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Abstract: Object detection in remote sensing images is a challenge because remote sensing targets
have characteristics such as small geometries, an unfixed direction and multiple poses.
Recent studies have shown that the accuracy of object detection can be improved using feature
fusion. However, direct fusion methods regard each layer as being of equal importance and rarely
consider the hierarchical structure of multiple convolutional layers, leading to redundancy and
rejected information being rarely applied during the fusion process. To address these issues, we
propose a gated path aggregate (GPA) network that integrates path enhancement and information
filtering into an end-to-end integrated network. Specifically, we first quantitatively analyze the
performance of different gating functions to select the most suitable gating function. Then, we
explore the embedding of soft switchable atrous convolution (SSAC) in the topmost feature layer.
Finally, we validate our proposed model by combining it with experiments using the public NWPU
VHR-10 dataset. The experimental results show that our proposed GPAFPN structure has significant
improvement compared to the FPN structure. Compared with the mainstream networks, it achieved
state-of-the-art performance.

Keywords: feature aggregation; object detection; remote sensing images

1. Introduction

Object detection in high-spatial-resolution (HSR) remote sensing images has been
widely applied in many areas, such as environmental supervision, military, transportation,
urban monitoring and management. With the increasing spatial resolution of remote
sensing images and the great variation in object size in said images, the optimal selection
of the spatial region window size is usually difficult to determine and needs to be adjusted
according to the actual scenario. These features lead to an imbalance in the distribution
of foreground and background context and diverse small objects along with the complex
background [1]. Effective extraction of semantic information can alleviate these problems.
Therefore, effectively extracting contextual information is a hot research topic.

Currently, mainstream research areas include small target detection [2], dense detec-
tion [3], rotating target detection [4–8] and multiscale feature extraction combination [9–13].
These methods expect to discover a general network architecture with fewer parameters
and better expressiveness. Many studies have indicated that lower-feature layers have
better localization information, while higher-feature layers have rich semantic information.
Thus, the combination of multiscale extraction has high research value since it can integrate
different feature maps to achieve complementary advantages. This paper focuses on how to
better combine multi-scale feature extraction, and proposes solutions to the two problems of
redundant noise information generated during feature fusion and target missed detection.

Fusion methods include addition, multiplication and splicing. There are many meth-
ods of connection fusion regarding feature maps, such as direct connection, selective con-
nection and circular connection. A well-known fusion method is adaptive spatial feature
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fusion (ASFF) [14], which utilizes an attention mechanism to learn different feature maps
and obtain different feature contributions. A PAFPN [15] shortens the information channel
from the bottom to the top by adding an additional bottom-up path. A recursive-FPN [16]
not only cycles the FPN [17] structure twice but also embeds atrous spatial pyramid pool-
ing (ASPP) [18] in the connection, while part of the convolution adopts switchable atrous
convolution (SAC) so that the image-level information is embedded into the feature map.

Multiscale feature analysis is a useful strategy for better learning target features. Shal-
low larger-scale features are suitable for dealing with small targets because they have a
smaller sensing field, higher resolution and stronger geometric detail information character-
ization ability, but their semantic information characterization ability is insufficient. On the
other hand, deeper small-scale features have a larger perceptual field and stronger semantic
information characterization ability, but their feature map has lower resolution and weaker
geometric information characterization ability (lack of spatial geometric feature details).
Common multiscale feature processing is divided into structure and fusion methods.

The FPN is one of the most classic and widely used multiscale feature fusion structures.
It consists of a lateral connection and a top-down pathway, merging by addition. Based
on an FPN, PANet uses the addition of a lateral connection and a down-top pathway to
reduce the distance between the bottom and top layers. BiFPN [19] improves PAFPN by
adding an original layer P4-P6 and a lateral layer to form a BiFPN layer and then serially
repeats the computation three times. NAS-FPN [20] applies reinforcement learning, which
is equivalent to a merit-seeking algorithm, to select the best model structure in a given
search space. The reward signal is the accuracy of the submodules in the search space. A
recursive-FPN loops the FPN structure twice, and a variant atrous spatial pyramid pooling
(ASPP) is added between the FPN loops.

A fusion method uses operations such as addition, multiplication and splicing when
merging feature layers of different scales. ASFF, applied in the famous YOLOv3, simultane-
ously uses addition and multiplication. Similar to a full connection, the brief idea of ASFF
is to add a learnable coefficient on the basis of the original FPN. The learning coefficient is
automatically learned; hence, an adaptive fusion effect can be achieved. Various modules,
such as attention mechanisms, can be embedded when connecting different feature layers.
Squeeze-and-excitation (SE) [21] is widely used, in which the first step is compression,
achieved through global average pooling, the second step is excitation, in which two fully
connected layers are followed by an activation function, and the last step is a scale op-
eration. However, SE dimensionality reduction causes side effects to channel attention
prediction, and the dependence between channels is inefficient and unnecessary. To address
the two shortcomings of SE, the ECA [22] module is proposed. This module does not have a
dimensional reduction process. Instead, it directly captures local cross-channel interactions
by following k-nearest neighbors directly after global average pooling. Therefore, it can
effectively capture cross-channel interactions. A convolutional block attention module
(CBAM) [23] includes a channel attention module (CAM) and spatial attention module
(SAM). The CAM has one more parallel global average pooling branch than SE. The SAM
performs concatenation operations on the results of global max pooling and global average
pooling and then obtains the spatial attention feature through dimensionality reduction
and activation functions.

Nevertheless, these multiscale feature fusion methods all face the problem that the
fused features have considerable redundant and mutually exclusive information, and the
different feature layers span a large distance from the bottom layer to the top layer [24].
If there is no bottom-up path, the shallow information (P2) to the deep information (P5)
has approximately tens to hundreds of layers in ResNet, which will cause serious loss of
shallow information and reduce detection accuracy. Some objects that need to be detected
in remote sensing images, such as storage tanks, ships and vehicles, occupy less than 100
pixels on average, which is too small for a 1300 × 800 image. For example, in the ResNet,
these targets are downsampled by 16 times to correspond to the P5 layer and is about
0.4 pixels. The traditional P6 is generated by performing a max-pooling operation on
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P5, which is easily replaced by other features with the max-pooling operation. Simply
using a convolution with a stride of two can also downsample by a factor of two, but
it cannot guarantee that the receptive field remains unchanged. Atrous convolution can
ensure that the receptive field remains unchanged without increasing the cost of calculation.
In this study, a proposed GPANet adopts a dual-path structure with a channel attention
mechanism to strengthen useful features and replace maxpooling with SSAC avoids sudden
reduction of receptive field and enhances object detection ability.

The main contributions of this paper are summarized as follows.

• Aiming at the problem of redundant noise information generated by PAFPN in the
feature fusion process, we use an additional gating function, namely GPAFPN. The
experiments are conducted to explore which gating function is more suitable.

• For the problem of missed target detection, replacing maxpooling with SSAC structure
can not only prevent sample features from being replaced by other features, but
also ensure that the receptive field and computational cost remain unchanged. The
experiments explore which feature layer is the most appropriate to derive the top layer.

• A quantitative analysis with the mainstream attention mechanism on the NWPU VHR-
10 [25] dataset is performed and the optimal mechanism is selected. Comparing with
a series of popular networks, our proposed GPANet shows significant improvement.

2. Materials and Methods

For various detection targets, the features from different convolutional layers are
different. The semantic features in the top layer are more suitable for target classification,
while the detailed features in the bottom layer are more suitable for target localization.
Figure 1 shows how the FPN and PAFPN structures use multiscale information fusion
to achieve the fusion of low-level information and high-level information; hence, more
contextual information is available at each layer. This section focuses on two important
modules of GPAFPN and SSAC. The next section describes the data enhancement approach
and ablation experiments.

Figure 1. (a) Structure diagram of FPN and (b) Structure diagram of PAFPN. Comparing the two,
PAFPN has one more bottom-up path than FPN.

With the advantage of FPN-based structure, we propose a GPANet framework for
object detection of remote sensing images. The framework is shown in Figure 2, the
proposed GPANet is based on the Faster RCNN model, which consists of five modules:
(a) FPN feature extractor, (b) bottom-up gated connection, (c) regional proposal network
(RPN), (d) ROIPooling and (e) Faster RCNN head [26]. (a) ResNet-34 or ResNet-50 [27] is
used to extract the conv2_x, conv3_x, conv4_x and conv5_x layers. (b) is based on (a) with
an attention mechanism and a feature map fine-tuned by SSAC. (c) The region of interest is
screened and the context is evaluated. (d) Features of the same size are obtained through
ROIPooling. (e) Contains two branches: classification uses two fully connected layers and
softmax to calculate category confidence and positioning uses bounding box regression to
obtain the position offset of each proposal, which is used to return to a more accurate target
detection frame. As seen from the overall pipeline, our GPANet is an improvement of the
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Faster RCNN model. In brief, the main difference between GPANet and Faster RCNN is
that GPANet combines a GPAFPN structure, i.e, module (b), with the Faster RCNN model.
Compared with the FPN structure, the advantage of GPAFPN is it can make the features
more representative and improve the utilization of the P6 layer by adding a bottom-up
gating function and an SSAC structure to the original FPN.

Figure 2. The overall pipeline of the proposed GPANet. (a) FPN feature extractor, (b) bottom-up
gated connection, (c) regional proposal network (RPN), (d) ROIPooling and (e) Faster RCNN head.

2.1. Soft Switchable Atrous Convolution Module

In this section, SSAC will be introduced, which is modified from the original SAC.
Figure 3 shows the overall architecture of SSAC. It is composed of three parts: two global
context components before and after, and a SSAC component is inserted in the middle.
These two components will be analyzed in detail next.

Figure 3. SSAC framework.

2.1.1. Atrous Convolution

Atrous convolution is the operation of inserting atrous into a standard convolutional
map to increase the perceptual field. Compared with the standard convolution, it has an
additional hyperparameter dilation rate, which refers to the number of intervals of the
kernel with a weight of 0. If the standard convolution kernel size is k× k and the atrous rate
is r, then the atrous convolution kernel is kd = k + (k− 1)(r− 1). For example, the standard
convolution kernel size shown in Figure 4 is 3× 3, indicating that the atrous convolution
has atrous rates of 1 (top) and 2 (bottom), which means that the void convolution can map
similar targets of different sizes with different void rates, and the computational effort
remains constant.
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Figure 4. SSAC intuitive map, including convolution with different atrous rates.

2.1.2. Soft Switchable Atrous Convolution

The convolution manipulation can be expressed as y = Conv(x, w, r, k) with atrous
rate r and kernel size k, which takes x as its input and outputs y. The specific formula for
converting the standard convolution manipulation to SSAC is shown as follows.

Conv(x, 1, k) Convert to SSAC−−−−−−−−−→ S(x) · Conv(x, 1, k) + (1− S(x)) · Conv(x, r, k) (1)

S(x) = Sigmoid(Conv(x, 1, k = 1)) (2)

In Equation (1), r is a hyperparameter, r and k are both 3 in this study. The S-function
is composed of a 1× 1 convolutional layer and a sigmoid function, and its input is the
result of the pre-global context (see Figure 3). The soft mechanism can determine the
weights of two atrous convolutions, which is somewhat similar to adaptive convolution.
Compared with the original SAC, a SSAC cancels the locking mechanism and changes the
rigid selection of the S-function into a flexible one. The advantage is that the void rate can
no longer only be selected from two, that is, the receptive field is no longer fixed, which is
more conducive to target detection.

2.1.3. Global Context

The GPAFPN structure is to add a gating function on the bottom-up path on the basis
of PAFPN. A global context module is located at both ends of the SSAC module, and it is
a lightweight module. The module is mainly inspired by SE. The difference between the
global context module and the squeeze-and-excitation module is that the former has only
one convolutional layer, while the latter is a perceptron. The former adds the processed
output back to the mainstream by addition, while the latter uses multiplication. The
global context module consists of global average pooling and a 1× 1 convolution. The
computed result is then multiplied by the original input to ensure that the sizes of the output
feature and input feature are equal. The global context module for S-function acts as a
stable prediction.

2.2. Bottom-Up Gating Function

A bottom-up gating function is added between adjacent layers on the bottom-up path
to make full use of the complementary information of the adjacent layer, and it also reduces
noisy information during the fusion process. The bottom-up gating function adopts an
attention mechanism. The initial layers are P2-P5, obtained using the ResNet network as
the backbone and an FPN as the extractor. The feature layers are all of different sizes, so
a downsampling operation is adopted during the initial fusion, which is implemented
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by a 3× 3 convolution with a step size of 2. Figure 5 shows the detailed structure of the
bottom-up gating function.

Figure 5. Framework of the bottom-up gating function.

Standardized ResNet extracts the conv2_x, conv3_x, conv4_x and conv5_x layers
and then uses the FPN to obtain X1 ∈ RM1×N1×C, X2 ∈ RM2×N2×C, X3 ∈ RM3×N3×C and
X4 ∈ RM4×N4×C, respectively. The number of channels in each layer is the same, and the
length and width between X1 and X4 are all scaled by 0.5 times. The feature layer at the
bottom has detailed positioning information. By merging from the bottom to the adjacent
upper layer, the semantic information of the upper layer can be strengthened. Note that X4
is simply Xb

4, without any processing.
First, X4 ∈ RM4×N4×C performs a downsampling operation, which is specifically

achieved by 3× 3 convolution with a step size of 2, obtaining Xb
4_D ∈ RM3×N3×C. The

gating function controls the transfer of information from Xb
4_D to Xb

4_G. The gating function
is inspired by the SE module and generates a C-dimensional gating vector gb

4_D ∈ R1×1×C

(where C is the channel number of Xb
4_D) with values in the range 0 to 1. Multiplying

the i-th channel of A with the i-th element of the corresponding B serves to strengthen
the effective channel and suppress the ineffective one. The gating function consists of
global average pooling and the simplest multilayer perceptron (MLP) with a ReLU function.
Xb

4_D is first generated as a 1× 1× C vector by a global average pooling layer, and then gb
4

is generated by the simplest multilayer perceptron. gb
4 can be formulated as:

gb
4 = Sig( f c(σ( f c(pool(Xb

4_D))))) (3)

Here, Sig(·) denotes the Sigmoid activation function, Sig(x) = 1
1+exp−x , f c(·) denotes

the fully connected layer, σ(·) denotes the ReLU function, and pool(·) denotes the global
average pooling layer. With the gating function, the information can be added to the next
layer after noise reduction. The information source of Xb

3 consists of three parts, including
X3 after convolution, Xb

4_G after gating function and Xb
4_D after downsampling.Xb

3 can be
formulated as:

Xb
3 = X3 + Xb

4_G + Xb
4_D (4)
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Xb
4_G = gb

4 · Xb
4_D (5)

Here, · represents the i-th element of gb
4 multiplied by the i-th channel of Xb

4_D. Part
X3 is used as the original bottom-level information. Part Xb

4_G is used for screening in the
process of information transmission. Part Xb

4_D is equivalent to adding a jump connection.
The main purpose is to turn the original information filtering operation into an information
enhancement operation, because the original underlying information is used as the basis.
Similarly, the calculation formulas of Xb

2 and Xb
1 are as follows:

Xb
j = Xj+1_G + Xb

j+1_D , j = 1, 2 (6)

Xb
j+1_G = gb

j+1 · Xb
j+1_D , j = 1, 2 (7)

gb
j+1 = Sig( f c(σ( f c(pool(Xb

j+1_D))))) , j = 1, 2 (8)

Here, Xb
j+1_D is obtained by down-sampling from Xb

j+1 respectively, ensuring that the
feature shapes are all the same size.

2.3. Top-Level Features after Fine-Tuning

In the classic PAFPN structure, the top-most feature is obtained using a maximum
pooling operation with a step size of 2. In this experiment, the method of obtaining the
top-level features has been changed, and maximum pooling operation is replaced by
SSAC operation. The purpose of adding the SSAC operation is to adaptively fuse two
atrous convolution operation. So that a certain target can still be detected in the topmost
special layer. Targets of different sizes are adapted to feature maps of different scales, and
fine-tuning the top-level operation is equivalent to direct expansion of this feature maps.

3. Experiments and Analysis

This section first presents the dataset for the experiments and the details of the pro-
posed GPANet. The effect of adding SSAC and bottom-up gating functions on the model is
analyzed through ablation experiments. Next, a series of gating functions are quantitatively
analyzed to select the best pairing for the model. Finally, experiments are conducted at
different ResNet depths to observe whether the proposed module is robust. At the same
time, compared with the current models that have been run on this dataset, the method
proposed in this paper has obvious improvement effect.

3.1. Dataset Description

Compared with natural image datasets, such as ImageNet and Microsoft Common
Objects in Context (MS COCO), which have hundreds of thousands—or even millions—of
labeled images, the amount of available remote sensing datasets for object detection is only
a few hundred to a few thousand. Therefore, the image enhancement techniques are needed
to expand the sample size and reduce the effects of sample imbalance. The experiment
used the NWPU VHR-10 [25] dataset, which was annotated by Northwestern Polytechnical
University. The dataset is divided into two categories. There are 650 images that contain
annotation information and 150 images that do not, for a total of 800 images. The experiment
uses the 650 images with annotated information, and the detailed information of the content
is shown in Table 1. There are a total of ten categories: airplane, ship, storage tank, baseball
diamond, tennis court, basketball court, ground track field, harbor, bridge and vehicle.
Among them, 715 pictures are from high-resolution remote sensing images captured by
Google Maps, with a spatial resolution of 0.5 to 2 m, and the remaining 85 are panchromatic
sharpened-color infrared images from Vaihingen data, with a spatial resolution of 0.08 m.
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Table 1. Target number table of datasets before and after enhancement.

Category Object Size
(pixel)

Number of
Original Objects

Enhancement
Method

Number after
Enhancement

airplane 33–129 757 RFC 741
ship 40–128 302 RFC 741

storage tank 34–103 655 GC 663
baseball diamond 49–179 390 FG 862

tennis court 45–127 524 RF 636
basketball court 52–179 159 FG 846

ground track field 192–418 163 FG 732
harbor 68–222 224 RF 640
bridge 98–363 124 FG 696
vehicle 42–91 598 RFC 591

Total of the target
quantity – 3896 – 7148

Due to the imbalance in the number of samples in each category, the predicted results
themselves are category-oriented, so a specific data enhancement method is used to achieve
the balance of the number of samples in each category. The image enhancement method
in this study selects several of the four methods for combination, and Table 2 describes
the methods in detail. R (rotation) represents the origin of the image center, anticlockwise
rotating 90 degrees, 180 degrees and 270 degrees, F (flip) represents vertical or horizontal
mirror flip, G (Gaussian blur) represents Gaussian filtering, σ = (0, 0.5) and C (cropping)
represents the removal of 0 to 10 pixels on any side of the periphery. To balance the
data categories, the number of repeated operations performed on each picture is different
(including a picture containing multiple categories), and the final number of different
categories is approximately the same. The specific information of each category and
the information after the enhancement change are shown in Table 1. After the image
enhancement process, the total number of objects has been expanded to 7148, and we
randomly selected 80% of the enhanced dataset as the training and the remaining 20% as
the test dataset. The subsequent model accuracy comparison is based on the test samples.

Table 2. Dataset enhancement detail table.

Enhancement method Parameters

R (Rotation) Angle = [90, 180, 270]
F (Flip) Horizontal or vertical

G (GaussianBlur) Sigma = (0, 0.5)
C (Cropping) Pixel = (0, 10)

3.2. Experimental Training Details

Table 3 shows the experimental training parameters and anchor generation rules. We
use the P2-P5 extracted by ResNet-50 or ResNet-34 as the input to the GPAFPN, and then
the results go through the RPN network and finally utilize the Faster RCNN head as the
detection head for classification and prediction. The neck takes advantage of the FPN as
the baseline. The anchor sizes in the anchor generation strategy are 4 and 8. The aspect
ratio is [0.5, 1, 2], and the step size is [4, 8, 16, 32, 64] (corresponding to the downsampling
multiple; otherwise, it will result in no anchor in part of the images or the anchor setting
will be beyond the edge of the images). To avoid the size of the input image being too large
or excessive compression, the experiment set the border of the input image from 800 to
1333 pixels, which is close to the pixel size of the original dataset. The initial learning rate is
0.0025, and there are 12 epochs in total. The Linear warmup strategy is used for the 8th and
11th times. The learning rate increases linearly from a very small value to a preset value
and then decreases linearly.
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Table 3. Experimental training parameters and anchor generation rule table.

Parameters Value

Learning Rate 0.0025
Image Resize [800, 1333]
Momentum 0.9

Weight Decay 0.0005
Anchor Size [4, 8]

Ratios [0.5, 1, 2]
Strides [4, 8, 16, 32, 64]

Warmup Linear
epochs 12

Batch size 2

3.3. Evaluation Criteria

The experiment uses the COCO evaluation criteria and the average precision (AP)
to evaluate the final experimental performance. AP: To explain this criterion, some prior
knowledge is needed. First, TP, FP and FN are used to represent the numbers of true
positives, false positives and false negatives, respectively, and the formulas for calculating
precision and recall are as follows:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

When the IoU value of the test result and ground truth is greater than the threshold,
the test result is a true positive; otherwise, it is a false positive. According to precision and
recall, the PRC curve can be drawn, where AP is the integral of the curve. The mAP is
the average value of AP in each category. In the COCO data evaluation standard, the AP
is the mAP. There are different AP values for different IoU benchmarks. There are three
types of default IoU. The first is 10 IoU thresholds of 0.50:0.05:0.95. It is the most stringent
evaluation index among the three, and is equivalent to the COCO evaluation index. The
second indicator, the IOU threshold, is 0.5, which is the most relaxed indicator, and this is
the evaluation indicator of other models in this paper. The third metric, the IOU threshold,
is 0.75, and this metric is between the above-mentioned levels of stringency. The AP used
in this experiment is the first standard.

4. Discussions

All experiments in this paper are implemented through the MMDetection [28] frame-
work. To evaluate the significance of the added module to the experiment, ablation exper-
iments are performed on the NWPU VHR-10 dataset. The ablation experiment does not
modify other contents of the model except for changing whether to add a specific module.

4.1. The Effect of the Attention Mechanism

A popular attention mechanism is mainly constructed from the channel level or the
spatial level, including SE, ECA and CBAM. The introduction of an attention mechanism
is mostly to strengthen the target area that needs to be focused, and different attention
mechanisms play different roles in the same environment. To explore the kind of attention
mechanism that is most suitable for the GPAFPN, we compared two kinds of ResNet depths
that were applied in the experiment. The purpose is to see that the gating function has good
robustness at different depths of the network. The results are shown in Table 4. Whether in
resnet34 or resnet50, the three GPAFPN structures are improved compared to the original
FPN structure, and with the deepening of the network, the same method can generally
show better results. When resnet34 is used as the backbone, the GPAFPN with SE as the
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gating function has the most obvious improvement, and the mAP is 0.6060, which is 0.016
higher than FPN’s 0.5900. This was followed by GPAFPN with CBMA and ECA as gating
functions, which improved by 0.011 and 0.005, respectively. On ResNet50, which has a
deeper network, the improvement of SE is still the most obvious. Its mAP reaches 0.6200,
which is 0.022 higher than FPN’s 0.5980. ECA and CBMA followed. After comparing with
PAFPN, an interesting phenomenon is found: PAFPN has a significant improvement in
accuracy than FPN regardless of the depth of the network, but the accuracy of the ECA or
CBMA gating function is reduced, and only the SE gating function has a positive effect.
This phenomenon also indirectly shows that not all gating functions play a positive role.
Although the gating function can filter noise, it will also filter out useful information. In
summary, the GPAFPN with SE structure is the most suitable for the experiments in this
paper, and its accuracy improvement effect is the most obvious.

Table 4. The performance of different attention mechanisms on the NWPU VHR-10 dataset.

Backbone Method mAP

Resnet-34

FPN 0.5900
PAFPN 0.6030

PAFPN+ECA 0.5950
PAFPN+CBMA 0.6010

PAFPN+SE 0.6060

Resnet-50

FPN 0.5980
PAFPN 0.6120

PAFPN+ECA 0.6100
PAFPN+CBMA 0.6080

PAFPN+SE 0.6200

4.2. The Top Layer Derived from Different Feature Layers

An additional feature layer can be obtained by downsampling from the original
feature layer. The classic structure is obtained by downsampling the top layer Xb

1, and
this experiment adds an additional SSAC operation. Additionally, the performance under
different original characteristic layers is explored, and the specific experimental results are
shown in Table 5. It is observed that the addition of the SSAC structure does not necessarily
activate the incentive effect. It has an inhibitory effect on the X1 layer, while it has an
incentive effect on X2 and X3. Among them, SSAC is used on X2, and the best results are
achieved on mAP, AP_50 and AP_75.

Table 5. The top-level performance derived from different feature maps.

Feature Level SSAC mAP AP50 AP75

X1
b 0.6200 0.9210 0.6800

X1
b X 0.6180 0.9190 0.6820

X2
b 0.6170 0.9200 0.6820

X2
b X 0.6220 0.9270 0.6880

X3
b 0.6130 0.9210 0.6810

X3
b X 0.6170 0.9210 0.6740

4.3. Comparison of Other Models

We use the same dataset to compare mainstream models, including Hyper [29],
RICA [30], CA-CNN [9], COPD [31], RICNN [25], Fast-RCNN [32] and Faster-RCNN [26].
The mAP of our proposed GPANet is 0.927, which is state-of-the-art when compared with
the above models. Analysis of the reasons found that the main point is that the accuracy of
several types of small targets is slightly improved and the accuracy of other categories is
seriously reduced. The specific experimental results are shown in Table 6. The observation
data shows that the four categories of storage tank, vehicle, harbor and bridge are the best
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in all models; in particular, the accuracy improvement of harbor and bridge is more obvious.
The best models improved by 0.034 and 0.029, respectively. Many other models include
the FPN structure, but the biggest difference in this article is that the GPAFPN structure
includes a gating mechanism. We pass the visualization of five feature layers, as shown in
Figure 6: a1 represents the original image; a2 represents the ground truth; a3 represents the
prediction effect map of GPAFPN; a4 represents the prediction effect map of FPN; b and c
represent the heat map of each feature layer of GPAFPN and FPN, respectively; and the red
ellipse in a3 and a4 Indicates the difference between the two. Judging from the results in the
red oval, GPAFPN detected one more bridge and one storage tanks than FPN. Observing
the feature layers of b and c, it was found that the most targets were detected in the P2
feature layer. Among them, less bridges can be detected in the P6 layer of GPAFPN, and the
effect of P6 detection is also more accurate than the target extracted by FPN. Figure 7 shows
the transformation of the loss rate during the training process of the ablation experiment.
The overall change trend of the loss rate in the four experiments is consistent, but near the end
of the experiment, the combination of SE and SSAC achieves the smallest loss value, that is, the
training effect is the best. The pure PAFPN is the worst training effect. In terms of the prediction
results of GPAFPN by SE and SSAC, SE has a greater impact on the module.

Table 6. The performance of mainstream models.

Method mAP Ship Airplane Storage
Tank Vehicle Harbor Tennis

Court
Baseball
Diamond Bridge Basketball

Court
Ground Track

Field

Hyper 0.887 0.898 0.997 0.987 0.887 0.804 0.907 0.909 0.689 0.903 0.893
RICA 0.871 0.908 0.997 0.906 0.871 0.803 0.903 0.929 0.685 0.801 0.908

CA-CNN 0.910 0.906 0.999 0.900 0.890 0.890 0.902 0.997 0.793 0.909 0.909
COPD 0.807 0.817 0.891 0.973 0.833 0.734 0.733 0.894 0.629 0.734 0.830

RICNN 0.726 0.773 0.884 0.853 0.711 0.686 0.408 0.881 0.615 0.585 0.867
Fast-RCNN 0.827 0.906 0.909 0.893 0.698 0.882 1.000 0.473 0.803 0.859 0.849

Faster-RCNN 0.827 0.906 0.909 0.905 0.781 0.801 0.897 0.982 0.615 0.696 1.000
GPANet 0.927 0.921 0.995 0.993 0.892 0.924 0.923 0.995 0.832 0.846 0.923

Figure 6. Performance of different feature layers of GPAFPN and FPN.
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Figure 7. Comparison of the training loss of PAFPN, SE, SSAC and SE+SSAC during 12 training epochs.

5. Conclusions

In this paper, a remote sensing image target detection and classification method based
on a gated path enhancement network is proposed. This method focuses on the information
interaction between different layers and filters the noise information between cross-layers.
Experiments show that the path enhancement method can improve the dissemination of
information, and the integrated SE attention mechanism has the most obvious improvement
effect on the model. SSAC selects the most suitable convolution operation to improve
performance by adjusting the detection receptive field of the top layer. In future work,
experiments will explore how to choose the appropriate level of fusion in information
fusion instead of simply bottom-up path fusion.
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