows and 43,200 columns linked to harmonized soil property
data [83]. The primary soil information included in the HWSD datasets is organic carbon,
pH, water-holding capacity, soil depth, soil cation exchange capacity, clay content, total
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exchangeable nutrients, lime, and gypsum content, sodium exchange percentage, salinity,
texture class, and granulometry. Version 1.0 of the HWSD, released in 2008, has been
updated several times with new information and is used extensively around the world.
Recently, the HWSD was adopted by the Global Soil Partnership (GSP) as the current
authoritative soil database (Table 2).

The multispectral and multiresolution data from Sentinel-2 were used along with the
land-cover and soil properties maps to calculate vegetation fraction and NDVI. Similar to
Sentinel-1, Sentinel-2 was developed by ESA to provide a multiband dataset over land and
coastal waters [84,87]. Depending on the spectral band, the spatial resolution of Sentinel-2
varies from 10 m to 60 m [88]. The red and NIR bands with a spatial resolution of 10 m are
used in this study to estimate the monthly and seasonal NDVI.

3. Methodology

According to the quality assurance framework advocated by the Land Product Valida-
tion (LPV) subgroup of the Committee on Earth Observation Satellites (CEOS)
(https://lpvs.gsfc.nasa.gov/ (accessed on 19 August 2022)), the validation process of
SM datasets should be able to provide a reliable quantitative assessment of their system-
atic and random errors through analytical comparison with reference data [89]. In recent
decades, several methods have been developed to validate coarse-scale passive microwave
EOs through numerous in situ measurements [11,90,91], airborne campaigns [92–95], and
model-based SM estimates [96,97]. Given data preprocessing, the evaluation strategies, and
the applied reference data, the methods cause different uncertainties and ambiguities in
validating SM products [98]. To standardize validation practices across EO communities,
many efforts have been made to establish comprehensive protocols for validating satellite-
based SM maps [89,98–100]. Refs [89,101] reviewed the compilation of the most common
theoretical considerations for validating EOs and presented a comprehensive protocol for
validation practices of satellite SM products. The SMAP/Sentinel-1 SM validation ap-
proach used in this work is largely consistent with the recommendations in [101], and was
recently used in [77]. Figure 3 schematically shows a workflow of the validation method
applied in this study to assess the performance of SMAP/Sentinel-1 active/passive SM
data. This validation approach can be divided into the following four steps: (1) selection of
reliable reference data, (2) preprocessing of data, (3) application of statistical indicators, and
(4) presentation of validation results. All steps contain sub-steps, three of which
are discussed in more detail in the following sections. The last step is presented in
Sections 4 and 5 as an outcome of this study.

3.1. Selecting Reliable Reference Data

The validation networks of SM usually provide the reference data at different soil
depths from 0–5 cm to 2 m with different sampling intervals, from hourly to monthly
collection periods [102]. Those best matching satellite estimates must be selected for the
assessment process [103]. Regarding the penetration depth of the microwave portion of
the electromagnetic spectrum, which is typically 3 cm [104], SMAP/Sentinel-1 products
typically estimate the top few centimeters SM of soil [24,104]. Therefore, in the validation
networks, out of all SM measurements at different depths (0–5 cm, 10 cm, 20 cm, 50 cm,
and 100 cm), the measurement at a depth of 0–5 cm was used for the validation process. In
the absence of 0–5 cm measurements, measurements at 0–10 cm depth were used, which
correlated with surface SM [105,106]. Those stations that did not have any measurements
at depths above 10 cm were masked out. According to Table 1, except for WEGENERNET,
UMBRIA, MOL/RAO, KIHS_CMC, and KIHS_SMC, the rest of the sites measure surface
SM. SM values of the depth above 10 cm at the mentioned sites were downloaded and
applied in the validation process.

To minimize the time gap between the satellite and reference data, the in situ observa-
tions closest to the SMAP overflight time (approximately 6:00–7:00 a.m. local time) were
used at each validation site. Moreover, of all the selected data, measurements on days with

https://lpvs.gsfc.nasa.gov/
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non-zero snow indicators (e.g., snow depth or snow water equivalent) and ground surface
or air temperature below 4 ◦C were excluded from the entire procedure.

Figure 3. Schematic diagram of the validation methodology applied in this study. Ts and Ta refer to
the surface temperature and air temperature.

3.2. Data Preprocessing

Data preprocessing aims to spatially or temporally align the different data sets coming
from various sensors, platforms, and techniques (e.g., coarse-resolution satellite products,
modeled data, and field networks). In the evaluating satellite products, when coarsely
gridded estimates must be accurately compared to point-based in situ measurements [107],
data preprocessing is generally an essential step. Depending on the number and type of
datasets used in a study, preprocessing and matching between measurements involve sev-
eral sub-steps, all described in detail in [101]. In this study, the following two preprocessing
steps were used:

3.2.1. Masking out Unreliable Pixels

To avoid unreliable data, SMAP/Sentinel-1 SM products were checked through
a quality-control procedure to identify and discard unreliable observations, values outside
the acceptable range, spikes, and sudden dips. According to [101] recommendation, we
discarded all pixels that were at least 20% covered by tropical forests, urban areas, wa-
ter bodies, and wetlands, as well as all areas with vegetation water content greater than
5 kg/m2 and NDVI greater than 0.7. In addition, the data flags of the SMAP/Sentinel-1
products were used to identify and eliminate data that were not recommended. Data flags
are typically placed on non-recommended targets for various reasons, including inappro-
priate locations for querying SM, unreliable measurements TB, and faulty algorithms for
querying SM.
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3.2.2. Calculating Reference SM within the Grid Pixels

All stationary in situ measurements within a particular grid cell were averaged to
make the RS pixel-based data as representative as possible [108]. There is a sizeable
spatial discrepancy between the point-based reference measurements and the grid-based
satellite observations [109]. To this end, the weighted average of stations located within
a SMAP/Sentinel-1 pixel was calculated at the geographic center of the pixel (Equation (1)).

SMCinsitu =

n
∑

i=1
Pi × SMi

n
∑

i=1
Pi

(1)

where n is the number of stations located in a SMAP pixel, and the values SMi and Pi
are, respectively, the point measurement of the ith station and its weight, related to the
distances to the center of the pixel (Equation (2)).

pi =
1√

(xi − xo)
2 + (yi − yo)

2
(2)

where (xi,yi) and (xo,yo) are the geographic location of the corresponding station and the
center of the SMAP pixel. As mentioned earlier, this study evaluates SMAP/Sentinel-1
SM 3 km products using in situ measurements of sparse networks with surrogate stations;
therefore, there is no more than one point-based station in most SMAP/Sentinel-1 pixels.

3.3. Statistical Metrics for the Evaluation Process

Previous scientific literature has used various statistical indicators to compare RS
data with field observations and to describe the performance of EOs collected by various
sensors (e.g., multispectral [110,111], hyperspectral [112], LiDAR [113], thermal [114], and
SAR [115]), and platforms (e.g., UAVs and satellites). The underlying concept is that the
overall error of an observed/measured value (x) is separable into its systematic (αx and βx)
and random (εx) components (Equation (3)).

X = αx + βxt + εx (3)

Here, εx is an additive mean random error, and αx and βx are additive first-order
systematic errors and multiplicative (second-order) errors in the assumed grid cell with
average SM (t). Equation (3) can be considered for both RS observations and in situ
measurements. εx is assumed to be zero in almost all EOs validation studies for reference
and EOs datasets. For the in situ measurements considered in the reference dataset, it is
assumed that αx~0 and βx~1. In addition, for the evaluation of EOs, statistical moments are
typically estimated in the temporal domain (i.e., temporal mean, variance, and covariance),
assuming stationary first- and second-order systematic errors (i.e., means and variances
are assumed to be constant over time). Under these assumptions, the performance of a SM
product is directly related to its uncertainties, characterized by the actual measurements of
the reference data.

Consequently, all validation metrics that assume the behaviors of EOs as a random
variable can be computed to investigate the performance of a SM product. Mean Difference
(MD), Root Mean Squared Difference (RMSD), and unbiased Root Mean Squared Error
(ub-RMSE) are the most common relative metrics used to estimate the uncertainty of
EOs. These comparison metrics are commonly used to evaluate coarse-scale SM products
obtained from passive RS techniques and instruments [37,116,117]. The MD represents
the uncertainty of the variable being evaluated and contains both systematic and random
components. In some scientific literature, this parameter is also referred to as bias. Basically,
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MD measures the difference between the reference measurements from SM and the satellite
retrievals from SM (Equation (4)).

MD = (SMS − SMR ) = 1
N

N
∑

i=1
(SM S.i − SMR.i)

= 1
N

N
∑

i=1
αSMS.i + (βSMR.i − 1)t

(4)

where N is the number of data applied to calculate the statistics, which depends on the
number of stations of sites, the number of coarse-scale pixels covering the site’s extent,
and the time interval. Vinculums indicate the average of the values. SMS and SMR,
respectively, refer to the satellite observation and in situ SM. With SMR as the reference
data, MD collapses to 1

N ∑ αSMs.i + (βSMR.i − 1)t, directly estimating the biases of the
satellite retrieval. Note that, given the t phrase, MD is still influenced by the average SM
conditions. In addition to MD, RMSD calculates the absolute difference in retrievals from
SM relative to reference values using the following equation (Equation (5)):

RMSD =
∣∣(SMS − SMR

)∣∣ =
√√√√√ N

∑
i=1

(SM S.i − SMR.i)
2

N
(5)

RMSD is more applicable than the RMSE in validating coarse-scale SM products using
station-based reference measurements [118]. The main idea behind estimating RMSD
instead of RMSE is that the point-based reference value may differ from the actual SM value
over a grid cell. Due to the possible errors in the reference values, the RMSD should be used
to validate the raster pixels by stationary measurements. In addition, the ub–RMSE metric
can provide a more reliable estimate of the RMSD. Unlike the RMSD, which is sensitive to
additive and multiplicative biases, the ub–RMSE is only affected by multiplicative biases
(Equation (6)).

ub − RMSE =
√

RMSD2 − b2
SM(R,S) =

√
RMSD2 − MD2 (6)

where bSM(R,S) is considered the first-order (additive) bias between reference data and EOs.
Therefore, ub–RMSE is a bias-insensitive indicator and refers to the standard deviation
of the error. In the sparse network, if a station’s measurement is considered the true SM
value of the 3 km SMAP/Sentinel-1 grid cell, MD, RMSD, and ub–RMSE conservatively
represent the true values of the corresponding indicators.

In addition to uncertainty-related parameters, parametric and non-parametric corre-
lation methods intensely examine the dependency between two datasets. The statistical
correlation value between two datasets is a significant indicator because it shows the de-
tailed data’s signal-to-noise ratios (SNRs). The Pearson correlation coefficient (r) is one of
the most common SNR-related relative metrics used to evaluate EOs. Although the correla-
tion coefficient, representing the statistical dependence between the satellite observation
and the reference value, can take values between −1 and 1, negative observations were not
considered in the validation process. Therefore, the r values closer to 0 indicate a weak
correlation between the satellite observation and the SM reference value due to noise and
errors in the satellite measurements. The r values closer to 1 indicate a strong relationship
between these two data sets.

4. Results
4.1. SMAP/Sentinel-1 Overall Accuracy

Table 3 provides additional information on the validation sites—including the min-
imum, maximum, and average NDVI and SM values, the number of SMAP/Sentinel-1
product pixels assessed at each site (column 8 of Table 3), the number of pixels with
more than one station, the number of stations in the corresponding pixels (the number
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in the parenthesis in column 9), and the total number of data points used to assess the
SMAP/Sentinel-1 products—separately for each site. The number of data points used to
validate SMAP/Sentinel-1 is also listed separately for each season in this table.

Table 3. Statistical details of the validation sites and SMAP/Sentinel-1 SM data applied for the
evaluation process.

Site Name
SM NDVI No. of

Pixels

No. of Pixels
with More Than

One Stations

No. of Data

Min Max Mean Min Max Mean Overall Spring Summer Fall Winter

AMMA-CATCH 0.006 0.154 0.037 0.13 0.35 0.20 6 1 (2) 645 150 181 175 139
SD_DEM 0.014 0.147 0.038 0.10 0.27 0.15 1 _ 105 22 28 28 27
TAHMO 0.014 0.418 0.236 0.20 0.46 0.34 21 _ 2369 637 435 581 716
COSMOS 0.047 0.455 0.167 0.15 0.38 0.23 5 _ 368 62 106 107 93
OZNET 0.001 0.558 0.154 0.18 0.56 0.28 18 _ 2087 649 499 444 495

COSMOS_2 0.172 0.517 0.295 0.20 0.56 0.42 2 _ 147 41 34 35 37
PTSMN 0.149 0.503 0.394 0.13 0.63 0.47 4 4 (3, 3, 6, 8) 1458 438 390 294 336

CTP_SMTMN 0.023 0.568 0.204 0.20 0.62 0.27 50 2 (4, 2) 172 0 0 172 0
KIHS_CMC 0.107 0.273 0.202 0.19 0.52 0.36 18 1 (18) 129 25 45 44 15
KIHS_SMC 0.081 0.201 0.121 0.19 0.52 0.38 19 1 (19) 74 19 24 23 8

MAQU 0.054 0.627 0.315 0.19 0.56 0.37 19 2 (2) 1941 773 709 374 85
NAQU 0.027 0.311 0.151 0.20 0.33 0.22 8 1 (2) 1144 426 516 153 49
NGARI 0.025 0.331 0.102 0.11 0.25 0.18 13 _ 1103 431 555 82 35

SMN-SDR 0.059 0.363 0.158 0.15 0.44 0.26 20 1 (2) 1355 240 627 430 58
VDS 0.006 0.452 0.208 0.20 0.40 0.27 4 _ 712 103 171 209 229

BIEBRZA_S-1 0.275 0.795 0.548 0.12 0.59 0.34 2 2 (9, 9) 1711 455 448 485 323
FR_Aqui 0.031 0.389 0.144 0.12 0.59 0.31 3 _ 3283 853 849 869 712
GROW 0.001 0.448 0.254 0.07 0.55 0.24 4 4 (16, 15, 4, 2) 1308 312 348 363 285
HOAL 0.180 0.499 0.339 0.13 0.46 0.26 1 1 (32) 258 54 57 90 57
HOBE 0.017 0.758 0.207 0.08 0.56 0.34 20 6 (3, 3, 3, 2, 2, 2) 5448 1362 1464 1416 1206

IPE 0.155 0.319 0.233 0.20 0.68 0.40 1 _ 214 48 57 68 41
MOL-RAO 0.044 0.303 0.154 0.18 0.53 0.31 1 _ 576 158 137 150 131

REMEDHUS 0.001 0.750 0.128 0.15 0.40 0.25 20 _ 15,813 3618 3956 4499 3740
Ru_CFR 0.221 0.755 0.565 0.12 0.63 0.34 1 1 (2) 2404 630 758 633 383

SMOSMANIA 0.029 0.475 0.182 0.15 0.63 0.30 7 _ 5966 1268 1437 1814 1447
TERENO 0.011 0.843 0.410 0.20 0.50 0.33 4 _ 5660 1362 1361 1578 1359
UMBRIA 0.155 0.319 0.233 0.20 0.68 0.40 1 _ 216 48 57 68 43

WEGENERNET 0.180 0.576 0.389 0.14 0.62 0.37 8 3 (3, 2, 2) 9799 2449 2560 2528 2262
LAB-net 0.172 0.510 0.283 0.07 0.14 0.10 2 532 106 124 153 149

ARM 0.015 0.469 0.264 0.15 0.20 0.18 10 _ 539 106 59 190 184
COSMOS 0.172 0.517 0.295 0.13 0.29 0.18 9 _ 978 253 274 235 216

FLUXNET-
AMERIFLUX 0.004 0.520 0.266 0.13 0.46 0.26 4 _ 2196 552 519 551 574

RISMA 0.023 0.563 0.268 0.10 0.63 0.36 19 2 (2, 2) 2187 804 890 455 38
SNOTEL 0.001 0.364 0.128 0.09 0.62 0.30 85 _ 12,917 3799 2978 3199 2941

SOILSCAPE 0.049 0.340 0.216 0.20 0.41 0.25 30 _ 2479 358 641 755 725

Overall 440 31 88,293 22,611 23,294 23,250 19,138

Table 3 shows that validation sites are found in various vegetation and SM condi-
tions. BIEBRZA_S-1, with an average SM of 0.54, and Ru_CFR, with an average SM
of 0.56, are two of the wettest networks available in Europe. The lowest humidity is
found in African networks, such as AMMA-CATCH, with an average of SM of 0.037, and
SD_DEM, with an average of SM of 0.038. In situ stations were distributed among a total of
440 SMAP/Sentinel-1 pixels, 31 of which have multiple field stations. For this analysis,
88,293 data points were obtained from over three hundred thousand SMAP/Sentinel-1 files
and images. This information is evenly distributed across all four seasons: 22,611 data in
the spring, 23,294 data in the summer, 23,250 data in the fall, and 19,138 data in the winter.

Figure 4 shows four different estimated statistics as boxplots for all validation sites
with a high-quality satellite. It should be noted that since the correlation coefficient between
the in situ measurement and satellite data was negative in the HOAL site, the results of this
site were not mentioned in Figure 4. In this figure, the results for the different continents are
shown in different colors. Using the median, minimum, maximum, and 1/3 quantiles of
the analyzed statistics for each site, these plots can provide an overview of the performance
of SMAP/Sentinel-1 in estimating SM. For better schematically representation of the results,
the global quantitative maps of average correlation coefficient, average RMSD, average
MD, and average ub-RMSE of validation sites are shown in Figure 5.
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Figure 4. The box plots of four statistic indices, including (a) r, (b) RMSD, (c) MD, and (d) ub–RMSE,
shown separately for each site. The median (the horizontal line inside each box), the 1st quantile and
2nd quantile, along with the values outside the boxes, are presented in this figure. Various colors
separate the results for the sites of different continents.
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Figure 5. Global quantitative maps of (a) average correlation coefficient, (b) average RMSD,
(c) average MD, and (d) average ub-RMSE of validation sites.

Regarding correlation coefficients (r) (Figure 4a), the highest correlation between
SMAP/Sentinel-1 observations and in situ measurements is founded on SOILSCAPE
(average r value of 0.86) with 30 ground stations distributed across the United States.
Some stations at this site and some stations at other sites in Africa and North America
have correlation coefficients greater than 0.95. FR_Aqui follows SOILSCAPE in Europe
with an average r of 0.85 and AMMA-CATCH with an average r of 0.84. On the other
hand, the LAB-net with four stations has the lowest correlation coefficient (average r of
0.17). Following this network, the lowest correlation coefficients are found in KIHS_CMC
(average r of 0.19), 18 SMAP/Sentinel-1 grid cell stations, and IPE (average r of 0.27).

Based on the RMSD values of the different sites (Figure 4b), it can be seen that in most
networks, the normal difference between in situ measurements and SMAP/Sentinel-1 SM
observations is greater than 0.1. The highest RMSD values are observed in BIEBRZA_S-1
and Ru_CFR sites with two stations, with an average RMSD of 0.3 and 0.33, respectively.
The lowest RMSD values are founded on SD_DEM and COSMOS-1 in Asia and NGARI in
Africa. Regarding MD values (Figure 4c), the worst results (corresponding to the largest MD
values) were again obtained at the BIEBRZA_S-1 and Ru_CFR sites, confirming previous
results. MD values at other sites ranged from −0.2 for LAB-net to 0.12 for KIHS_CMC.
However, despite high RMSD and MD errors at some sites such as BIEBRZA_S-1, Lab-net,
and Ru_CFR, the ub–RMSEs of these sites (Figure 4d) are acceptable and comparable to
those of other networks. In general, ub–RMSE ranges from 0.03 for SD_DEM and NGARI
to 0.16 for COSMOS-2. It can be seen that the ub–RMSE values of four sites, three of
which are in Africa and one of which is in Asia, meet the nominal error (RMSE better than
0.04 m3/m3) of the SMAP mission. With an average r of 0.78 and a ub–RMSE of 0.05,
Oceania shows the best results validating SMAP/Sentinel-1 SM products. Africa follows
Oceania with an average r of 0.71 and an ub–RMSE of 0.045.

4.2. Comparison of SMAP/Sentinel-1 and Enhanced SMAP SM Products

Figure 6 shows a schematic summary of the number and percentage of available
SMAP 9 km and SMAP 3 km images for the validation sites. The numbers in parentheses
represent the actual temporal resolution of the SMAP/Sentinel-1 and enhanced SMAP
products. The revisit time is calculated based on the number of data available at each site
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and their availability period (see Table 1), taking into account the SMAP/Sentinel-1 data
gap, which is given in https://nsidc.org/data/SPL2SMAP_S/versions/3 (accessed on
19 August 2022).

Figure 6. Schematic summary of the number of available SMAP-9 km and SMAP-3 km images
for each validation site. The numbers within the brackets represent the actual revisit time of the
SMAP/Sentinel-1 and enhanced SMAP products.

In terms of data accessibility over the same period, the superior performance of
SMAP 9 km products compared to SMAP/Sentinel-1 data is evident in Figure 6. In
most parts of the world (e.g., Asia, Australia, Africa, and the Americas), the total num-
ber of SMAP/Sentinel-1 images is almost half of the total number of enhanced SMAP
products. Moreover, the average actual revisit time of enhanced SMAP is 2 days, while
SMAP/Sentinel-1 has an average revisit time of 6 days. Figure 7 shows the overall results
for the performance of the enhanced SMAP and SMAP/Sentinel-1 products in terms of the
four metrics: correlation coefficient (r), RMSD, bias, and ub–RMSE. Note that this figure
includes results for validation sites where both SMAP/Sentinel-1 and enhanced SMAP
products have grid cells within more than one station. The last columns of each graph in
Figure 7 show the average values of the corresponding metrics.

Regarding correlation coefficient values (Figure 7a), the correlation coefficient ranges
from 0.18 for the WEGENERNET site to 0.95 for the PTSMN site with enhanced SMAP
products and from 0.189 for the KIHS_CMC site to 0.84 for the AMMA-CATCH site with
SMAP/Sentinel-1 products. At almost all validation sites except WEGENERNET, higher
r values were estimated for enhanced SMAP products at 9 km spatial resolution. The
difference between the r values, obtained for SMAP/Sentinel-1 and enhanced SMAP data,
is larger for some networks, such as KIHS_CMC and KIHS_SMC, and smaller for some
sites, such as Ru_CRF, HOBE, and RISMA. Figure 7a shows that the enhanced SMAP
product, with an average r of 0.83, outperforms the SMAP/Sentinel-1 product, which
has an average r of 0.6, in estimating SM. Moreover, in almost all networks, the RMSD
of the SMAP/Sentinel-1 products (with an average of 0.15) is larger than that of the
enhanced SMAP products (with an average of 0.11) (Figure 7b). As noted above, the RMSD
value is a function of representativeness error, SMAP reference error in estimating TB and
the SM retrieving method, and uncertainties in the BTBDA downscaling algorithm and
Sentinel-1 backscatter measurements. Therefore, Figure 7b implies that a portion of the
error (average value of 0.04) is imposed on the SM observations after using the Sentinel-1
backscatter measurements and downscaling method. In all networks except BIEBRZA_S-1
and Ru_CFR, RMSD is between 0.06 and 0.17. The RMSD values of BIEBRZA_S-1 and
Ru_CFR are abnormally high for SMAP 9 km and SMAP/Sentinel-1. Figure 7c shows the
same result for these two sites, with substantial negative bias values for both products.
This confirms that the very high values obtained in RMSD of BIEBRZA_S-1 and Ru_CFR
are not due to satellite observation error. Instead, a large part of the values is a result of

https://nsidc.org/data/SPL2SMAP_S/versions/3
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representativeness error. Given the ub–RMSEs of enhanced SMAP calculated for each site
(Figure 7d), removing the biases from the RMSDs brings the error of almost all validation
sites closer to the SMAP nominated error, 0.04 m3/m3. However, high ub–RMSEs in
BIEBRZA_S-1 and Ru_CFR sites cause the average error to be 0.074. By deleting the
information of these two networks, the average ub–RMSE is reduced to 0.065. On the
other hand, ub–RMSEs for the SMAP/Sentinel-1 were generally presented as more than
0.04 m3/m3, as the average of ub–RMSEs of all sites is ~0.093.

Figure 7. Statistical indicators (including (a) r, (b) RMSD, (c) bias, and (d) ub–RMSE) of enhanced
SMAP with 9 km spatial resolution (green) and SMAP/Sentinel-1 SM data (orange) consider-
ing various SM validations sites. The results for validation sites where both SMAP/Sentinel-1
and enhanced SMAP products include grid cells within more than one station are considered in
the analysis.

4.3. Impacts of Vegetation Conditions, Land Cover, and Soil Texture on the Accuracy of
SMAP/Sentinel-1 SM Products

To investigate the influence of land cover on the accuracy of SMAP/Sentinel-1 SM
products, the statistical indicators were calculated for different land covers of the validation
sites. For this purpose, the land-cover class that accounts for more than 70% of the study
area is considered the validation site’s mainland cover. Regions equally covered by forest
and grass are assigned to the “Forest + Grassland” class. In this way, the regions covered by
forest and cropland are considered the “Forest + Cropland”. Figure 8 illustrates the effects
of land cover on the accuracy of SMAP/Sentinel-1 SM products.

The SMAP/Sentinel-1 observations in Grassland have the highest correlation coeffi-
cient (average r of 0.701) with the in situ measurements. After Grassland, the correlation
coefficient obtained the best results in the Cropland (average r of 0.651) and Forest + Crop-
land (average r of 0.613) classes. However, the lowest error (average RMSD and ub–RMSE
values) are observed in Bareland regions (average RMSD = 0.06 and un-RMSE = 0.030).
According to Figure 8, the error values are higher in Cropland (average RMSD = 0.115
and un-RMSE = 0.083) and Grassland (average RMSD = 0.113 and un-RMSE = 0.077) com-
pared to the Bareland. On the other hand, SMAP/Sentinel-1 SM products showed poor
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results in the correlation coefficient, RMSD, and ub–RMSE in the Forest regions (R = 0.434,
RMSD = 0.161, and ub–RMSE = 0.106). It can also be seen that the presence of forests in the
grassland regions affects the accuracy of the SMAP/Sentinel-1 products (Grassland versus
Forest + Grassland in Figure 8). These results show less sensitivity of the SMAP/Sentinel-
1 to SM content variations beneath vegetation, especially in very moist vegetation and
forest regions.

Figure 8. The performance metrics for the SMAP/Sentinel-1 3 km SM product, separately for seven
land-cover classes. r refers to Pearson correlation.

We also investigate whether water bodies and urban areas less than 0.25 km2 that
are not detectable in the MODIS land-cover products can affect the accuracy of the
SMAP/Sentinel-1 SM products. The underlying concept is that the MODIS land-cover
product with a spatial resolution of 500 m and 1 km is used as dynamic ancillary data
to eliminate the influence of water bodies, building areas, woodlands, and croplands on
both the active–passive algorithm [46] and the SM retrieval algorithm of TB [13]. The
results of this assessment are shown in Figure 9. The plots (a) and (b) in Figure 9 show the
relationship between the percentage of water/urban classes within the validation regions
and the correlation coefficient obtained between the SMAP/Sentinel-1 SM observations and
the in situ measurements. The same results for the RMSD are shown in the plots of (c) and
(d) in Figure 9. Note that to better examine the impact of water bodies on SMAP/Sentinel-1
performance, we have considered the wetland as a water body in this part of the
validation process.

According to Figure 9, the highest percentage of water bodies and urban areas in the
validation sites were a maximum of 7% and 12%, respectively. Figure 9 shows that for those
pixels of SMAP that include water bodies and urban areas, after MODIS land-cover correc-
tion, the accuracy of the SMAP/Sentinel-1 SM product is independent of the presence of
water bodies and urban areas. It can be concluded that the corrections applied in the
3 km products of SM using the MODIS land-cover map with a spatial resolution of
500–1000 m were able to minimize the effects of water bodies on the dielectric constant ex-
tracted for L-band radiometry and the effects of the urban area on the backscatter coefficient
retrieved by the Sentinel-1 radar instrument.

The representation in Figure 10 shows the overall accuracy of the SMAP/Sentinel-1
products at all validation sites as a function of soil type. Figure 10a shows the percentage
of validation networks belonging to six different soil types. All soil types have medium
or coarse surface textures. According to Figure 10a, 46% of the networks studied have
sandy loam soil. After sandy loam, clay and loam soils have the most significant number of
networks, with about 23% and 21% of the networks, respectively. Only one network had
sandy soils.

Figure 10b,c shows the average correlation coefficient and ub-RMSE of each soil type.
Given this figure, the SM measurements of 4% of the networks with sandy clay loam soil
have the highest correlation with the SMAP/Sentinel-1 SM products. As can be seen in
this figure, despite the slight similarity between the average correlation coefficients and
ub-RMSE in the different soil types, it can be said that the influence of the soil type on the
accuracy of the results can be ignored.
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Figure 9. Effect of water (a) and build-up (b) areas over the validation sites on the correlation
coefficients of the SMAP/Sentinel-1 3 km SM product, respectively. Also, (c,d) respectively represent
the effect of water and build-up on RMSD.

Figure 10. The correlation coefficient for the SMAP/Sentinel-1 3 km SM product, separately for
six different soil types. (a) The percentage of validation networks belonging to different soil types.
(b) The average correlation coefficient (r). (c) Average ub-RMSE for each soil type.
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4.4. Seasonal Assessment of the SMAP/Sentinel-1 Performance

The statistical indicators were calculated for the four seasons for a more in-depth
investigation into the dependence of the results shown in Figures 4 and 7 on the seasonal
climatic conditions. Figure 11 shows the histogram of r values of validation sites.

Figure 11. The histogram plot of the correlation coefficient (r) for the 3 km product of SMAP/Sentinel-1
SM over the validation sites, separately for spring (a), summer (b), fall (c), and winter, (d) seasons.
The red dashed lines indicate the range of the average r ± Confidence Intervals (CI).

The results presented in Figure 11 show that SMAP/Sentinel-1 SM observations in
winter have the lowest correlation with in situ measurements. In this season, the correlation
coefficients of more than 50% of the validation networks were below 0.5 and even below the
average r value of this season (i.e., 0.269). In contrast, in autumn, the correlation between
in situ data and retrieval values from SMAP/Sentinel-1 SM is the highest. In this season,
the correlation coefficients obtained for more than half of the validation networks range
from 0.55 to 1. Thus, with an average value of 0.53, autumn has the best accuracy for
estimating SM. Note that despite the significant differences in the histogram obtained
in spring and autumn, the average correlation coefficients in these two seasons are not
significantly different. Therefore, spring was identified as the second season with average
correlation coefficients of 0.51.

5. Discussions
5.1. SMAP/Sentinel-1 Overall Accuracy

The ISMN SM networks provide in situ measurements of SM under a variety of
conditions that can be used to validate SMAP/Sentinel-1 SM products. The analysis of
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SMAP/Sentinel-1 SM data in various validation sites shows that this moderate-resolution
SM product can provide SM with acceptable accuracy (Figure 4). Consistent with the
pattern of the performance metrics over all sites, dense validation sites, which have a larger
number of stations distributed within the SMAP/Sentinel-1 cell, had a higher correlation
coefficient and lowered ub–RMSE (Figure 4 and Table 3). According to Figure 4, despite the
high correlation coefficient (R) between in situ measurements and SMAP/Sentinel-1 SM
observations, there are high RMSD values at some sites such as BIEBRZA_S-1 and Ru_CFR
(Figure 4b). However, the high observed bias (Figure 4c) at these two sites indicates
that the high RMSD values are due to a possible undetectable and undesirable error,
called representativeness error [119,120]. Representativeness error refers to the difference
between the real SM value within a particular grid cell, and the average of point-based in
situ measurements within the corresponding grid cell considered the reference values [101].
This error is unrelated to satellite performance and must be removed from the validation
process. The large bias values between the enhanced SMAP SM observations and the in situ
measurements from BIEBRZA_S-1 and Ru_CFR (Figure 7c) can show the representativeness
error in these networks. According to Equations (3) and (4), this type of error in the
validation process causes α of the reference data to be non-zero, which significantly affects
the results, especially at higher SM values. As detailed in Table 3, BIEBRZA_S-1 and
Ru_CFR are two of the wettest networks available, and both are located in Europe. Based
on the assumptions considered for the validation process of EOs, representativeness error
is unavoidable incredibly when coarse-scale SM product is evaluated using sparse or
dense SM networks [121]. According to Figure 4c, from all validation sites, 18 sites have
a negative bias, 13 sites have a positive bias, and 3 others have zero bias. The bias is
not due to an overestimation or underestimation of satellite observations, but a possible
representativeness error. Fortunately, this error is detectable using MD and bias and can be
decreased from the overall error of the EOs. Therefore, the ub–RMSE, which separates the
bias values (MD) from the RMSD, can better explain the performance of SMAP/Sentinel-1.
By comparing RMSD and ub–RMSE indicators of the BIEBRZA_S-1 and Ru_CFR sites, it
can be seen that the ub–RMSE decreased sharply after removing the MD from the RMSD
values. The presence of good correlations (Figure 4a) in these two networks also confirms
that the observed error is not related to satellite performance. Similar performance (SM
retrievals without significant errors) have also been found and reported for previous SM
products retrieved from various RS missions, such as SMOS, AMSR_2/E, and SMAP coarse-
scale SM products [24]. Compared with coarse-scale SM products divided from previous
passive microwave satellites, the SMAP/Sentinel-1 product with a higher spatial resolution
can therefore be more beneficial for various purposes.

5.2. Comparison of SMAP/Sentinel-1 and Enhanced SMAP SM Products

Figures 6 and 7 compare the performance of SMAP/Sentinel-1 and enhance SMAP
from different points of view. The underlying concept is that for the derivation of SMAP/
Sentinel-1 SM product, enhanced SMAP L-band radiometer observations from half orbit
are used as a reference radiometer measurement and downscaled with Sentinel-1 radar
data [19]. Comparison of SMAP-9 km and SMAP/Sentinel-1 3 km SM products allowed us
to determine the magnitude of the error imposed on SMAP-3 km SM by the SMAP-9 km
reference data, Sentinel-1 backscattering measurement, or BTBDA downscaling method.
Moreover, it expressed the negative effects of integration of Sentinel-1 and SMAP data
on the various characteristics of SMAP original products (e.g., its temporal resolution
(Figure 6). As shown in Figure 6, the actual revisit time of the enhanced SMAP is twice as
long as that of SMAP/Sentinel-1. Therefore, in terms of data availability over the same
period, the SMAP 9 km products are superior to the SMAP/Sentinel-1 data. This result
could be partly explained by the low revisit time of the Sentinel-1A/B satellites. In short,
the studies conducted before the launch of the SMOS mission showed that an interval of
2–3 days is the optimal temporal resolution for a passive microwave mission SM [122]. In
this way, as a follow of the SMOS mission, the nominal revisit time of SMAP is planned



Remote Sens. 2022, 14, 4624 21 of 31

for 2–3 days [19,123]. However, in the case of SMAP/Sentinel-1, temporal resolution is
limited by the Sentinel-1A/B satellites’ revisit time (~six days) [14]. Moreover, since the
Sentinel-1B satellite is no longer available, the repeat coverage of radar data may worsen.
In addition to the low revisit time of the Sentinel-1A/B satellites, the active–passive SMAP
algorithm, which discards any suspect or erroneous backscatter coefficient, reduces the
revisit time of the SMAP/Sentinel-1 product.

Given Figure 7a–d, the enhanced SMAP product has better performance when it
comes to estimating SM than the SMAP/Sentinel-1 product. The SMAP/Sentinel-1 de-
velopment team has attempted to overcome the major challenges of combining active
and passive microwave measurements by considering (i) temporal mismatch between the
two independent satellite platforms SMAP and Sentinel-1A/B, (ii) estimation of different
beta and gamma parameters (the coefficient of the linear functional relationship between
backscatter coefficient and TB), and (iii) different frequencies and penetration depths of
the active and passive instruments. By comparing the results obtained from the evaluation
of SMAP/Sentinel-1 products with the validation results for previous active–passive al-
gorithms, it can be seen that they have been successful in achieving their goals. However,
given the conditions and assumptions applied to the integration of the enhanced SMAP
and Sentinel-1 data, and the inherent inaccuracies of the radar data due to the influence of
target structure and vegetation condition, this conclusion is to be expected [124]. It must be
kept in mind that, despite the differences in the performances between SMAP-enhanced
and SMAP/Sentinel-1 data, these high-resolution SM products still meet the demand for
overall accuracy in estimating SM.

5.3. Impacts of Various Geographical Parameters on the Accuracy of SMAP/Sentinel-1
SM Products

Based on Figure 8, the performance metrics over the non-forested sites were signifi-
cantly better than the level achieved in the woodland areas. Minimal sensitivity to incident
angle variations of SMAP radiometer for heavily vegetated areas [77], the sensitivity of
Sentinel-1 radar to vegetation roughness and dispersion [125], masking of incident angle
variations of active–passive microwaves by dense vegetation [46], lower penetration of
electromagnetic waves in dense vegetation [126,127], and the effect of plant moisture on the
dielectric coefficient might be the main reasons for this result. A similar result was obtained
by [128], indicating that the accuracy of SMAP SM decreases with decreasing vegetation
percentage, especially in the forest areas. On the other hand, Colliander, et al. [129] en-
hanced SM products with in situ measurements after comparing the observation of SMAP,
demonstrates that spaceborne L-band radiometry is sensitive to SM under temperate forest
canopies (RMSD range of 0.047–0.057 m3/m3 and r rang of 0.75–0.85). Since the results
of this study show the same range of the correlation coefficient for SMAP-enhanced SM
products at the forest validation sites (such as KIHS_CMC, SMOSMANIA, and TERENO,
Figure 7), the substantial part of the error must be added to the products after combination
with active radar data.

It must be noted that vegetation effect correction is considered in both the
active–passive algorithm [46] and the SM retrieval algorithm of TB [13] using the MOD13A2
(V005) vegetation indices product [130]. However, due to the remarkable temporal changes
in vegetation and surface roughness [12] and the presence of diverse vegetation with
different spectral characteristics in a coarsely scaled SMAP pixel [131], the vegetation
effect correction might be incomplete in some vegetated areas. The poor performance
of the SMAP/Sentinel-1 products in the shrubland (R = 0.510, RMSD = 0.161, and
ub–RMSE = 0.106, Figure 8) is evidence of the incomplete correction of the vegetation
effect mentioned above. Shrubland regions of many parts of the world are classified as bare
land because of their seasonal variation in vegetation conditions and low NDVI in particu-
lar seasons. As a result, active–passive algorithms sometimes miss vegetation corrections
in these locations. In contrast, correcting for land cover using the MODIS MCD12Q1 (V051)
land-cover map [19], temperature and precipitation effect using NASA Global Modeling
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and Assimilation Office (GMAO) earth system model (GEOS-5) [132], and correcting for
soil type using the HWSD soil texture map [133] significantly eliminated the effects of
varying soil texture and the proportion of water bodies and urban areas on the SM values
obtained from active and passive microwave observations (Figures 9 and 10). As shown in
Figure 11, the correlation coefficient between SMAP/Sentinel-1 and in situ values SM was
significantly lower in winter than in the other seasons, even in the seasons with the highest
proportion of vegetation. This is somewhat contradictory to the results in Figure 8, where
the vegetation fraction was observed as one of the leading causes of the error, while in
winter, there is usually the least amount of vegetation in the region. Limited variations in
SM values during particular seasons and the fewer data used to estimate the performance
of products during a specific season are two of the most important reasons for reaching this
conclusion. It must be noted that the number of data for winter was significantly less than
other seasons, which can have a great impact on the final results related to these seasons.

5.4. Sources of Uncertainty in the Validation of SMAP/Sentinel-1 Product

Despite several preprocessing steps, careful selection of in situ reference measurements,
dubious satellite data elimination, and highly accurate and appropriate statistics, there are
still some sources of uncertainty in the SMAP/Sentinel-1 validation process. As claimed
by [134], these errors are not caused by the poor design of the study methods. They are
generally stochastic uncertainties resulting from the weak assumptions and conditions
inevitably considered in space-based EO assessment methods. Gruber et al. [101] advised
ways to reduce statistical uncertainty and develop a deep understanding of the quality of
SM products. This study has tried to implement all the corresponding suggestions in data
selection and processing (see Sections 3.1 and 3.2). However, there are still some sources of
error, perhaps the most serious of which are as follows.

5.4.1. Distribution of In Situ Stations

As mentioned before, observations of sparse networks that generally lead to a point
within a SMAP footprint are unsuitable for validating SMAP coarse-scale pixels [135]. With
less rigor, this rule also applies to evaluating extended 3 km products. The single-point
station can later be used to validate the SMAP/Sentinel-1 3 km pixel once it has been
verified as an accurate representation of SM over the SMAP cell extent [22]. However, this
condition is not necessarily true for all stations of the sparse sites. In the current state of the
art, the stations located at the corners of the grid cells of EO do not accurately represent the
SM of the grid pixels.

Furthermore, when multiple stations are heterogeneously distributed within an EO
grid, the average measurements of these stations cannot be expected as an accurate proxy
for the actual SM of the grid cell. If either of these scenarios occurs in SM networks, the data
collected from these stations will be inaccurate. To illustrate this issue, Figure 12 shows
the site layout and SMAP/Sentinel-1 3 km grid for REMEDHUS in Spain, PTSMN in New
Zealand, and CTP_SMTMN in China.

According to Figure 12a, the distribution of stations in the REMEDHUS network is that
each SMAP/Sentinel-1 pixel has only one station (represented by black dots in Figure 12).
Some of these stations are located practically in the center of the pixel, while others are
located near the edges. In PTSMN (Figure 12b), four SMAP/Sentinel-1 pixels have more
than one station. However, for two of them (the lower pixels), the distribution of sta-
tions within the pixel is not uniform. The CTP_SMTMN network (Figure 12c) includes all
four possible types of distribution of stations within pixels: (1) pixels with one station in
the center, (2) pixels with one station in the corner, (3) pixels with multiple stations homo-
geneously distributed, and (4) pixels with multiple grids with asymmetric distribution.

In conclusion, the distribution of stations in the sparse networks is one factor that
leads to uncertainties in the evaluation results. It is worth considering that the effects of this
source of error are amplified in the inhomogeneous SMAP/Sentinel-1 3 km cells, limiting
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the accuracy of the validation process. Note that in addition to the sites and stations listed
in Figure 12, some other networks and stations have similar conditions to the listed ones.

Figure 12. Parts of the (a) REMEDHUS, (b) PTSMN, and (c) CTP_SMTMN networks. The thick
gray lines mark the 9 km grids of the SMAP enhanced products; the dashed red lines mark the
3 km grid of the SMAP/Sentinel-1 products. Because of the global EASE grid, the shape of the
grid pixels is elongated at the Kenaston site’s latitude. The background is the CGLSLC100 version
3 land-cover classification.

5.4.2. Depth of Reference Measurements

Another source of uncertainty is the discrepancy between the sampling depth of the
EO observations and the in situ measurements. In general, field measurements at some of
the in situ reference stations used in this work were made at various depths from 5 cm to
~10 cm. However, for RS passive microwave radiometers, the adequate SM sampling
depth in the L-band (~0–3 cm) is less than the sampling depth of the in situ
measurements [22,136]. Because there is not a strong relationship between water vol-
umes at the soil surface and deeper layers in some regions, depending on soil texture
and vegetation types [106], the mismatch in penetration depths between different datasets
creates a source of uncertainty that cannot be modeled [116]. Figure 13a,b show how the
non-relationship between SM of different soil depths can cause an untraceable error in the
validation process.

Figure 13a shows the temporary profile of the in situ estimate SM of the Mccrack-
enMese station of the SCAN site in the United States at different depths of 5 cm, 10 cm,
20 cm, and 50 cm. The Hydraprobe Digital Sdi-12 (2.5 volts) detectors in the SCAN network
measure SM with dynamic penetration depths ranging from 5 cm to 2.03 m [137]. Figure 13a
shows no relationship or correlation between the SM measured at different soil depths at
virtually all measurement times. Furthermore, there is no consistent relationship between
the variations in SM behavior at different depths. As a result, the difference between the SM
at different depths cannot be modeled as bias. Although all of the in situ SM measurements
deeper than 10 cm were removed from the validation process, this effect may still result in
low correlations between in situ measurements of SM and observations of RS when taken
at different soil depths.

Figure 13b shows how important the discrepancy between in situ and EO measurement
depths can be, especially when the different RS and field datasets are observed at different
times of day. In this figure, the red columns show the difference in SM values recorded at
7 am and at 10 am for a depth of 0–5 cm. The same values for the depth of 10 cm are shown
with the blue columns. The temporary profile in this figure belongs to the measurements
from the Irrigation Technology Centre (ITC) station, located in Myanmar and part of the
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VDS site. In short, in situ reference measurements and EOs may have different observation
times from 6 am to 10 am. This figure shows that SM does not have the same variations
in the 3 h intervals, i.e., the time interval between receiving SMAP, Sentinel-1, and in situ
data, at different ground depths. This problem proves that when evaluating RS-based SM
products using in situ measurements reported at different times, the difference between
the sampling depth of observations and measurements can cause a large error in the
evaluation results.

Figure 13. (a) Temporary profiles of in situ SM estimation at various depths of 5, 10, 20, and 50 cm
over the stations of Mccracken Mese of the SCAN site located in the United States. (b) Difference
measured SM at 7 am and 10 am at a depth of 5 and 10 cm for the station Irrigation Technology Centre
(ITC) of the VDS site in Myanmar. (c). The temporary profile of SM retrieved from Deogon–5TE–B
and Deogon–5TE–A at a depth of 5 cm over the stations of 3.01, site of HOBE, Denmark.

5.4.3. In Situ SM Detectors

Another source of uncertainty is the measurement of SM with different detectors
and probe sensors. The underlying concept is that different probe sensors have different
sensitivity to environmental parameters, and consequently, different errors in their mea-
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surement, due to their various structure, design, and measurement techniques. In this
way, using different probes, various SM measurements may be taken at a specific time and
penetration of soil, but with different accuracy. This issue can be addressed via permanent
calibration of probe sensors. However, since each station in many international SM stations
is equipped with at least two different SM detectors, it is not possible to calibrate all of them
based on their unique characteristics. To better understand this problem, Figure 13c shows
the temporary profile (2016–2019) of SM measured by Deogon-5TE-B and Deogon-5TE-A
at a depth of 5 cm over the stations of 3.01 of the HOBE site in Denmark. Figure 13c shows
an absolute difference between the SM measurements of these two detectors located at
the same soil depth. Since the measurements of one detector are randomly selected and
used as reference data in the validation process, the corresponding difference may turn into
an undetectable and unintentional error.

In addition to all mentioned possible error sources, the effects of temporary and
undetectable waters, inaccurate and erroneous measurements in various SM detectors
during their missions, the use of a variety of different SM detectors in all of the international
SM networks, the presence of permanent vegetation in the SMAP-36 km reference footprints,
and a variety of other non-modeling elements may have an impact on SMAP/Sentinel-1
validation results reported in this paper.

6. Conclusions

To better understand the benefits and limitations of the SMAP/Sentinel-1 SM products,
we validated this product using in situ point-based measurements of global extended net-
works. This validation differs from previous studies primarily in terms of validation sites
and the study period, which were evaluated over dense and sparse networks distributed
around the world and over a long period of time. In addition, the effects of the disaggre-
gation algorithm, land cover, water bodies, seasonal climate types, and soil texture on the
SMAP/Sentinel-1 SM product were comprehensively evaluated. In situ measurements
from 35 SM networks and 561 stations with constant geographical distribution were used
as the reference data. Investigating and assessing the main sources of the error that affect
the accuracy of the SMAP/Sentinel-1 data and the results of validation processes is one of
the findings in this paper.

We conclude that there is an acceptable agreement (average correlation coefficient of
0.67 and ub-RMSE of 0.08) between SMAP/Sentinel-1 SM and in situ SM measurements
at most sites in the world. For 10 validation sites, the average r values between the in
situ measurements and SMAP/Sentinel-1 data were greater than 75%. The r values reach
90% in some stations and sites. We compared the accuracy of the enhanced 9 km SMAP
SM and the SMAP/Sentinel-1 data with measurements of denser networks. The results
showed that the enhanced SMAP product has better performance in estimating SM and
a higher actual revisit time than the SMAP/Sentinel-1 product. In addition, the results
showed that the accuracy of the SMAP/Sentinel-1 SM product is nearly independent
of the presence of water bodies and urban areas, soil texture, and seasonal variation.
However, the performance metrics in the non-forested areas were significantly better than
those obtained in the forested areas. In addition, this article stated the non-uniformity
of the depth of RS observation and in situ measurement, the time delay between these
two datasets, and the variety of sensors in different stations as the major sources of error
that affect the accuracy of the study. We hope that evaluating this novel SM product using
global reference measurements will help researchers and will be a practical step towards
improving the performance of satellite data in various studies.
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