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Abstract: In computer vision, stereoscopy allows the three-dimensional reconstruction of a scene
using two 2D images taken from two slightly different points of view, to extract spatial information on
the depth of the scene in the form of a map of disparities. In stereophotogrammetry, the disparity map
is essential in extracting the digital terrain model (DTM) and thus obtaining a 3D spatial mapping,
which is necessary for a better analysis of planetary surfaces. However, the entire reconstruction
process performed with the stereo-matching algorithm can be time consuming and can generate
many artifacts. Coupled with the lack of adequate stereo coverage, it can pose a significant obstacle
to 3D planetary mapping. Recently, many deep learning architectures have been proposed for
monocular depth estimation, which aspires to predict the third dimension given a single 2D image,
with considerable advantages thanks to the simplification of the reconstruction problem, leading
to a significant increase in interest in deep models for the generation of super-resolution images
and DTM estimation. In this paper, we combine these last two concepts into a single end-to-end
model and introduce a new generative adversarial network solution that estimates the DTM at 4×
resolution from a single monocular image, called SRDiNet (super-resolution depth image network).
Furthermore, we introduce a sub-network able to apply a refinement using interpolated input images
to better enhance the fine details of the final product, and we demonstrate the effectiveness of its
benefits through three different versions of the proposal: SRDiNet with GAN approach, SRDiNet
without adversarial network, and SRDiNet without the refinement learned network plus GAN
approach. The results of Oxia Planum (the landing site of the European Space Agency’s Rosalind
Franklin ExoMars rover 2023) are reported, applying the best model along all Oxia Planum tiles and
releasing a 3D product enhanced by 4×.

Keywords: super resolution; 3D mapping; digital terrain model; deep learning; remote sensing;
satellite images; Mars

1. Introduction

Stereoscopic vision is an essential technique for obtaining 3D information from 2D
images. One of the most difficult problems for a stereo vision system is the problem of
stereo matching. This is the process of recovering depth from a set of two-dimensional
overlapping images taken from different positions covering the same scenario [1]. Tradi-
tional methods of image-based depth estimation usually rely on a binocular camera to
calculate the disparity of two 2D images (taken by a binocular camera) by stereo matching.
Once the corresponding points in a stereo image pair are identified, the 3D depth can be
easily calculated by triangulation to obtain the final depth map. There are many different
algorithms for computing stereo matching and a large number of implementations of these
algorithms [2–7]. However, binocular depth estimation requires complicated lens designs
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and costly post-processing techniques to reconstruct the digital terrain model (DTM) from
a captured image pair. In some cases, it is difficult to find the corresponding points in
scenarios where little or no texture is available, and the computational time required to
process stereo image pairs to create the DTM can be high. For this reason, depth estimation
has been considered a difficult field for many years. With the advent of deep learning,
researchers have proposed and applied various methods that provide interesting results
for monocular depth estimation [8–11]. In this process, the main model finds an identity
function to approximate the ground truth of the real DTM, more precisely to reflect it in
a three-dimensional space using only a two-dimensional source. In [12], they proposed
transforming the depth regression task into a classification task, dividing the depth range
into a fixed number of bins of fixed width and achieving improvements in depth estimation.
Again, in [13], the authors dynamically compute the bins depending on the input data and
predict the final depth values as a linear combination of bin centers without discretizing
the depth values due to the classification approach, as in [12], increasing the quality of the
results. In the last eight years, researchers have proposed generative adversarial networks
(GAN), which have achieved promising results in generating complex images guided by
supervised ground truth signals. GANs use a competition technique that uses two parts
(generator and discriminator) that fight against improving the prediction output. The
generator can be thought of as the counterfeit model, which tries to fool the discriminator
model (police) by reproducing a fake output very similar to the real ground truth [14]. In a
super-resolution context, GANs can be applied successfully, because they can reproduce
the fake output as much as possible according to the ground truth available. In recent
years, sophisticated models based on GAN have been proposed. They use models and
various optimizations to achieve an enhanced super-resolution output [8,15]. The logic is
to downsample the high-resolution ground truth by N× (usually 4×) and force the model
to give an output that is the same N× upsample. The generalization achieved by the model
will reproduce super resolution by N× in the evaluation step without any downscaling.
Recently, a sophisticated method has been introduced by [16], which uses a sub-network to
manipulate the interpolated downsampled image (without supervision signal) and feed
into GAN, with the goal of improving the fake prediction output. In [17], the authors
introduced a selective feature fusion (GLPDepth) in with global and local attention mecha-
nisms are used to improve the depth prediction. They use an encoder-decoder model with
lateral connections (such as the UNet model), which is useful to feed into their modules
and merge multi-scale local features, with the global decoding recovering better fine details.
Although these models are efficient, and the authors have proven the effectiveness of their
proposals, our motivation is to unify super resolution and monocular depth estimation into
one end-to-end model. Thus, the following questions arise naturally:

Is it possible to increase the resolution of the images by 4× and, at the same time, estimate
a DTM, always by 4×, through a single end-to-end model?

Does a refinement learned from a low-resolution interpolated source during the training
allow us to obtain better features?

Does using the GAN approach through the model proposal offer performance advantages
over a classic generative architecture?

We would emphasize that contrary to stereo matching, which uses a pair of images
(right/left) to generate the DTM final product, the model proposed in this paper uses only
a single HiRISE input grey-scale source to predict the final super-resolution images and
associated DTM. The main novelty of the proposal is in using the 4× super-resolution
output grey-scale and DTM images to generate a 3D final map using a single end-to-end
model and a sub-network grafted onto the main model, which is able to improve the
interpolated input source in the training step. Monocular depth estimation has experienced
great demand in recent years, due to the wide availability of a single camera in most
real-world application scenarios and due to it covering a wide range of contexts, such
as drone navigation, virtual reality, and autonomous driving. The paper is organized as
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follows: In Section 2, we describe in detail the dataset built. In Section 3, the proposed
neural model is able to predict DTM and grey-scale images in super resolution. In Section 4,
the quantitative/qualitative results of all experiments reported, and finally, in Section 5,
the conclusions are presented.

2. Data

In this section, we describe the details of the data type used in this research, the dataset
creation step, and data normalization pre-processing.

2.1. Satellite Sources

The High-Resolution Imaging Science Experiment (HiRISE [18]) is a powerful camera
onboard the NASA Mars Reconnaissance Orbiter, which was launched in 2005 and arrived
on Mars after one year. The camera operates in visible wavelengths with a high-resolution
capability of 0.25 m/pixel, producing images with a high detail level never seen before in
planetary exploration missions. The huge amount of data provided allows an analysis of
unprecedented views of science targets that is useful for helping to select landing future
sites for rover and human exploration. The Orbiter’s altitude can vary from 200 to 400 km
above Mars, and it can acquire images containing up to 28 Gb (gigabits) of data every 6 s. In
Section 2.2, we provide a full description of the dataset creation, using all sources available
in the HiRISE repository [19].

2.2. The Dataset

The training dataset is composed of 430 DTMs and the associated surface grey-scale
images. DTMs have a spatial resolution of 1 m/pixel, while grey-scale images can have a
spatial resolution varying from 0.25 m/pixel to 2 m/pixel. We upscale through interpolation
(nearest neighbour resampling) the grey-scale image from 0.25 m/pixel to the same spatial
resolution of the DTM available (1 m/pixel), such that the prediction output size and
the pixel per pixel correlation between both sources are correlated (image and DTM). We
collected all sources through the University of Arizona’s HiRISE site [19] (accessed on
1 March 2022), which is shown in Figure 1 for some samples. To perform the experiment,
we split these 430 pairs into 360 for the training set and 70 for the testing set. To train the
model, we extract tiles from the original DTM and image.

(a) (b) (c) (d)

Figure 1. Overview of digital terrain models and their respective grey-scale sources for two random
samples from the HiRISE repository. (a) Avalanche features of dune grey scale. (b) Avalanche features
of dune DTM source. (c) Zumba crater grey scale. (d) Zumba crater DTM source.

Given that h, w are the height/width of each tile extracted, we create the training set
as follows:

S× N × h× w
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where the first dimension represents a DTM tile pair and its relative grey-scale image, and N
is the number of tiles extracted. More precisely, we generated 2× 120,000× 512× 512 tiles
from the training set and 2× 30,000× 512× 512 from the test set. We discard some DTMs
and the relative image correlated for anomaly height value (e.g., NaN value or absolute
min value), and no data augmentation is applied. Finally, DTMs and grey-scale sources
are scaled using max-min local normalization in a range of [0, 1]. We define the pixel range
categorization as the total pixels that are in a specific range over the sum of all pixels of the
test set. We report, in Table 1, the values in percentages.

Table 1. DTMs train/test set statistics using pixel-wise categorization based on the relative range. The
total pixels of the HiRISE train and test set are respectively 31,548,243,968 and 7,883,194,368 pixels,
with a depth values between −7368.2 and of 6871 m.

Range (m) Train Total Pixels Percentage Test Total Pixels Percentage

(−7500; −6750] 125,167,881 0.40% 36,128,083 0.46 %
(−6750; −6000] 402,230,537 1.27% 98,323,693 1.25 %
(−6000; −5250] 212,877,177 0.67% 53,962,715 0.68 %
(−5250; −4500] 1,638,429,900 5.19% 380,020,058 4.82%
(−4500; −3750] 4,373,169,629 13.86% 1,108,666,596 14.06%
(−3750; −3000] 4,249,001,383 13.47% 1,056,827,070 13.41%
(−3000; −2250] 4,455,583,194 14.12% 1,131,272,379 14.35%
(−2250; −1500] 4,086,800,593 12.95% 1,014,990,398 12.88%
(−1500; −750] 2,268,149,838 7.19% 571,919,007 7.25%
(−750; 0] 2,024,401,066 6.42% 491,264,802 6.23%
(0; 750] 1,963,805,715 6.22% 480,032,232 6.09%
(750; 1500] 2,664,539,777 8.45% 674,413,972 8.56%
(1500; 2250] 1,683,998,656 5.34% 426,284,350 5.41%
(2250; 3000] 504,330,832 1.60% 136,542,305 1.73%
(3000; 3750] 452,791,812 1.44% 113,674,919 1.44%
(3750; 4500] 274,299,407 0.87% 70,333,088 0.89%
(4500; 5250] 7,744,087 0.02% 2,035,558 0.03%
(5250; 6000] 32,818,301 0.10% 6,395,581 0.08%
(6000; 6750] 72,529,655 0.23% 18,573,226 0.24%
(6750; 7500] 55,574,528 0.18% 11,534,336 0.15%

2.3. Data Normalization

Normalization is a process used in data preprocessing and ensures a fast learning
convergence if the data input x ∈ [0, 1], because it removes the difference in magnitude
between features data [20]. During the training step, all the learned weight model updates
will have the same sign of the scalar error computed by the loss function and considering
the input normalized and the linear/non-linear functions used by the model, this normal-
ization process avoids the zigzagging weights behaviour, which can slow the learning step
(Section 4.5 of [21]). In all experiments, a max/min local normalization is applied for each
tile of the dataset in the loading data step of the training phase, taking full advantage of
convergence according to the above-mentioned issues.

3. Methodology

In this section, we describe the proposed deep model, which is capable of estimating
the DTM at a super-resolution scale and, at the same time, super resolution of the input
grey-scale image. In Section 3.1, we introduce the details of the sub-network that is able
to refine the interpolated input image, which is useful in improving the learning process,
and in Section 3.2, we introduce the entire model summarized in Figure 2 and detailed in
Figure 3.
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Figure 2. Training overview of SRDiNet + RLNet and generative adversarial approach (which we
refer to as Model A).

Figure 3. Architecture of SRDiNet jointly with RLNet sub-network.

3.1. Refinement Learned Network

The refinement learned network (RLNet) (see Figure 4) is responsible for refining the
IHR
n interpolated in ILR

n outputs through a simple network with the final Tanh activation
function that maps the features in a range [−1, 1]. We use the residual in residual dense
blocks (RRDB blocks) [22] (short skip connection) to extract local features from the preced-
ing blocks and preserve residual local information; then, the final features are summed up
with the convolutional output of the low resolution, followed by a convolutive layer. The
final features will sum over the image ILR

n through a long skip connection [23] to preserve
the global features and induce a refinement effect over the input low-resolution image. It is
demonstrated that short skip connections and long skip connections [23] are very useful to
improve the quality of the features because providing alternative paths for the gradient
computation of the backpropagation process is beneficial in the learning step. The proposed
combination is trained using an unsupervised approach back-propagating the error of the
last layers of the two-branch generator (Details in Section 3.2). Since the proposal is a
unique end-to-end model, the refinement RLNet operation tries to regularize the ILR

n such
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that the total error of the loss function is in a global minimum or a good approximation of
it (local minima).

Figure 4. Refinement learned network (RLNet) architecture. The sub-network is grafted onto SRDiNet
(Model A and Model B) to refine the interpolated input and improve the learning process.

3.2. Generator Two Branches Network

The SRDiNet model estimates the high resolution in an approximation super-resoluted
image ISR from a low-resolution ILR through a learned weight from the scheme on Figure 4,
such that the image feed into the generator network is IRLR = ILR + tanh(RLNet(ILR)).
SRDiNet adopts a supervised approach, and all the high-resolution images and correlated
DTM are provided as supervised signals. The SRDiNet model adopts a GAN-similar archi-
tecture using an RRDB block [22] to extract local features from the preceding and current
blocks and stabilize the training of the wider network. Bicubic interpolation (upsampling
layers with convolutive layers and leaky rectified linear unit activation function, referred
to as Leaky ReLU) is used to enlarge the image, and then two-branch sub-networks are
grafted to split the output along a unique end-to-end model (see scheme in Figure 3) and
regularized by the coarse and fine local features fused jointly and fed into the last two
sub-networks, which is useful to obtain better fine details. The sigmoid activation functions
are used to scale the output data in a range of [0, 1] as the input-normalized data. The final
outputs will be the super resolution of the input source by 4× and the relative estimated
DTM map by 4×. The Tanh activation function maps the output of the local features learned
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in a range of [−1, 1], and summed with the feature data of the layer before the branch block,
it has the scope to refine the features value of the Conv4 output layer.

More formally, the generator process can be described as follows:

α = conv1(IRLR = ILR + tanh(RLNet(ILR)))

out = α + conv2(RDB(α))

out = conv6(conv5(R(conv4(R(conv3(out))))))

outdtm = out + tanh(convbr010(R(convbr09(R(convbr08(R(convbr07(out))))))))

outgrey = out + tanh(convbr110(R(convbr19(R(convbr18(R(convbr17(out))))))))

predgrey = σ(conv(R(conv)))

preddtm = σ(conv(R(conv)))

(1)

where convn denotes the th-convolutional operation, convbr denotes the convolutional layer
of the branch (convbr0 and convbr1), RDB denotes the residual dense block layer, and preddtm
and predgrey denote the estimated super-resolution DTM tensor and the super-resolution
image of the input image ILR. In addition, σ, tanh are the activation functions used, and
Leaky ReLU R(x) is defined as follows:

R(z) =
{

z z > 0
βz z <= 0

}
(2)

For each training of the correspective triple sources IHR
n , ILR

n , DTMIHR
n

n ; n = 1, . . . , N,
we search:

θ̃G = arg min
(

BCE(Gθ0(RLNet(ILR
n )), IHR

n )) + BCE(Gθ1(RLNet(ILR
n )), DTMIHR

n
n )

)
(3)

We defined the multi-objective loss function in Equation (3). The partial derivatives
for each input-output pair can be expressed as follows:

∂E(X, θ)

∂wk
ij

=
1
N
·

N

∑
d=1

∂

∂wk
ij
(E) =

1
N
·

N

∑
d=1

∂Ed

∂wk
ij

(4)

where the weight wk
ij connects the output of node i in layer k − 1 to the input of node

j in layer k in the computation graph, and E is the binary cross-entropy (generalized in
Equation (3)), more formally expressed as follows:

E = −wd · [yd · log(ỹd + (1− yd) · log(1− ỹd)]

To generalize the main workflow and improve the readability, we highlight the entire
proposal model as follows: Given a single grey-scale image, we feed it into SRDiNet,
which predicts DTM and grey-scale sources in super-resolution thanks to the two-branch
networks (see Figure 3). In Figure 2, an overview of the training workflow (Model A +
GAN approach) is shown, with the forward and backward errors highlighted by blue and
red lines, respectively. The discriminator network is used following the guidelines of the
generative adversarial networks, which force the entire model to generate outputs very
similar to the ground truth. The generator network back-propagates the error given by
Equation (3) plus the adversarial loss function value (see Equation (5)) computed from the
output of the discriminator (GAN approach). Furthermore, the discriminator is trained
as a classifier to recognize true instances from among the fake ones generated. In the
inference step, only the trained generator and RLNet are used to produce both super-
resolution outputs. Finally, both generated sources are used in post-processing to build a
3D map (see Figure 5). To demonstrate the impact of SRDiNet and the effectiveness of the
RLNet, we decide to create three variations of the above-mentioned proposal with/without
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the GAN approach and with a detached/attached RLNet (See Table 2); we show a full
overview (Model A) in Figure 2, and major details of the RLNet+Generator proposed in
Figure 3. Using the GAN approach (Model A and Model C), which uses the discriminator
network, we define hrpackage and srpackage as concatenation along the channel axis between
(HR, DTM) and (SR, DTMpred), respectively. Then, we compute and back-propagate the
batch average error considering Equation (3) jointly with the following adversarial loss:

Ladv = λadv ×
N

∑
1
− log(1− |hroutput − sroutput|) (5)

where λadv = 1e−5, hroutput = discriminator(hrpackage), and sroutput = discriminator(srpackage).
The learning of the discriminator network is guided by the binary cross-entropy using the
srpackage flagged as Fake and hrpackage as True, accordingly with the main references [14,24].
In all experiments carried out, we use the ADAM optimizer [25] with a learning rate 0.0001
and cosine annealing [26] to decrease to a minimum value the learning rate over the epochs
set up (50 epochs).

Table 2. Different variations of SRDiNet.

Model Type RLNet Generator Discriminator

Model A X X X
Model B X X
Model C X X

(a)

(b)

Figure 5. Two different 3D visualizations of the same region (a,b) using the outputs (DTM and
grey-scale both in 4×) of SRDiNet starting from a single 512× 512 tile of the HiRISE dataset with
spatial resolution of 0.25 m/pixel and without DTM input.
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4. Results
4.1. Quantitative Analysis

In order to study the effects of each model’s variation of the proposed SRDiNet, we
compare the differences using all the metrics reported in Equation (6), outlining the results
over 30,000 instances of the HiRISE test set (see Table 3). Both Model A and B, which use
RLNet, outperform Model C, along all metrics considered, demonstrating the effectiveness
of RLNet to refine the interpolated input and improving the learning process. In Figure 6,
we show in false color the variation of the input-learned image by the RLNet (third column)
compared to the interpolated input source (second column), showing the capability to
attenuate or accentuate some regions of the input image. Two types of evaluation metrics
(error and accuracy) are adopted to report the quantitative results and compare the image
and the digital elevation map predicted by the model analyzed. The first type (smaller
is better) is the absolute error and the root means square error (RMSE), while the second
type (bigger is better) estimates the accuracy using PSNR or using the threshold δ < 1.25t,
where t = 1, 2, 3 and dp, d̂p are the ground truth and the predicted depth, respectively.
More precisely, these can be expressed as follows:

PSNR = 10 · log10

(
MAX2

I
MSE

)

Absolute Error =
1
T

T

∑
p
| dp − d̂p |

RMSE =

√
1
T ∑

p
(dp − d̂p)2

Accuracy threshold = max (
d̂p

dp
,

dp

d̂p
) = δ < thr

(6)

Table 3. Experimental results on the HiRISE test set (30,000 instances) using the three variation
models (Model A, Model B, Model C). The s1, s2, s3 values represent the threshold accuracies as we
described in Equation (6).

Metric (avg) Model A Model B Model C

PSNR SR/HR ↑ 25.400 26.456 25.689
PSNR DTM SR/HR ↑ 15.069 14.930 14.813
RMSE SR/HR ↓ 0.0567 0.0514 0.0552
RMSE DTM SR/HR ↓ 0.1859 0.1876 0.1903
Absolute err. SR/HR ↓ 0.0417 0.0371 0.0404
Absolute err. DTM SR/HR ↓ 0.1558 0.1574 0.1594
s1 SR/HR ↑ 0.9098 0.9233 0.9149
s2 SR/HR ↑ 0.9834 0.9853 0.9841
s3 SR/HR ↑ 0.9947 0.9951 0.9948
s1 DTM SR/HR ↑ 0.3967 0.3882 0.3834
s2 DTM SR/HR ↑ 0.6731 0.6697 0.6628
s3 DTM SR/HR ↑ 0.8208 0.8204 0.8158

In Table 4, we report the best model in depth estimation (Model A) and the relative
comparison with the GLPDepth model [17]. Although the SRDiNet makes estimates, the
super-resoluted DTM, and the image source by 4× from a single image, we outperform
GLPDepth model [17] performance, which estimates only the DTM map without a super-
resolution task. In Table 5, we report the absolute error computed by the pixel range
category. Model B outperforms Model A in all ranges in which we have a lower pixel
percentage presence, while Model A offers better performance in ranges with a high pixel
availability Table 1. Model B variation uses a generator without an adversarial approach,
and considering the few data of the ranges where it performs better than Model A, it can
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generalize better because it does not use a discriminator to force the generator to better
reproduce the input source and estimate the depth map. In compairson, Model A better
generalizes all pixels in the middle range due to the high percentage of data availability. The
performance of Model C (SRDiNet + GAN and without RLNet) offers lower performance
in all ranges categorized.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. In (a,d,g) (first column), we show the original grey-scale sources after the classical bicubic
interpolation; in (b,e,h), the relative bicubic sources in false colour (second column); and in the third
column (c,f,i), we show the output of RLNet in false color. We highlight the pixel difference (blue
low, red high) in the last two columns as a refinement over bicubic sources through the RLNet model
to adjust some pixels so that the model improves the final prediction.

Table 4. DTM estimation of the entire test set of HiRISE (30,000 instances) and comparison between
Model A and GLPDepth model [17] using all the metrics reported. Model A outperforms GLPDepth’s
performance over all results.

Metric (avg) Model A GLPDepth [17]

PSNR DTM SR/HR ↑ 15.069 14.5610
RMSE DTM SR/HR ↓ 0.1859 0.2310
Absolute err. DTM SR/HR ↓ 0.1558 0.1590
s1 DTM SR/HR ↑ 0.3967 0.3729
s2 DTM SR/HR ↑ 0.6731 0.5907
s3 DTM SR/HR ↑ 0.8208 0.7312
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Table 5. Absolute error per range using three different model variations (Model A, Model B, Model
C). The best results (lower is better) are in bold. We fix the ranges between max/min of the entire
dataset with a step of 200 m for each of them.

Range (m) Model A Model B Model C

[−9000 −8200) 0.1378 0.0621 0.1271
[−8200 −7400) 0.1531 0.0794 0.1499
[−7400 −6600) 0.1495 0.1012 0.1515
[−6600 −5800) 0.1501 0.1254 0.1524
[−5800 −5000) 0.1570 0.1434 0.1565
[−5000 −4199.9) 0.1607 0.1541 0.1609
[−4199.9 −3399.9) 0.1598 0.1593 0.1620
[−3399.9 −2600) 0.1588 0.1610 0.1621
[−2600 −1800) 0.1592 0.1619 0.1630
[−1800 −1000) 0.1605 0.1639 0.1652
[−1000 −200) 0.1635 0.1662 0.1685
[−200 600) 0.1672 0.1695 0.1715
[600 1400) 0.1706 0.1709 0.1745
[1400 2200) 0.1732 0.1673 0.1763
[2200 3000) 0.1749 0.1582 0.1775
[3000 3800) 0.1781 0.1437 0.1791
[3800 4600) 0.1817 0.1240 0.1817
[4600 5400) 0.1820 0.1015 0.1819
[5400 6200) 0.1609 0.0765 0.1785

4.2. Science Case Study: Oxia Planum Site

Characterizing the planetary surface, analyzing and investigating the geochemical
process environment, and finding water clues represent necessary steps in the search for
signs of past and present life on other planets. The ExoMars Rosalind Franklin rover is
a sophisticated rover, and its landing on Mars will be expected in a few years. A strong
landing site selection process (2014–2018) has been conducted by ESA, appointing the best
one: the Oxia Planum region. The main reasons are due to the antiquity of the site (Noachian
to early Hesperian, >3.6 Ga). Many studies suggest water-related activity (CITE) and have
a particular interest in the presence of a clay-bearing unit, which might be a key target
in the search for past biosignatures. More precisely, Oxia Planum is a 200 km-wide low-
relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest
margin of Arabia Terra. This region exhibits Noachian-aged terrains. This location covers a
key role in Mars exploration, and analyzing the super-resolution outputs in such regions
ahead of the arrival of the rover can allow interesting observation and interpretation of
the site’s geology and future region selection. We select 1 m/pixel of spatial resolution
over the HiRISE grey-scale dataset taking all Oxia Planum locations and dividing the
huge maps into different 512× 512 tiles. We highlight that all metrics reported are given
by the downscale by 4× the grey-scale images. We applied all metrics using the output
predicted 4× and the ground truth. The real super-resolution results are given in REF, in
which we cannot report numerical results because the ground truth does not exist in that
spatial resolution.

Real Super-Resolution Experiment

In this experiment, we select a full grey-scale image (0.25 m/pixel of spatial resolution)
over the Oxia Planum Mars site [27], applying a “tiling” process to extract 7092× 512× 512
unique locations. In Figure 7, we show some random locations between the GT and
SR outputs.

We apply a filter color to highlight the different details (Figure 7a–c) captured by
SRDiNet and the GT, demonstrating the capability of the model to capture fine image
details and its generalization ability to enlarge the image from 512× 512 to 2048× 2048
and from a spatial resolution of 0.25 m/pixel to 0.06 m/pixel.
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(a)

(b)

(c)

Figure 7. Random sub-locations of the full image ESP 037070 1985 of the HiRISE dataset. The first
column is the ground truth (GT), and the second is the output of SRDiNet by 4×, at 0.25 m/pixel
of GT. The red squares contain the same locations of the tile analyzed. We suggest zooming in to
observe fine difference details (a–c).

In Table 6, we compare SRDiNet with its variant using the above-mentioned metrics,
highlighting better performance compared to the GLPDepth [17] depth estimation model.
Once again, Model A (SRDiNet + RLNet + GAN approach) yields the estimated DTM
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map better than its variants and in comparison with the GLPDepth model. In Figure 8,
we analyze the DTM estimated, visualizing the ground truth (Figure 8a), the prediction
(Figure 8b), and the absolute error between them (Figure 8c), showing a mean error value
of 2.0275 meters per pixel (Figure 8d). In Figure 8e, the low-resolution GT and the super-
resolution output of the SRDiNet are shown, demonstrating the generalization capability
of SRDiNet to enhance the source in a super-resolution image and estimate the depth map,
both by 4×.

(a) DTM GT (b) Prediction

(c) |GT − pred|

(d) Low-resolution GT (e) Super-resolution

Figure 8. The GT (a) and DTM (b) estimation (super-resolution by 4×) from the low-resolution
input target (d). In (c), the absolute error value between GT and DTM estimation is shown in false
colors. We highlight a low average pixel error of 2.027 m. In (e), the super-resolution predicted image
is shown.
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Table 6. Comparison results of Oxia Planum site images through Model A, Model B, Model C, and a
monocular depth estimation model known in the literature (GLPDepth model [17]). In bold, the best
results reported show a better performance of model A compared to the others in DTM estimation.

Metric (avg) Model A Model B Model C GLPDepth [17]

PSNR DTM SR/HR ↑ 14.221 14.211 14.161 14.1184
RMSE DTM SR/HR ↓ 0.2011 0.2013 0.2026 0.2155
Absolute err. DTM SR/HR ↓ 0.1697 0.1700 0.1710 0.1787

In Figure 9, we track a terrain profile near a crater of the Oxia Planum site in order to
analyze the pixels’ similarity across a pixel path between the DTM ground truth (Figure 9a)
and the SRDiNet output prediction (Figure 9b) using the corresponding low-resolution
grey-scale image. The analysis of the terrain profile on the same path shows a high degree
of similarity (see Figure 9c), with a low error reported in meters (y-axis). Although the
values extracted by the pixels’ path are very similar, we emphasize that the difference error
showed in the y-axis is in a range of [0–1.5] error pixels, demonstrating the capability of
the SRDiNet to approximate a hypothetical input ground truth. Finally, using the super-
resolution estimated DTM and image sources, in Figure 5 shows a visualization of the
3D map exported by QGIS software of a 512× 512 Oxia Planum tile super-resoluted into
2048× 2048 and from a spatial resolution by 0.25 m/pixel to 0.06 m/pixel. The input image
fed into SRDiNet covers 128 m, and no DTM is provided in the test model. In Table 7, the
computational inference time is reported using 4 × Nvidia RTX 5000 with 16,125 MiB of
memory, each with a parallel approach to accelerate testing. Additionally, we are moving
all instances for this test from external NAS storage to internal NVMe SSD storage with
a maximum sequential read speed of 3500 MB/s, which is useful in improving the data
loader function and decreasing the computational inference time.

(a) DTM GT (b) DTM Pred

(c) Terrain Profile

Figure 9. Cont.
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(d) DTM GT (e) DTM Pred

(f) Terrain profile

Figure 9. Digital Elevation map: (a) GT, (b) DTM prediction. In (c), the same terrain profile tracked
inside the crater shows a high similarity degree between the two DTM sources (d–f).

Table 7. Computational time (over HiRISE dataset) of the SRDiNet and its variations using the
512× 512 tile size.

Model Parameters (M) GPUs Batch-Size Instances Inference Time (s)

Model A/B 15.35 4 4 500 246
Model C 12.39 4 4 500 218

4.3. Discussion

In this section, a brief discussion is provided, highlighting the main results and the
importance of the monocular depth estimation task in the space context. As shown in
Figure 7, the advantages of super resolution applied to satellite data can help to understand
and highlight details, and together with a reasonable estimate of the depth in super resolu-
tion, it is possible to obtain a 3D map of better quality (see Figure 5). The analysis of the
terrain profile (DTM GT, DTM estimated) shown in Figure 9 has a high degree of similarity
on all the pixels of the path traced in the figure; the same conclusion is reached also by
analyzing the quantitative results through all the metrics considered, from which we can
conclude that the proposed method is applicable in contexts similar to those analyzed in
this paper. All quantitative results reported in Tables 4 and 6 demonstrate improvements
compared to the GLPDepth model, and Model A overtook Model B and Model C in terms
of DTM prediction. The main motivation to introduce three model variations is to prove
the effectiveness of the generative adversarial concept inside model A and highlight the
RLNet sub-network’s ability to refine the interpolated source in order to achieve better
results (Model A and Model B) compared to Model C (see Table 2 for details). The artifact
generation is very difficult to produce using well-trained deep learning if the dataset used
for the training step contains few artifact frequencies, and conversely, if the model has
generated some artifact, it represents a hard challenge to detect. The main reason is the
super-resolution mechanism, where the model will try to add fine details in all regions, and
consequently, in regions with very low details or where they contain some error type, the
main model will approximate substructures. A remarkable advantage of this proposal is to
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obtain good DTM super-resolution products in a fast way, as the comparable commercial
software is time-consuming, and for this reason, only a few samples have been generated
(∼850 over 7100 stereo pairs). This approach can cover the remaining unavailable DTM
products. Furthermore, the weighted learned features of the pretrained model can be used,
and through a fine-tuning technique, it is possible to predict other targets in the spatial
context. In Table 7, the benchmark reported shows the high usability in terms of computa-
tional inference time on 4 × GPUs. Although the hardware demand is high, we emphasize
that the model enhances input data from a shape by 512× 512 to a super-resolution output
of 2048× 2048 for both sources (DTM and grey-scale). However, it is possible to run the
inference test in a single GPU with at least 12 G of memory, increasing the computational
time and the training step using only batch-size 1.

A visualization tool is provided at the following link: https://huggingface.co/spaces/
ARTeLab/DTM_Estimation_SRandD, and the Pytorch full code can be downloaded from [28].

In conclusion, the scientific contributions of this paper can be summarized as follows:

• Introduced a novel GAN model able to reproduce a super-resolution grey-scale image
and predict DTM output by 4× feeding into the network only a grey-scale source.

• Built sub-network that refines the interpolated grey-scale image (unsupervised ap-
proach) and feeds into a model that uses the GAN paradigm, taking advantage of the
predicted super-resolution outputs.

• Improvements in terms of architectural design finalizing into two-branch models able
to predict both super-resolution outputs (DTM and grey-scale).

• HiRISE dataset creation useful to train all models built.
• Quantitative/qualitative analysis of three model variations on HiRISE dataset and

comparison with a monocular depth-estimation model known in the literature.
• Analysis on a scientific case study over the Oxia Planum site (ESA-selected landing

site for a future mission).

5. Conclusions

This paper proposed a novel architecture that can be used to enhance the resolution
from a single 2D image to a 2D image by 4× and to generate a super-resolution DTM
through a unique end-to-end model, referred to as SRDiNet. We carried out experiments us-
ing three variants of SRDiNet, describing the model details, dataset creation, loss functions,
and training process. A model evaluation step using 30,000 instances is reported. and an
interesting science site location study (Oxia Planum) was conducted, analyzing, visualizing,
and reporting all the results, and demonstrating the effectiveness of the model to estimate
both the high-resolution DTM and super-resolution 2D images. An advantage of this
proposal is to obtain fast DTM super-resolution products, as the comparable commercial
software is time consuming, and for this reason, only a few samples have been generated.
The proposed model can cover the remaining unavailable DTM products, highlighting
unseen details in all regions, even those with low spatial resolution in the monocular input
image. Furthermore, we demonstrate improvements in generalization ability using the
sub-network RLNet jointly with SRDiNet (Model A) compared to its variants and the
GLPDepth model. In this paper, we successfully answer the question related to super
resolution and depth estimation from a single input image that can be obtained using a
single end-to-end model to create a 3D surface map in the planet science context.
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