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Abstract: Large-scale caption-labeled remote sensing image samples are expensive to acquire, and
the training samples available in practical application scenarios are generally limited. Therefore,
remote sensing image caption generation tasks will inevitably fall into the dilemma of few-shot,
resulting in poor qualities of the generated text descriptions. In this study, we propose a self-learning
method named SFRC for few-shot remote sensing image captioning. Without relying on additional
labeled samples and external knowledge, SFRC improves the performance in few-shot scenarios
by ameliorating the way and efficiency of the method of learning on limited data. We first train
an encoder for semantic feature extraction using a supplemental modified BYOL self-supervised
learning method on a small number of unlabeled remote sensing samples, where the unlabeled
remote sensing samples are derived from caption-labeled samples. When training the model for
caption generation in a small number of caption-labeled remote sensing samples, the self-ensemble
yields a parameter-averaging teacher model based on the integration of intermediate morphologies of
the model over a certain training time horizon. The self-distillation uses the self-ensemble-obtained
teacher model to generate pseudo labels to guide the student model in the next generation to achieve
better performance. Additionally, when optimizing the model by parameter back-propagation, we
design a baseline incorporating self-critical self-ensemble to reduce the variance during gradient
computation and weaken the effect of overfitting. In a range of experiments only using limited
caption-labeled samples, the performance evaluation metric scores of SFRC exceed those of recent
methods. We conduct percentage sampling few-shot experiments to test the performance of the
SFRC method in few-shot remote sensing image captioning with fewer samples. We also conduct
ablation experiments on key designs in SFRC. The results of the ablation experiments prove that
these self-learning designs we generated for captioning in sparse remote sensing sample scenarios
are indeed fruitful, and each design contributes to the performance of the SFRC method.

Keywords: few-shot remote sensing image captioning; few-shot learning; self-supervised learning;
self-ensemble; self-distillation; self-critical

1. Introduction

Deep neural networks are widely used for the analysis and interpretation of remote
sensing images because of their brilliant performance. Typical application scenarios are
scene classification [1,2], target detection [3,4], and instance segmentation [5,6]. As a
multimodal task that requires simultaneous modeling of visual features and semantic
information in remote sensing images, remote sensing image captioning has been gaining
attention in recent years. This task aims to describe important targets and scenes in remote
sensing images, including their characteristics, relationships, and states. This requires deep
neural networks capable of capturing deeper visual features and semantic information to
generate global perspective descriptions. This research direction has high research value [7]
and can provide real-time information support for application scenarios such as traffic
command, forest fire fighting, and other application scenarios.

There is a range of publicly available remote sensing image captioning datasets, but
the variety and number of samples in these datasets are still small compared to natural
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image caption datasets. The problem of the shortage of remote sensing image samples that
can be used for training becomes more prevalent when faced with actual remote sensing
scenarios. Although the number of remote sensing images is large, the size and number of
training targets contained in a single remote sensing image are small. At the same time, the
semantic interpretation caption of a single remote sensing image is tedious and requires
certain expertise. The caption cost of the samples is very high. In such a few-shot scenario,
training the remote sensing caption generation model will overfit and lead to poor quality
of the generated captions. Therefore, it is important to solve the few-shot problem in remote
sensing image caption generation and reduce the reliance of model training on a large
amount of caption-labeled samples to promote the implementation of caption generation
methods in practical scenarios.

In natural image captioning, researchers have explored different methods to deal with
the few-shot problem. Semi-supervised learning-based image captioning [8] uses external
modeling to achieve semantic alignment and improve the quality of generated captions.
Ref. [9] proposed a model to help capture more intrinsic information through artificially
designed missing information. Unsupervised learning captioning [10] utilizes a large text
corpus outside of existing data to generate captions with robustness by constructing a
shared latent space. Ref. [11] used a scene graph auto-encoder trained externally to help
the model generate more humane captions. This scene graph auto-encoder introduces
inductive bias as the prior knowledge, which lightens the overfitting of the model.

Although it is possible to directly migrate and apply the methods used for caption
generation in natural images to the problem of few-shot remote sensing image captioning,
there are different challenges in remote sensing images than in natural images. The scale
and appearance of the same object in different remote sensing images may vary greatly,
which places high demands on the ability of caption generation models to identify the
described objects. There is no fixed observation orientation and focus in remote sensing
images similar to those in natural images, and it is more difficult to perform caption
descriptions than in natural images. Moreover, the problem of remote sensing image
captioning in few-shot scenarios becomes more difficult and complex.

Few-shot remote sensing image captioning can be divided into two categories. One
category is where the obtainable data contain a small amount of caption-labeled remote
sensing images and sufficient class-labeled remote sensing images without semantic cap-
tions. A framework called Meta captioning is proposed in [12]. This framework introduces
a meta-learning method to extract meta-features from sufficient class-labeled remote sens-
ing images to improve the training of caption generation models when caption-labeled
samples are insufficient. In [13], a VAE [14] is trained on a large-scale annotated remote
sensing image dataset for image reconstruction tasks. This VAE serves as a branch of the
captioning model to mitigate the overfitting problem. The second category is where the
available data only contains a small amount of caption-labeled remote sensing images and
does not contain other additional class-labeled data. The first type of scene can be seen as
the simplification of the second type of scene. The settings in the second type of few-shot
scenarios will make it impossible to achieve performance gains using additional data or
additional models. Therefore, this paper chooses to study remote sensing image captioning
in the more challenging few-shot scenarios of the second category, where the task of remote
sensing image caption generation needs to face the following challenges:

1. Only a few caption-labeled remote sensing images can be obtained from the training
data. The image captioning model usually adopts the encoder-decoder structure. In
remote sensing scenarios, the key role of the encoder is usually played by the scene
classification model, which is obtained by supervised training in a large number of
class-labeled remote sensing samples. However, a small number of remote sensing
image samples with semantic captions can only be used to train the image captioning
models. Directly using these remote sensing images with semantic captions but no
class labels results in difficulty training to obtain scene classification models with
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sufficient performance to further improve the performance of remote sensing image
captioning models.

2. The training of both remote sensing image captioning and scene classification mod-
els requires a large amount of labeled training data to obtain good performance;
otherwise, overfitting will occur, which eventually leads to poor model transferability.

3. The methods for handling few-shot image captioning in natural images are highly
dependent on external supplementary knowledge and additional trained models,
which leads to many image captioning methods in natural images that cannot be
directly applied to few-shot remote sensing scenarios.

In order to address the above challenges, we propose a self-learning method named
SFRC for few-shot remote sensing image captioning. We enhance the model’s utilization of
limited samples and knowledge contained in the model itself from different perspectives
and improve the performance of the few-shot remote sensing image captioning model by
self-learning without using additional caption-labeled remote sensing images. Specifically,
the contributions of this work are divided into four aspects:

• From the feature extraction perspective, we use a small amount of unlabeled data for
self-supervised learning in few-shot scenarios to obtain a scene classification model
for the decoder in the image captioning model. The use of self-supervised learning can
improve the generalization ability of the model and alleviate the reliance on a large
number of labeled remote sensing image samples.

• From the temporal perspective of model training, we use self-ensemble to aggregate
the performance of the same model at different time steps to improve the robustness
of the few-shot remote sensing image captioning model and reduce the occurrence
of overfitting.

• From the perspective of model training manner, we propose a model iteration approach
based on self-distillation: without using additional pre-trained models and knowledge,
new models and self-ensemble models of previous generations of models continuously
promote each other to achieve self-improvement of sequence models.

• From the perspective of model parameter optimization, we design a model parameter
optimization approach based on self-critical reinforcement learning. This incorporates
the baseline computed by self-ensemble to reduce the error in training and prevent
the model from falling into the local optimum.

We conduct several few-shot experiments on a limited number of caption-labeled
remote sensing samples and quantitatively compare the evaluation metric scores with some
classical and recent methods. We design percentage sampling few-shot experiments to
investigate the performance variation of SFRC in few-shot remote sensing image captioning
with fewer samples. In order to elucidate the effectiveness of the design of each component
in the SFRC method, we also perform ablation experiments of the key components.

2. Related Work
2.1. Remote Sensing Image Captioning

Three main forms of remote sensing image captioning exist: retrieval-based methods,
template-based methods, and methods using the encoder-decoder paradigm.

The approach based on retrieval [15] maps the representation obtained from the image
input to the CNN and the corresponding ground truth captions to the same metric space.
The distance between the input remote sensing image and all captions is calculated by
metric learning, and the caption with the smallest distance is selected as the final descriptive
statement. The captions generated by this method are all derived from the ground truth
captions in the train set, which do not generate syntax errors but lack flexibility. When
using this method to process remote sensing images that differ significantly from those
already in the database, it is difficult to obtain matching descriptions.

The approach based on template pre-structures the generated descriptive captions
by training a template with reserved gaps. The pre-preserved gaps in the template are
generally scenes, objects, attributes, and relationships among them in the remote sensing
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images. The semantic information in the remote sensing image in [7] is extracted by a full
convolutional network (FCN) [16]-based object detection task. The semantic information
is converted into words filled in a template to form a caption. This approach can achieve
good results in specific tasks, but such pre-designed templates may limit the flexibility of
generating captions.

The image captioning method using the encoder-decoder paradigm for remote sensing
images was first proposed by [17]. The encoding stage extracts feature vectors from the
input image, and the decoding stage converts the feature vectors into the corresponding
captions. The methods based on the encoder-decoder paradigm are more flexible and have
better performance, so this kind of method has also gained much attention. Ref. [18] pro-
posed the RSICD remote sensing image caption dataset and several methods based on the
encoder-decoder paradigm and introduced the attention mechanism. Ref. [19] constructed
a multi-scale feature fusion mechanism using a denoising approach to enhance the feature
extraction from the encoder. Ref. [20] proposed a truncated cross-entropy (TCE) loss, which
aims to alleviate the overfitting problem in remote sensing image captioning. Ref. [21]
modified the encoder-decoder paradigm to use continuous output sequences instead of
discrete output sequences to generate more accurate remote sensing image descriptions.
Ref. [22] proposed a method to extract semantic information in high-resolution remote
sensing images using a fine-grained attention mechanism, which generates description
statements along with the corresponding pixel-level segmentation masks.

2.2. Few-Shot Learning

The goal of few-shot learning is to train a model using limited data such that the model
gains the ability to adapt to unseen data and new tasks. Transfer learning [23,24] extracts
knowledge from the source domain and applies this knowledge to the target domain.
The pre-trained model is adapted to the new scenario by fine-tuning. This approach can
improve the performance of the model with limited samples. However, when the old and
new scenarios are too different, transfer learning is not effective. As the most popular
solution, meta-learning advocates that the model “learns to learn” and can be divided
into metric-based meta-learning [25–28] and optimization-based meta-learning [29,30].
Meta-learning is task-oriented rather than data-oriented and has good flexibility and
adaptability. In addition to the above methods, there are approaches based on graph neural
networks [31,32] and approaches based on pre-trained feature extractors [33,34].

2.3. Self-Supervised Learning

Self-supervised learning uses pre-designed pretext tasks to replace supervised signals
in large-scale annotated data, training the model to extract semantic feature representations
that can be migrated to downstream tasks. The auxiliary tasks can be designed as various
transformations of the images, including coloring [35], rotation angle prediction [36],
stitching images [37], etc. The pretext task based on contrast learning [38,39] has been
popular in recent years. It compares similarities and dissimilarities between two or more
views of an image to learn feature representations. Momentum contrast (MoCo) [40]
constructs a moving-averaged dynamic dictionary to train models by a queue dictionary
lookup. SimCLR [41,42] achieves excellent performance using large batch size pretraining
and data augmentation. BYOL [43] only compares similarities between views to learn
feature representations, reducing the sensitivity of the model to systematic biases in the
training data and the dependence of the training process on data augmentation.

2.4. Ensemble

Ensemble often generates robust pseudo labels by aggregating the knowledge con-
tained in multiple networks. Such pseudo labels act as a kind of supervision information
that can improve the performance of networks in supervised learning. There are many
ways to integrate pseudo labels. Refs. [40,44] generated pseudo labels after integrating
multiple models. Ref. [45] integrated pseudo labels output from different models to obtain



Remote Sens. 2022, 14, 4606 5 of 29

pseudo labels. Ensembles are also often applied in semi-supervised learning [46] and even
in unsupervised learning [12,43]. Although all these methods have good results, they all
require multiple networks that are pre-trained on a large amount of data, which is not
satisfying in few-shot scenarios.

2.5. Knowledge Distillation

Knowledge distillation [47] has a wide range of applications in both computer vision
and natural language processing. Knowledge distillation transfers knowledge from the
teacher model to the student model through soft labels. The student network benefits from
the additional information contained in the soft labels and usually obtains performance
improvement. Soft labels can be probability values [48] or features [49] of the teacher
model output. Knowledge distillation is not limited to training student models through
teacher models. BAN [50] uses sequential distillation to train student models while also
improving the performance of teacher models. BAM [51] uses multi-task student models to
outperform teacher models in performance. Self-distillation [48,52], in which the teacher
and student models have the same structure, allows for the evolution of performance
through cyclic training.

2.6. Reinforcement Learning

The test metrics for caption generation tasks are usually non-differentiable. Refs. [53,54]
addressed this problem by considering image captioning as a reinforcement learning prob-
lem. Reinforcement learning [55] continuously interacts with the environment during
training and optimizes the model based on feedback information (reward values). Rein-
forcement learning learns iteratively by deferring the reward values obtained, and each
action is related to a time series, making reinforcement learning well suited for sequence
generation prediction. Ref. [54] is the first to apply reinforcement learning to sequence
training for image captioning and uses a trained function approximator to generate a
baseline to reduce variance. Ref. [56] uses an actor-critic approach to train sequence image
captioning models. Ref. [57] uses the time required for testing to normalize the reward
of the algorithm, avoiding the estimation of reward signals in the actor-critic approach,
reducing the gradient variance, and generating better quality captions.

3. SFRC: Self-Learning for Few-Shot Remote Sensing Image Captioning

Although the remote sensing image captioning and remote sensing image scene
classification tasks have different domains and final outputs, they both need to extract
and apply the features of remote sensing images: the scene classification task uses visual
features to classify and obtain category labels, and the image captioning task identifies and
converts visual features into text descriptions. The scene classification task and the image
captioning task intersect in the extraction process of visual features. Therefore, the remote
sensing image captioning model in this paper adopts an encoder-decoder structure: the
encoder, which is trained in the scene classification task, is used to extract features from
the input remote sensing image, and the decoder generates captions based on the features.
The encoder usually uses a series of convolutional neural network (CNN)-based networks
pre-trained in the scene classification tasks because of their simple structures and powerful
performance. Here, the encoder is denoted by x. Given a remote sensing image I as input,
the visual features extracted by the encoder are:

v = AveragePooling( fCNN(I)) (1)

where we apply average pooling to the features extracted by the encoder. For the CNN here,
we choose ResNet, a classic and still powerful network. The visual features v of the remote
sensing image output from the encoder are fed to a decoder for decoding. The decoder can
use recurrent networks (RNN), long-short term memory networks (LSTM), etc. LSTM is
a special RNN, which is often chosen as the decoder of remote sensing image captioning
models. As a sequential model, LSTM can learn long dependencies and overcome gradient
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vanishing to achieve better functionality. The information transfer in LSTM is controlled
by a forget gate Ft, an input gate It and an output gate Ot. The forget gate Ft controls
whether to clear the current value, the input gate It determines whether to obtain new
input information, and the output gate Ot determines whether to output a new value. The
structure of the LSTM at time t and the parameter transfer method are shown in Figure 1.
At time t, the parameters in LSTM are updated as follows:

It = σ(WxI xt + WhIht−1 + bI)
Ft = σ(WxFxt + WhFht−1 + bF)
Ot = σ(WxOxt + WhOht−1 + bO)

C̃t = tanh(WxCxt + WhCht−1 + bC)

Ct = Ft ∗ Ct−1 + It ∗ C̃t
ht = Ot ∗ tanhCt
yt = Wout ∗ ht

(2)

Figure 1. The operation flow of LSTM at time t. The input at time t is the output at time t− 1, while
the output at time t is used as the input at time t + 1.

Finally, to generate word probabilities pt, we use a “softmax” layer to normalize the
generated score vectors to probabilities. σ represents the nonlinear activation function sig-
moid and tanh represents the hyperbolic tangent function. WxI ,WhI ,WxF,WhF,WxO,WhO,WxC
and WhC are the trainable weight matrices in LSTM. bI ,bF,bO and bC are trainable biases.
WxI and WhI are the trainable weight matrices of the input gate and bI is the trainable bias
of the input gate; WxF and WhF are the trainable weight matrices of the forget gate and bF is
the trainable bias of the forget gate; WxO and WhO are the trainable weight matrices of the
output gate and bO is the trainable bias of the output gate; WxC and WhC are the trainable
weight matrices of the memory cell and bC is the trainable bias of the memory cell. The
memory cell Ct is used to store new state information. ht represents the hidden state of the
LSTM at time t and also the output of the LSTM at time t. xt represents the input of the
LSTM at time t. xt is obtained by combining ht−1, yt−1 and the encoder-extracted feature
vectors v at time t− 1 in series: xt = [ht−1, yt−1, v]. ht is calculated based on ht−1. ht−1 is
calculated based on ht−2, and so on. Ct and Ct−1 are also calculated in this way. When t is
0, h0 and C0 will be initialized to 0 before model training. h0, C0 and the visual features v
output from the encoder are input to LSTM for training. The word vector yt generated at
time t is denoted as:

yt = Wout ∗ ht (3)
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Word probabilities pt are normalized by softmax:

pt = So f tmax(yt) (4)

The LSTM decoder receives the features extracted from the remote sensing image by
the encoder and generates the first word. The word embedding vector of the first word is
passed to the LSTM as the new input for generating the second word. The decoder generates
one word at each step, resulting in a textual description of the remote sensing image.

In the above encoder-decoder framework, the choice of encoder and decoder structures
is not limited to the combination of CNN (ResNet) and LSTM, as described above. Various
attention mechanisms are added to the LSTM to constitute new decoders. Transformers [58]
and models built based on a transformer (such as bert) have achieved great results in the
field of natural language processing in recent years, and the decoder can also choose a
transformer instead of LSTM. The encoder can also choose from different feature extraction
networks, including CNNs with various attention models attached or even a transformer-
based design, vision transformer. Using these powerful new designs to construct the
baseline for image captioning has great potential to achieve strong performance. However,
discussing the construction of encoders and decoders is not the focus of this study. Here
we choose ResNet as the encoder and LSTM as the decoder for the baseline model of the
few-shot remote sensing image captioning model. After setting the overall framework
of few-shot remote sensing image captioning, we improve the performance of the few-
shot remote sensing image captioning model from four perspectives: feature, temporal,
manner, and optimization according to the characteristics of few-shot remote sensing
image scenarios.

3.1. Feature: Self-Supervised Learning

We first improve the performance of the image captioning encoder in few-shot remote
sensing image scenarios from the perspective of feature extraction. The remote sensing
image captioning model based on the encoder-decoder structure needs the visual features
of remote sensing images for text generation. This visual feature is the same as the visual
feature used in the process of the remote sensing image scene classification process. There-
fore, the remote sensing image feature extraction problem in few-shot scenarios can be
transformed into a few-shot remote sensing image scene classification problem to be solved.
In the few-shot scenario we set, only a small number of unlabeled remote sensing images
can be used to train the remote sensing image scene classification model. We note that
self-supervised learning can learn generic feature information contained within the data
without using label information, providing a stable and generalizable feature representa-
tion for downstream tasks. As can be seen, the goal of both self-supervised learning and
few-shot learning is to reduce the reliance of model training on labeled data. Therefore, our
strategy is to use self-supervised learning to train a scene classification model as an encoder
in a small amount of unlabeled remote sensing image samples. We choose the classical
ResNet-101 as the structure of the encoder. ResNet-101 still performs brightly in real sce-
narios, combining accuracy and simplicity. After determining the structure of the encoder,
we need to consider how to train the encoder using unlabeled remote sensing images. Here
we use self-supervised learning to further improve the encoder’s generalization ability.
Self-supervised learning performs consistency regularization on the encoder, focusing on
the output of the encoder rather than the specific data labels for training. Here we borrow
the self-supervised training paradigm from BYOL. Without changing the original model
structure, the performance of the model is improved from the data without class labels.

Given an input remote sensing image, here denoted as x, we randomly adopt two dif-
ferent strategies τa and τb for data augmentation to obtain xm and xn. The two different data
augmentation strategies adopted are derived from the strategies expounded in Section 4.3.
Regarding implementation details, the self-supervised learning model contains two-path
modules: an online model and a target model. First of all, they both have encoders with
the structure of ResNet-101, but the difference is the parameters of the encoders. Here,
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the encoder in the online model is denoted as f (θ), and θ is the parameter of the online
model. The encoder in the target model is denoted as f (ε), and ε is the parameter of
the target model. We input xm and xn to f (θ) in the online model and f (ε) in the target
model, respectively. The role of f (θ) in the online model is to extract the remote sensing
image yθ(xm) from xm. Then, we input yθ(xm) into the projection layer gθ to project into a
higher dimensional space to obtain the vector zθ(xm). In the target model, a vector zε(xn)
is obtained by replacing θ with ε with the same structure. The structure of the projection
layer gθ and gε is a multilayer perceptron (MLP). The divergence between the online model
and the target model occurs in the next step: the online model uses zθ(xm) to predict zε(xn)
output from the target model through an additional prediction layer qθ . The prediction
layer qθ is structured as a multilayer perceptron like the projection layer gθ . zε(xn) stops
the gradient descent and updates the parameters with momentum through ε:

ε← τε + (1− τ)θ (5)

where τ is the decay rate, and the value is taken in [0,1]. This exponential moving average
update strategy takes the target model as a mean teacher. The mean teacher constantly
generates pseudo labels to serve as learning guidance and prediction objectives for the
online model. The error Lθ,ε generated by the prediction is calculated as:

Lθ,ε , 2− 2 · 〈qθ(zθ(xm)), zε(xn)〉
‖qθ(zθ(xm))‖2 · ‖zε(xn)‖2

(6)

The difference between the predicted value and the target value is continuously
reduced by continuously reducing Lθ,ε to a minimum value. Stop gradient means that we
do not allow the generated gradients to be back-propagated at each stochastic optimization
step. We minimize Lθ,ε with respect to θ only, but not τ. The gradient generated by the
target path will not be passed to, that is, stop the gradient descent of this path. Only the
gradients passed backwards by the online path are updated. The stop-gradient design
prevents the output of the target path and the online path from collapsing to the same,
ensuring that self-supervised learning proceeds smoothly. At the end of the training, only
the encoder f (θ) in the online model is saved.

Although BYOL can excellently improve the performance of the model in unlabeled
data scenarios, BYOL does not take into account the local features in remote sensing images.
Lθ,ε can be regarded as a global consistency loss. Local features are very important for
the interpretation and application of remote sensing images, which are related to the
capture and extraction of key targets. Therefore, we add additional learning of the local
consistency of remote sensing images to BYOL to complement the model’s ability to extract
local features of remote sensing images. Figure 2 shows the schematic diagram of our
self-supervised learning process.

In the process of the additional self-supervised learning, we directly select the local
features extracted from remote sensing images for contrast learning. We also enhanced
the input remote sensing images to get a large number of positive and negative pairs and
input them into the classification model. The positive samples come from different data
augmentation results of the same remote sensing image, and the negative samples are data
augmentation results of different remote sensing images. A remote sensing image x is
enhanced with different strategies to obtain xm and xn. We randomly crop xm to obtain a
5 × 5 slice and adjust back to the original size of xm to obtain x5

m. We randomly crop xn to
obtain a 7 × 7 slice and adjust it back to the original size of xn to obtain x7

n. Subsequently,
x5

m and x7
n are fed into the scene classification model (encoder) f (θ) for self-supervised

learning based on feature comparison. Note that the encoder structure is the same for both
x5

m and x7
n, and the parameters of the encoder are both θ. The encoder f (θ) is followed by

an MLP for feature projection. Symmetrically, randomly crop xm to obtain a 7 × 7 slice and
adjust back to the original size of xm to obtain x7

m. Randomly crop xn to get a 5× 5 slice and
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adjust back to the original size of xn to obtain x5
n. We adopt the same treatment as above

for x7
m and x5

n.The loss function LLocal generated in this process is calculated as follows:

L( f5(xm), f7(xn)) =

∣∣∣∣∣log exp{d( f5(xm), f7(xn))}
∑_

x ∈Nx∪x+n
exp

{
d
(

f5(xm), f7

(
_
x
))}

∣∣∣∣∣
L( f7(xm), f5(xn)) =

∣∣∣∣∣log exp{d( f7(xm), f5(xn))}
∑_

x ∈Nx∪x+n
exp

{
d
(

f7(xm), f5

(
_
x
))}

∣∣∣∣∣
LLocal = L( f7(xm), f5(xn)) + L( f5(xm), f7(xn))

(7)

where Nx represents the negative samples of remote sensing image x, and d is the square
of Euclidean distance. f5 represents the feature extracted by inputting x5

m or x5
n into the

encoder f (θ) and the MLP, and f7 represents the feature extracted by inputting x7
m or x7

n
into the encoder f (θ) and the MLP. ( f7(xm), f5(xn)) and ( f5(xm), f7(xn)) represent positive
pairs.

(
f5(xm), f7

(
_
x
))

includes positive pairs and all negative pairs, and L is the InfoNCE
loss. By continuously reducing LLocal to promote the realization of local consistency, only
the decoder f (θ) is saved after training. It is important to note that there is more than just
the choice of f5 or f7 for contrast learning. Different choices for the size of cutting and the
combination of contrast can constitute different contrast learning strategies. The reason
we choose them here is that using f5 and f7 with smaller sizes for contrast learning can
reduce the occupation of computing resources. Using f5 and f7 with small sizes is beneficial
to learn the local consistency of remote sensing images. At the same time, the difference
between f5 and f7, which are close in size, will not be so large that it is too difficult for
the encoder to learn. Finally, more f5 and f7 with smaller sizes can be generated from one
image, which is conducive to alleviating the few-shot problem.

Figure 2. Schematic diagram of self-supervised learning we use. This process consists of two dual-
path modules. The first module uses BYOL to learn global consistency, which contains two paths:
the online path and the target path. The model is trained by minimizing the global consistency loss
between the online path and the target path containing SG and EMA. The θ is the weight of the model.
SG is the stop gradient. EMA is the exponential moving average, and ε is the exponential moving
average with respect to θ whose decay rate is τ. The second module uses feature contrast learning to
learn local consistency, which is divided into two paths. The core of this module is to minimize the
loss of local consistency between the local feature representations extracted by the encoder in different
views of the same remote sensing image. There are many options for data augmentation strategies,
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which are shown in Section 4.3. Implementation details. The global consistency loss and the local
consistency loss constitute the loss function of the self-supervised learning we designed. Training
ends, and we only keep the encoder.

Therefore, considering the global consistency of the model to the images and the
local consistency of the features, we implement self-supervised learning with decreasing
Lθ,ε and LLocal by gradient descent until a minimum value is reached. At the end of the
training, only the encoder f (θ) is retained. Self-supervised learning helps the encoder learn
a general feature expression from a small number of unlabeled remote sensing images
for remote sensing image scene classification. The semantic features are extracted from
a limited number of remote sensing images using the encoder with caption labels but
without class labels. Then the extracted semantic features are input into the decoder to
generate captions. The decoder only needs to focus on generating captions for limited
caption-labeled samples.

3.2. Temporal: Self-Ensemble

After optimizing the feature extraction process of the encoder, we improve the per-
formance of the decoder in the image captioning method in few-shot scenarios from a
temporal perspective. Better performance is often achieved by ensemble training models.
However, the usual ensemble training needs to integrate the outputs of multiple pre-trained
models, which leads to a high cost of training and is not suitable for the few-shot scenarios.
Therefore, we adopt self-ensemble training, which is more suitable for the set few-shot
scenarios. Considering that the text generation model is sequential, we regard the different
forms of image captioning models in different training stages as different models and then
ensemble these models. In order to reduce the complexity of the model and improve the
accuracy of the model [59], we use parameter averaging instead of directly averaging the
output of the model to achieve a self-ensemble of the model. We use the model in the
training process to generate a series of pseudo labels and construct a mean teacher with
exponential moving average (EMA) through the consistent regularization of the model
itself in the training process as a self-ensemble model to guide the model for more in-depth
training. The self-ensemble image captioning model FSE is defined as:

FSE
(

x
∣∣θk
)
= FSE

(
x
∣∣∣∣ 1

t

t
∑

t=1
θk−t

)
θk =

1
t

t
∑

t=1
θk−t

(8)

where x is the input image, t is the time step of training, θk is the parameter of the model at
the k-th time step, and θk is the average parameter of the model within t recent time steps.
The expression for θk can be expressed by a constant transformation as:

θk = αθk−1 + (1− α)θk (9)

It can be found that the updating process of θk can be seen as using EMA to train a mean
teacher with a smoothing coefficient of α as a self-ensemble model. The introduction of the
parameter moving average self-ensemble can improve the accuracy of captions generated
by the model and further reduce the dependence of the model on labeled samples.

3.3. Manner: Self-Distillation

After using self-ensemble to improve the performance of the model from a temporal
perspective, we further optimize the training manner of the model. Knowledge distillation
can transfer knowledge from the teacher model to the student model. When the teacher
model and the learning model have the same structure, knowledge distillation becomes
self-distillation. Self-distillation eliminates the need to train additional models, additional
prior knowledge and additional training data. Knowledge is transferred from the previous
generation model to the next generation model in the form of pseudo labels. Model
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performance can be improved through multiple iterations. These characteristics of self-
distillation can well alleviate the pain points of few-shot scenarios. We combine self-
distillation with the above self-ensemble: unlike the common self-distillation in which
the teacher model and the student model directly adopt the same structure, we use the
model obtained from the self-ensemble as the teacher model to train the next generation
of student models. A series of pseudo semantic annotation labels generated by the self-
ensemble model is fed to the self-distillation model for training, and the self-distillation
will continue to generate new pseudo semantic caption labels to store in the performance
boost of the next-generation model. The loss function LSDE of self-distillation combined
with self-ensemble in the process of training the model FSDE(x) is:

LSDE = LCE(y, FSDE(x|θk)) + βLMSE
(

FSDE(x|θk), FSE
(

x
∣∣θk
))

θk =
1
t

t
∑

t=1
θk−t

(10)

where x represents the input image, y represents the semantic annotation label of x, LCE
represents the cross-entropy loss, LMSE represents the mean square error, θt represents
the parameters of the t generation model, and β is used to adjust the proportion of cross-
entropy loss and mean square error. θt represents the averaged parameters in the first t
time steps, including the k-generation model. The hyperparameter t determines the scale
of self-ensemble with parameter averaging.

The schematic diagram of the self-distillation training strategy with self-ensemble is
shown in Figure 3. In the training process, θt will change with the advance of the training
step, which can prevent the model from overfitting. The performance obtained from self-
distillation training will also be self-ensembled into the training of the next-generation
model. Self-ensemble and self-distillation can promote each other in this process so that
the training of the model tends to be stable, and finally, we obtain a model with the best
performance in the training process.

Figure 3. Schematic diagram of self-distillation training strategy with self-ensemble we proposed. x
represents the input remote sensing image, and y represents the caption label of x. The self-ensemble
we construct contains the average of model parameters: a self-ensemble mean teacher model with
exponential moving average is constructed according to the different morphologies of the model
itself in the recent t training steps. The caption generated by the self-ensemble model will be sent to
the self-distillation process as a pseudo caption label. Self-distillation separately calculates the mean
square error LMSE of the output captions generated by the k-generation model with pseudo caption
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labels and the cross-entropy loss LCE of the output captions with caption label y. By weighted
summation of LMSE and LCE, the loss function LSDE of self-distillation combined with self-ensemble
is obtained to optimize the K generation model.

3.4. Optimization: Self-Critical

In this section, the performance of the image captioning model is improved through
parameter optimization of the image captioning model. There are several problems in the
training and testing process of image captioning from few-shot remote sensing images.
First, in the few-shot scenarios, the data distribution of the model does not match the
process of training and testing. Because the total number of remote sensing image samples
with caption labels is small, the number of samples with caption labels that can be obtained
in the training stage is correspondingly small. The train set is expanded in various ways,
but the train set will not be changed. The data distribution of the train set and the test set
is different. In the process of training the image captioning model, the model will predict
the next word based on the generated words and use gradient descent to continuously
optimize the model. In this process, the difference in data distribution between the train set
and the test set will be further accumulated. During the training process, the input of the
model is all from the real dataset, and the labels of the samples are ground truth. However,
the input of the model in the test process comes from the output of the previous time. The
errors generated in the test process will continue to accumulate. This phenomenon is called
exposure bias [54]. Second, the image captioning model uses a loss function to tune the
model parameter θ during the training process but uses evaluation metrics such as BLEU,
CIDEr, ROUGE, and SPICE to evaluate the performance during the testing process. These
metrics are non-differentiable with respect to the parameter θ, so it is not possible to use
gradient descent to feed the test results directly to the model for optimization.

Several studies have shown that the policy-gradient method in reinforcement learning
can be used to solve the problems of exposure bias and the non-differentiability of training
metrics. Reinforcement learning defines a text generation model as an agent that interacts
with the “environment”, defines descriptive captions and remote sensing image features as
the “environment”, and considers the evaluation metric CIDEr score of descriptive captions
as the reward R(w). The policy gradient method expresses the learning policy as Fθ using
the parameter θ. The training expectation function is:

L(θ) = −EFθ
[R(ws)] (11)

where ws = (W1
s, W2

s, . . . , WT
s). ws represents sequentially generated word sequences

(sentences), Wt
s denotes the generated words sampled from the model using strategy Fθ at

time t, and −EFθ
denotes negative expectation. The reward is adjusted by introducing a

baseline b of the greedy decoding output to calculate the reward gradient estimation with
feedback from the strategy parameters and the environment to achieve an optimal update
of the parameter θ and finally obtain the maximum cumulative reward. The gradient
estimate on θ is:

∇θ L(θ) ≈ [R(ws)− b]∇θ log Fθ(ws) (12)

The baseline b can be any function independent of ws. The introduction of b can reduce
the variance of the gradient estimate. This is an end-to-end method to search for the optimal
solution in the policy space, which has a wide range of applications. This method also has
obvious shortcomings: the gradient variance calculated under the reinforcement learning
framework is very large. The training is very volatile, and the model is easy to converge to a
local minimum, which is similar to the phenomenon of overfitting, resulting in poor quality
of the generated captions. These disadvantages can be magnified in few-shot scenarios.

To solve the above problems, we adopt the self-critical paradigm [57] proposed in the
self-critical sequence training for image captioning (SCST) to optimize the process of using
reinforcement learning to train the image captioning model. The self-critical technique in
SCST introduces a baseline calculated by greedy search, which can reduce the gradient
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variance. The self-critical technique adjusts the baseline according to the greedy decoding
output of the image captioning model in the test reasoning process and finally optimizes
the image captioning model, achieving superior performance to the vanilla reinforcement
learning. Ref. [57] shows that the variance of the self-critical model is very small, and good
results can be achieved in few-sot samples with the use of SGD. At the same time, the self-
critical technique realizes the direct measurement of sequence variables by adjusting the
baseline and promotes consistency in the process of training and testing. The optimization
goal in self-critical training is to maximize the CIDEr scores of the generated captions.
We follow this design, but different from the greedy search used in SCST to calculate
the baseline, we simultaneously sample multiple captions of the same remote sensing
image by the model and calculate a baseline with self-ensemble according to the beam
search [60]. The schematic diagram of using self-critical to optimize model parameters is
shown in Figure 4.

Figure 4. Schematic diagram of our proposed process for optimizing model parameters using self-
critical. A remote sensing image x is input to the model FSDE(x) trained by self-ensemble and
self-distillation, and K mutually independent captions ŵs

1, ŵs
2, . . . , ŵs

k are sampled. We average the
CIDEr scores of the k – 1 captions except ŵs

t to obtain the baseline for the self-critical training of
caption ŵs

t . The CIDEr scores of the descriptions are computed by beam search. Self-critical uses the
baseline obtained from this self-ensemble to compute the gradient estimation of the parameters θ of
model FSDE(x).

For few-shot remote sensing scenarios, we collect K captions of the input remote
sensing image x generated by the model FSDE(x) after self-ensemble and self-distillation
training: ŵs

1, ŵs
2, . . . , ŵs

k, ŵs
t ∈ FSDE(ws|x). The caption label corresponding to the input

remote sensing image x is
{

w∗ =
(
w∗1 , w∗2 , . . . , w∗T

)}
. When calculating the CIDEr scores of

these K captions, we use beam search instead of greedy search. Beam search has a larger
search space than greedy search. It does not pursue local optimization but global optimiza-
tion. The speed and accuracy of training are better than greedy search. Beam search is very
useful in scenarios where there are obvious differences in the data distribution between
training samples and test samples [3], and the few-shot scenario is one of them. Compared
with greedy search, the calculation method of beam search can avoid the continuous ac-
cumulation of errors to a certain extent and reduce the adverse effects of exposure bias.
We integrate the self-ensemble calculation method into the baseline calculation process as
follows: we randomly select a caption ŵs

t , and the baseline bt of caption ŵs
t is obtained by

the average integration of the reward CIDEr scores of other K-1 captions:

bt =
1

k− 1 ∑
i 6=t

R(ŵs
i ) (13)
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where R
(
ŵs

i
)

is the CIDEr score of ŵs
i . Because the K captions and the corresponding

CIDEr scores are generated by the same model based on a remote sensing image, they are
independent of each other. Therefore, the calculation of bt does not depend on ŵs

i , and bt is
a valid baseline. The self-ensemble here averages the scores of multiple captions generated
by the model for the same input image. The gradient estimation of the parameter θ of
model FSDE(x) is calculated as:

∇θ ≈ [R(ŵs
t)− bt]∇θ log FSDE(ŵs

t |x) =
[

R(ŵs
t)− 1

k−1 ∑
i 6=t

R
(
ŵs

i
)]

∇θ log FSDE(ŵs
t |x)

(14)

Self-critical techniques using the baseline obtained from the self-ensemble model can
improve the utilization of limited samples and effectively avoid the possible overfitting
caused by few-shot problems. At the same time, it can further reduce the gradient variance
in the reinforcement learning process and better optimize the few-shot remote sensing
image captioning model.

4. Experiments

In this section, we present a series of experiments we have implemented and the
experimental results. The experimental results prove the effectiveness of our SFRC method
in few-shot remote sensing scenarios. First, we clarify the selection of datasets in the
experiments and the evaluation metrics used in the experiments to evaluate the generated
remote sensing image captions. Then, we introduce the details of the implementation
of the experiment, including the software and hardware parameters of the experimental
equipment, the preprocessing of data, the structural parameters of the model, the setting
of super parameters, and so on. Next, we conduct a series of quantitative experiments to
compare the SFRC method with classical and recent methods. We also perform percentage
sampling experiments to observe the performance of the SFRC method when the available
data are further reduced. Finally, we conduct a series of ablation experiments to analyze
the effectiveness and necessity of various components in the SFRC method.

4.1. Dataset

We selected the RSICD dataset, UCM-Captions dataset, and Sydney-Captions dataset
as the datasets for training, validating and testing the few-shot remote sensing image cap-
tioning tasks. Their samples are all RGB images containing manually annotated captions.

4.1.1. UCM-Captions Dataset

The UCM-Captions dataset was constructed based on the UCM-Merced University
Land-Use dataset [61]. The images are from the national map urban area of the United
States Geological Survey. The UCM captions data set contains 21 categories, including
aircraft, beaches, overpasses and stadiums, with a total of 2100 remote sensing images.
Some samples in the UCM captions dataset are shown in Figure 5. Each remote sensing
image has a resolution of 256 × 256 pixels and is equipped with 5 different caption labels.
The entire dataset uses 368 different words to generate 10,500 caption labels in describing
the images.
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Figure 5. Some samples selected from the UCM captions dataset. The UCM captions dataset contains
21 scenes, such as aircraft, golf courses, farmlands, overpasses, ports, etc. The size of each remote
sensing sample is 256 × 256, and the format is TIFF.

4.1.2. Sydney-Captions Dataset

The Sydney-Captions dataset was collected and produced in Google Earth’s Sydney
dataset [62]. Each remote sensing image was cropped from the 18,000× 14,000 pixel remote
sensing image of Sydney, Australia, with a resolution of 500 × 500 pixels. Some samples of
the Sydney-Captions dataset are shown in Figure 6. The Sydney-Captions dataset contains
a total of 613 remote sensing images, which are divided into 7 categories, such as airports,
oceans, and factories. This dataset uses 237 different words to generate five different
caption labels for each remote sensing sample. This dataset has more detailed description
statements, but there is a problem in that the number of remote sensing samples is small.

Figure 6. Some samples selected from the Sydney-Captions dataset, including factories, grassland,
houses, runways, etc. The Sydney-Captions dataset contains samples of a total of seven scenes. The
size of each remote sensing sample is 500 × 500, and the format is TIFF.

4.1.3. RSICD Dataset

The RSICD dataset [18] is composed of remote sensing images collected from Google
Earth, Baidu Maps, MapABC, and Sky Map (Tianditu) in 2017 and divided into 30 scene
categories. Each remote sensing image is 224 × 224 pixels. Some samples of the RSICD
dataset are shown in Figure 7. The RSICD dataset is the largest dataset for remote sensing
image captioning tasks at present. The linguistic descriptions of remote sensing images
in this dataset are more relevant because these descriptions do not contain pre-defined
observation directions and vague adjectives, using a total of 3325 different words. Some of
the samples in the dataset correspond to five different caption labels. Samples with less
than five semantic captions were complemented to five annotations by copying existing
captions. Finally, the whole dataset contains 10,921 images and 54,605 corresponding
remote sensing annotation statements.
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Figure 7. Schematic diagram of some remote sensing samples in the RSICD dataset. The sizes of
samples provided in RSICD are all 224× 224. Unlike the UCM-Captions dataset and Sydney-Captions
dataset, the remote sensing samples in RSICD are in JPEG format. The RSICD has the richest scene
categories and the largest number of samples in the three datasets. The figure shows the samples of
airports, churches, coasts, farmland, ponds, deserts and other categories.

The captions sampling in the three datasets are shown in Figures 8 and 9. Combining
the number of samples in each dataset, we find that each remote sensing sample in the
UCM-Captions dataset and Sydney-Captions dataset is configured with sufficient captions,
but the number of remote sensing samples in these two datasets is too small. The RSICD
dataset contains a not very small number of remote sensing image samples, but some of
the samples are not equipped with a sufficient number of captions. From the perspective
of providing effective supervision information for model training, these three datasets are
still small compared with the natural image captioning datasets. The methods are prone to
overfitting problems in these datasets due to the sparse samples. Therefore, it is reasonable
and feasible for us to use these datasets to train, validate and test the few-shot remote
sensing image captioning methods. Here we will pay special attention to the results of the
methods in the Sydney-Captions dataset containing definitely sparse samples.

Figure 8. Schematic diagram of remote sensing samples and corresponding five captions extracted
from the UCM-Captions dataset and Sydney-Captions dataset. Both the UCM-Captions dataset and
Sydney-Captions dataset have five different captions for a single remote sensing scene. The captions
in the UCM-Captions dataset are relatively simple, and there are some repetitions. The descriptions
in the Sydney-Captions dataset are more detailed, and there are not too many similarities between
the five captions.
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Figure 9. A randomly selected remote sensing image from the RSICD dataset and the corresponding
five captions. There are actually only two different description statements among the five captions,
and the other three captions are obtained by copying. We found that such a situation is quite common
in the RSICD dataset. However, the captions in the RSICD dataset are of high quality and can well
describe the important semantic information in the corresponding remote sensing scenes.

4.2. Evaluation Metrics

When evaluating the quality of remote sensing image captions, we select BLEU,
ROUGE, CIDEr, SPICE, and METEOR as evaluation metrics.

BLEU (Bilingual Evaluation Understudy): BLEU is an evaluation metric for machine
translation proposed by IBM in 2002 [63]. It can evaluate co-occurrences between generated
captions and ground truth captions. According to the n-gram matching rules, BLEU-1,
BLEU-2, BLEU-3 and BLEU-4 are calculated to measure the accuracy of word translation
and the fluency of generating description sentences. BLEU’s rating range is 0–1.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a similarity
measurement method based on recall rate [64], which is used to evaluate the accuracy of
the generated description statements. There are four main types of ROUGE: ROUGE_N,
ROUGE_L, ROUGE_ W, and ROUGE_S. In this paper, ROUGE_L was chosen as the
evaluation metric, which calculates an F-measure with recall bias for the longest com-
mon subsequence (LCS) between the generated captions and the ground truth captions.
ROUGE_L is scored in the range of 0–1.

CIDEr (Consensus-based Image Description Evaluation): CIDEr is a metric designed
specifically for evaluating image captioning tasks [65]. It evaluates the consistency of
description through term frequency-inverse document frequency (TF-IDF) calculation.
CIDEr gives less weight to frequently occurring specific n-grams that do not contain useful
visual information, mainly to judge whether the captions contain key information. CIDEr
is popular among researchers because of its ability to evaluate whether the generated
captions conform to human preferences. In order to prevent the occurrence of the “gaming”
problem [65], the researchers optimized the CIDEr by introducing the Gaussian penalty for
the length difference between the generated captions and the ground truth captions. The
optimized CIDEr is more popular, and its score range is 0–10.

SPICE (Semantic Propositional Image Caption Evaluation): SPICE is also specifically
designed to evaluate image captioning tasks [66]. SPICE maps both ground truth captions
and generated captions into a scene graph to evaluate the correlation between them. As a
graph-based semantic representation, the scene graph can encode targets, attributes, and
relationships in the generated captions. The score range of SPICE is 0–1.

METEOR (Metric for Evaluation of Translation with Explicit Ordering): METEOR
calculates the accuracy and recall rate of the unigram alignment between the generated
captions and the ground truth captions based on the whole corpus and generates a harmonic
mean [67]. Unlike BLEU, meteor calculates the word-to-word match relationship between
generated captions and ground truth captions. METEOR is widely used in image captioning
and can be considered a modified version of BLEU. METEOR has a rating range of 0–1.
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The higher scores of the above evaluation metrics, BLEU, ROUGE, CIDEr, SPICE, and
METEOR, indicate that the more accurately the generated caption describes the images
(remote sensing images), the closer the description method is to human description habits.

4.3. Implementation Details

The experimental device we used was equipped with an Intel Core i9-10900K @ 3.70 GHz
as the CPU. The GPU model was an NVIDIA GeForce RTX3090, which was released by
NVIDIA in 2020, with 24 GB GDDR6X video memory and 384-bit memory width. The
computer memory was 16 GB DDR4 3200 MHz × 4, 64 GB in total. The total capacity of
the hard drive was 2 TB. We deployed the Ubuntu 20.04 LTS operating system in the above
experimental equipment, and the deep learning framework adopted was Pytorch 1.8.

When using self-supervised learning to train the scene classification model, the un-
labeled remote sensing samples we used came from the above remote sensing image
captioning datasets. We did not use the captions in the datasets; we only used the re-
mote sensing samples in the datasets. From our analysis of three remote sensing image
captioning datasets, we can see that although these samples are not labeled with class
labels for classification, they are actually sampled from different remote sensing scenes. For
example, the remote sensing samples in the RSICD dataset can be divided into 30 different
scenes. This allows us to use these unlabeled data to train the self-supervised learning
scene classification model. We divided these samples into two sets: the train set, composed
of 70% samples, and the test set, composed of 30% samples.

We adopted various data augmentation strategies in the process of self-supervised
learning. Our data augmentation strategies for the input remote sensing images included
Cutout [68], randomly cropping and resizing the remote sensing images, converting the
remote sensing images to grayscale with 50% probability, randomly flipping the remote
sensing images with 50% probability, adjusting the brightness, contrast, saturation, and
hue of the remote sensing images using the ColorJitter tool, adding Gaussian blur with
20% probability and so on. Random augmentation, probabilistic augmentation and differ-
ent combinations can produce many different strategies. We used these data augmentation
strategies in our experiments. Of course, this order can be changed.

We loaded ResNet-101 from the torchvision module in Pytorch as the initial structure
of the encoder f (θ) for self-supervised learning. In the training process of BYOL, both the
prediction layer qθ and the projection layer gθ use MLP architecture. We set the structural
parameters of the MLP that constitutes the prediction layer and the projection layer to be
the same: the projection size was set to 256, and the projection hidden size was set to 4096.
The decay rate of the mean teacher τ was initially set to 0.996 and gradually increased to
1.000 during the training process. In the local feature extraction capability enhancement
part of the self-supervised learning, the structure and parameters of the encoder were
the same as those of the encoder f (θ) in the BYOL part. The MLP behind the encoder
had the same structure and parameters as the projection layer gθ in the BYOL part. The
Adam optimizer was chosen for the whole training process, and the learning rate was set
to 3 × 10−4. The training batch size was 32, and a total of 200 epochs were trained.

When the training model generated captions for few-shot remote sensing samples, we
divided the three remote sensing caption datasets into a train set, validation set and test set.
Among them, the samples used for training account for 80%, the data used for validation
account for 10%, and the data used for testing account for 10%.

The hidden state dimension, image feature dimension and word embedding dimen-
sion in the LSTM model we used as the decoder were all fixed to 512. The sliding momen-
tum coefficient α in the self-ensemble process was taken as 0.99, and the hyperparameter
β in the self-distillation process was taken as 1. Just like the self-critical design idea we
designed in Section 3.4, the evaluation metric used to guide the optimization of the model
parameters in the model training process was CIDEr. We trained the model to obtain
a maximum CIDEr score and then used CIDEr together with other metrics to evaluate
the quality of the generated remote sensing captions. When calculating the CIDEr score
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baseline in the self-critical technique, we sampled 5 captions for each remote sensing image.
The beam size of the beam search was taken as 5. The optimizer we used was Adam with
weight decay, and the initial learning rate was 2.5 × 10−4. The weight decay was set as
5 × 10−4. A total of 100 epochs were trained. During this period, the learning rate was
annealed by a factor of 0.8 every 3 epochs. The batch size during training was set to 30.

4.4. Quantitative Results

We conduct quantitative comparison experiments between our proposed SFRC method
and some classical remote captioning methods as well as recently proposed methods in
each of the three datasets. These methods include soft attention [18], hard attention [18],
RNNLM [69], AoANet [70], SAT [71], FC-Att + LSTM [72], SM-Att + LSTM [72], sound-a-
a [73], RTRMN [74], M-M-GRU [75], SAT(LAM) [76], and multi-level ATT [77].

Ref. [18] mentioned two remote sensing caption generation algorithms, soft attention
and hard attention. Both methods use the encoder-decoder architecture: the encoder adopts
VGG-16, and the decoder adopts LSTM. The difference between them lies in the attention
mechanism used. Soft attention determines a certain area of remote sensing image through
a certain weight. Hard attention uses a sampling strategy to focus on remote sensing images
and uses reinforcement learning to train the model. Soft attention and hard attention are
two classical and widely used remote sensing image captioning methods.

The RNNLM method proposed by [69] first uses the convolutional neural network
CaffeNet to obtain labels containing the main targets in the remote sensing images and
then uses the RNN to generate descriptive sentences about the important targets.

Ref. [70] proposed an AoA attention module. This module uses a self-attention
mechanism to measure the correlation between image features. The AOA module is
applied to the encoder and decoder in the caption generation model at the same time. At
this time, the network is named AoANet.

In [71], a classical attention-based image captioning model, Show-Attend-and-Tell
(SAT), is proposed. SAT extracts features from the middle layer of the convolutional neural
network to feed into the LSTM containing an attention mechanism for image captioning.

FC-Att + LSTM and SM-Att + LSTM were proposed by [72]. They all use an attribute
attention mechanism to process the high-level semantic features in remote sensing images
and use the extracted high-level attributes to generate description statements. The differ-
ence between FC-Att + LSTM and SM-Att + LSTM is the output source of their high-level
attributes. The mid-level and high-level attributes of FC-Att + LSTM come from the last full
connection layer of the CNN. The mid-level and high-level attributes of SM-Att + LSTM
come from the softmax layer of the CNN.

The sound-a-a method, proposed by [73], is an active attention mechanism constructed
from sound. The sound information processed by the attention module can guide the model
to generate descriptive sentences of interest to the observer. Both the sound module and
the attention module in sound-a-a contain gated recurrent units (GRU).

The RTRMN method in [74] is designed to overcome the problem of long-range
information dilution in RNNs. The RTRMN uses a topic word strategy to extract topic infor-
mation from the captions corresponding to the input remote sensing images and then feeds
this topic information into the RNN to generate captions to the remote sensing images.

M-M-GRU was proposed by [75], which has a convolutional neural network as the
encoder and gated recurrent units (GRU) as the decoder. This method uses the image
features extracted by the convolutional neural network to generate descriptive sentences
that can vary in length.

Unlike the conventional attention caption generation model, SAT (LAM) [40,76] uses
the LAM method additionally. The LAM method does not use high-level remote sensing
image features to guide the attention calculation process. LAM implicitly introduces
additional label information into the model, which can help the attention mechanism better
focus on important areas and key categories and provide more useful semantic information
for the model to generate description statements.
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Ref. [77] proposed a multi-level ATT mechanism imitating human beings to generate
remote sensing image captions. This attention mechanism includes attention to remote
sensing image areas, words and semantic information. The encoder is ResNet, and the
decoder is LSTM.

In Tables 1–3, the highest scores under each evaluation metric are marked in bold.
For these methods used for quantitative comparison with SFRC, their evaluation metric
scores are derived from their paper experimental results. Of these, soft attention [18] and
hard attention [18] do not provide SPICE scores in the original paper, and these scores
are replaced with “-” in Tables 1–3. As can be seen from Tables 1–3, our proposed SFRC
received the highest scores in most of the metrics. Even if some index scores do not get
the highest score, they are not far from the highest score and belong to the category of
high scores. The high scores obtained under the BLEU-1, BLEU-2, BLEU-3 and BLEU-4
evaluation metrics of the BLEU series mean that SFRC translates words accurately and
sentences smoothly. The high scores under the METEOR evaluation metric mean that the
matching rate between captions generated by SFRC and ground truth captions is high, and
the gap is small. The high scores under the ROUGE evaluation metric indicate that SFRC
generates accurate captions. The high score for CIDEr indicates that SFRC describes key
information and matches human preferences. The high score for SPICE demonstrates that
SFRC accurately captures the targets, attributes and relationships in remote sensing images.

Table 1. Quantitative comparison results on UCM-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Soft Attention 0.7454 0.6545 0.5855 0.5250 0.3886 0.7237 2.6124 -
Hard Attention 0.8157 0.7312 0.6702 0.6182 0.4263 0.7698 2.9947 -

RNNLM 0.7735 0.7119 0.6623 0.6156 0.4198 0.7233 3.1385 0.4677
AoANet 0.8185 0.7473 0.6880 0.6327 0.4130 0.7543 3.0873 0.4396

SAT 0.7995 0.7365 0.6792 0.6244 0.4171 0.7441 3.1044 0.4951
FC-ATT + LSTM 0.8102 0.7330 0.6727 0.6188 0.4280 0.7667 3.3700 0.4867
SM-ATT + LSTM 0.8115 0.7418 0.6814 0.6296 0.4354 0.7793 3.3860 0.4875

sound-a-a 0.7484 0.6837 0.6310 0.5896 0.3623 0.6579 2.7281 0.3907
RTRMN 0.8028 0.7322 0.6821 0.6393 0.4258 0.7726 3.1270 0.4535

M-M-GRU 0.4256 0.2999 0.2291 0.1798 0.1941 0.3797 1.2482 -
SAT(LAM) 0.8195 0.7764 0.7485 0.7161 0.4837 0.7908 3.6171 0.5024

multi-level ATT 0.8754 0.8295 0.7693 0.7049 0.5279 0.8156 3.0790 0.4619
SFRC (ours) 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098

Table 2. Quantitative comparison results on Sydney-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Soft Attention 0.7322 0.6674 0.6223 0.5820 0.3942 0.7127 2.4993 -
Hard Attention 0.7591 0.6610 0.5889 0.5258 0.3898 0.7189 2.1819 -

RNNLM 0.6861 0.6093 0.5465 0.4917 0.3565 0.6470 2.2129 0.3867
AoANet 0.7520 0.6620 0.5885 0.5230 0.3792 0.6931 2.2899 0.4209

SAT 0.7391 0.6402 0.5623 0.5248 0.3493 0.6721 2.2015 0.3945
FC-ATT + LSTM 0.7383 0.6440 0.5701 0.5085 0.3638 0.6689 2.2415 0.3951
SM-ATT + LSTM 0.7430 0.6535 0.5859 0.5181 0.3641 0.6772 2.3402 0.3976

sound-a-a 0.7093 0.6228 0.5393 0.4602 0.3121 0.5974 1.7477 0.3837
RTRMN 0.6861 0.6093 0.5465 0.4917 0.3565 0.6470 2.2129 0.3867

M-M-GRU 0.6964 0.6092 0.5239 0.4421 0.3112 0.5917 1.7155 -
SAT(LAM) 0.7405 0.6550 0.5904 0.5304 0.3689 0.6814 2.3519 0.4038

multi-level ATT 0.8057 0.7189 0.6448 0.5822 0.4665 0.7472 2.2028 0.4005
SFRC (ours) 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445
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Table 3. Quantitative comparison results on RSICD dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Soft Attention 0.6753 0.5308 0.4333 0.3617 0.3255 0.6109 1.9643 -
Hard Attention 0.6669 0.5182 04164 0.3407 0.3201 0.6084 1.7925 -

RNNLM 0.6098 0.5078 0.4367 0.3814 0.2936 0.5456 2.4015 0.4259
AoANet 0.6718 0.5552 0.4735 0.4101 0.3251 0.5852 2.5647 0.4612

SAT 0.6707 0.5438 0.4550 0.3870 0.3203 0.5724 2.4686 0.4539
FC-ATT + LSTM 0.6671 0.5511 0.4691 0.4059 0.3225 0.5781 2.5763 0.4673
SM-ATT + LSTM 0.6699 0.5523 0.4703 0.4068 0.3255 0.5802 2.5738 0.4687

sound-a-a 0.6196 0.4819 0.3902 0.3195 0.2733 0.5143 1.6386 0.3598
RTRMN 0.6102 0.4514 0.3535 0.2859 0.2751 0.5452 1.4820 0.3236

M-M-GRU 0.4256 0.2999 0.2291 0.1798 0.1941 0.3797 1.2482 -
SAT(LAM) 0.6753 0.5537 0.4686 0.4026 0.3254 0.5823 2.5850 0.4636

multi-level ATT 0.7905 0.6782 0.5743 0.5031 0.4640 0.7247 2.6310 0.4548
SFRC (ours) 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5067

On the UCM-Captions dataset, our SFRC method achieved the highest scores for
BLEU-1, BLEU-3, ROUGE, CIDEr and SPICE. This indicates that SFRC has captured key
information in the remote sensing images in the UCM-Captions dataset. The multi-level
ATT method achieved the highest scores for BLEU-2 and METEOR. SAT (LAM) achieved
the highest score for BLEU-4. This means that there is room for improvement in the
matching rate between the captions generated by the SFRC and the ground truth captions.
The fluency of the generated descriptive sentences also needs to be improved.

Our SFRC method obtained the highest scores for all metrics on the Sydney-Captions
dataset, which contains the fewest samples. This indicates that our series of designs for
the few-shot remote sensing image captioning task is fruitful. The generated captions have
high accuracies and matching rates while extracting key information and important targets
from the remote sensing images.

The SFRC method obtained the highest scores for BLEU-1, BLEU-2, BLEU-3, BLEU-4,
CIDEr and SPICE on the RSICD dataset. The highest scores for METEOR and ROUGE came
from the multi-level ATT method. This is because the RSICD dataset contains the richest
amount of words, and the attention mechanism in the multi-level ATT method facilitates
the selection of appropriate words to describe the remote sensing images and generate
captions that match the ground truth captions.

From the overall perspective of the three datasets, SAT (LAM) and multi-level ATT,
which use a strong attention mechanism, still perform well in some metrics, especially
METEOR. Our method has obtained competitive scores in most metrics, which means that
the overfitting of the model in few-shot scenarios has been alleviated.

There is a widely accepted consensus that using more samples tends to mitigate
overfitting to a certain extent and allows the model to perform better. However, by vertically
comparing the evaluation metric scores of the same method in Tables 1–3, we find that
image captioning methods usually have the highest scores on the UCM-Captions dataset,
followed by the Sydney-Captions dataset, and lowest on the RSICD dataset. Although we
cannot draw firm conclusions directly from the evaluation metric scores alone, these results
do suggest that the RSICD dataset in all three datasets is the most difficult for the models to
learn, followed by the Sydney-Captions dataset, with the UCM-Captions dataset being the
easiest to learn. This is at variance with our analysis of the datasets above: using the RSICD
dataset with the most remote sensing image samples and the richest descriptive sentences
resulted in a model with lower evaluation metric scores. Using the UCM-Captions dataset
with fewer remote sensing data samples and the simplest sentences often resulted in a
model with high evaluation scores. This counter-intuitive phenomenon makes us rethink
how the few-shot problems in remote sensing image captioning should be determined. It
is evident from the above phenomenon that the performance of the model is also limited
when the quality and quantity of remote sensing samples in the dataset equipped with
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ground truth captions cannot support the model for full training. This is also a few-shot
problem in one sense. At the same time, excessively long descriptive sentences equipped
with remote sensing images and too many total words used in the ground truth captions in
the dataset will add difficulty and burden to the learning of the models, resulting in a steep
increase in the quantity and quality of caption-labeled remote sensing samples required
by the model. The richer the words contained in the ground truth captions, the wider
the search scope in the caption generation process, and the difficulty of model learning
becomes greater. This requires a larger number of training samples to support the training.
The training of remote image captioning requires a balance between a sufficient number of
samples and sufficient quality of ground truth captions. This can be confirmed by the metric
scores of the Sydney-Captions dataset: the ground truth captions in the Sydney-Captions
dataset are more detailed than those in the UCM-Captions dataset and less complex than
those in the RSICD dataset. However, the Sydney-Captions dataset contains the smallest
number of samples. The final metric scores in the Sydney-Captions dataset were second.
Of course, the low scores of the models trained on the RSICD dataset do not mean that
the qualities of the generated captions are poor. The high qualities of the ground truth
captions naturally improve the criteria for evaluating the captions generated. This issue
would become clearer if there were a metric for evaluating model-generated descriptive
sentences that did not rely on the ground truth captions provided by the dataset.

4.5. Percentage Sampling Few-Shot Experiments

In order to further test the performance of our proposed method for image caption-
ing in few-shot remote sensing scenarios, we conducted an in-depth exploration of the
UCM-Captions dataset, Sydney-Captions dataset and RSICD dataset. We introduced per-
centage sampling in the model training process: the model was trained using a randomly
selected percentage of samples in the dataset. This method of sampling according to a
certain percentage can reduce the sampling scale and try not to change the original sample
distribution of the train set. Both the UCM-Captions and Sydney-Captions datasets contain
only a few hundred caption-labeled samples, which is more compatible with the definition
of “few-shot” in terms of sample size. When we experiment with percentage sampling
in these two datasets, the samples we can obtain will become extremely scarce. This puts
forward high requirements for the ability of the method to adapt to few-shot scenarios.
Therefore, we paid special attention to the results of the experiments on the UCM-Captions
dataset and the Sydney-Captions dataset. We set different sampling percentages in our
experiments: 60%, 80% and 100%. The percentage sampling experimental results are shown
in Tables 4–6.

Table 4. Percentage sampling experimental results on UCM-Captions dataset.

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

60% 0.8226 0.7765 0.7265 0.6898 0.4626 0.7951 3.2346 0.4665
80% 0.8557 0.8015 0.7504 0.7017 0.4536 0.8113 3.3721 0.4883
100% 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098

Table 5. Percentage sampling experimental results on Sydney-Captions dataset.

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

60% 0.7813 0.6906 0.6069 0.5358 0.4015 0.7026 2.1933 0.4091
80% 0.8063 0.7210 0.6437 0.5743 0.4322 0.7403 2.4926 0.4346
100% 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445
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Table 6. Percentage sampling experimental results on RSICD dataset.

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

60% 0.7391 0.6402 0.5617 0.4879 0.3493 0.6571 2.2015 0.3945
80% 0.7736 0.6630 0.5727 0.4968 0.3872 0.6889 2.7579 0.4741
100% 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5067

As seen in Tables 4 and 5, our proposed SFRC method can still play a good role in
image captioning when trained with only 80% of the caption-labeled samples in the UCM-
Captions dataset and Sydney-Captions dataset. When only 60% of the caption-labeled
samples are used for training, the performance of the model does not collapse. SFRC can
adapt to sparse data modalities with few samples. From the overall view of Tables 4–6,
SFRC does not lose too much performance in all three datasets due to the reduction
of caption-labeled samples with the gradual reduction of sampling percentage. These
suggest that our designs for few-shot scenarios are meaningful and effective. We also
found that SFRC loses the most performance on the RSICD dataset when we reduce the
sampling percentage. We think that this is consistent with our discussion in Section 4.5: the
RSICD dataset with the largest sample size and the richest vocabulary is, in fact, severely
insufficient in terms of model training, and the model is more prone to overfitting. Of
course, these experimental results also imply that increasing the number of samples can
bring some performance gains to the SFRC method. When the remote sensing samples
with semantic captions are added in a certain range, self-supervised learning can better
play its advantages in obtaining supervision information from the internal structure of
the samples that are not class-labeled. Self-ensemble and self-distillation can produce
more pseudo labels, the number of iterations of training can be increased, and the training
process will become more stable. The baselines obtained by self-ensemble calculation in
the self-critical technique will also become more diverse. However, this does not mean
that by continuously increasing the number of remote sensing samples, the performance
of the few-shot image captioning model in the test set can always be improved. When
the samples become adequate, the performance of the model will be limited by the data
distribution difference between the train set and the test set. If the difference between the
test set and the train set is too large, increasing only the number of samples can yield a
limited improvement.

In order to more clearly show the advantages of SFRC in few-shot scenarios, we also
compared SFRC with the other three remote sensing image captioning methods in a series
of experiments with a sample sampling percentage of 60%. The three methods used for
comparison are RNNLM, AoANet and hard attention. The experimental results are shown
in Tables 7–9.

Table 7. Comparison of evaluation metric scores of methods on 60% UCM-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

RNNLM 0.7480 0.6359 0.6192 0.5569 0.3565 0.6826 2.7189 0.4083
AoANet 0.7587 0.6756 0.6115 0.5709 0.3557 0.6937 2.7672 0.3893

Hard-Attention 0.7315 0.6838 0.6074 0.5645 0.3944 0.6542 2.5157 0.3677
SFRC (ours) 0.8226 0.7765 0.7265 0.6898 0.4626 0.7951 3.2346 0.4665

Table 8. Comparison of evaluation metric scores of methods on 60% Sydney-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

RNNLM 0.6712 0.5834 0.5011 0.4780 0.3369 0.6051 1.9105 0.3371
AoANet 0.6552 0.6218 0.5315 0.5003 0.3465 0.6530 1.9042 0.3461

Hard-Attention 0.6376 0.6109 0.5586 0.4837 0.3322 0.6439 1.8853 0.3218
SFRC (ours) 0.7813 0.6906 0.6069 0.5358 0.4015 0.7026 2.1933 0.4091
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Table 9. Comparison of evaluation metric scores of methods on 60% RSICD dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

RNNLM 0.5632 0.4501 0.4082 0.3387 0.2714 0.5232 1.6532 0.3498
AoANet 0.5749 0.4437 0.4334 0.3439 0.2669 0.5401 1.7680 0.3536

Hard-Attention 0.5099 0.4292 0.3672 0.3059 0.2461 0.4738 1.5647 0.3053
SFRC (ours) 0.7391 0.6402 0.5617 0.4879 0.3493 0.6571 2.2015 0.3945

It can be seen from Tables 7–9 that the SFRC method achieves its best score when
only 60% of the remote sensing samples are used for training. Compared with the other
three remote sensing image captioning methods, SFRC better adapts to few-shot scenarios
and makes use of the limited remote sensing samples to generate nice quality description
sentences. Comparing Tables 7–9 and Tables 1–3, when the sampling percentage is reduced
from 100% to 60%, SFRC can still generate captions of good quality. However, the per-
formances of other remote sensing image captioning methods are greatly reduced. The
excellent performance of SFRC in percentage sampling few-shot experiments proves the
effectiveness of a series of designs for few-shot scenarios.

4.6. Ablation Experiments

To explore the impact of each self-learning component of our proposed SFRC method
in the remote sensing image captioning tasks with sparse samples, we also designed a
series of ablation experiments in the three datasets. We set up four methods for ablation
comparison. They were the complete SFRC method we propose, the SFRC method with the
self-supervised learning part removed and the rest unchanged (No SSL), the SFRC method
with the self-ensemble and self-distillation parts removed and the rest unchanged (No SE
and SD), and the SFRC method with the self-critical part removed and the rest unchanged
(No SC). Self-ensemble and self-distillation are combined here because they are mutually
coupled and contribute to each other during the operation of the SFRC method. Self-
ensemble itself is also a part of the self-distillation design. Therefore, in the ablation of the
components here, we process the self-ensemble and self-distillation simultaneously rather
than separately. A comparison of the evaluation metric scores of the captions generated by
each method on the three datasets in the ablation experiments is shown in Tables 10–12.

Table 10. Comparison of evaluation metric scores of methods for removing different components on
UCM-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

No SSL 0.8455 0.7889 0.7352 0.6843 0.4576 0.8033 3.5091 0.4936
No SE and SD 0.8104 0.7397 0.6809 0.6274 0.4248 0.7538 3.3272 0.4743

No SC 0.8405 0.7892 0.7406 0.6936 0.4648 0.8037 3.4055 0.4875
SFRC (ours) 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098

Table 11. Comparison of evaluation metric scores of methods for removing different components on
Sydney-Captions dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

No SSL 0.8165 0.7313 0.8264 0.5809 0.4228 0.7409 2.5936 0.4359
No SE and SD 0.7999 0.7095 0.6221 0.5419 0.3951 0.7133 2.3578 0.4029

No SC 0.8095 0.7302 0.6549 0.5789 0.4192 0.7301 2.5212 0.4395
SFRC (ours) 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445
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Table 12. Comparison of evaluation metric scores of methods for removing different components on
RSICD dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

No SSL 0.7895 0.6810 0.5922 0.5175 0.3901 0.6941 2.8573 0.5067
No SE and SD 0.7491 0.6375 0.5479 0.4732 0.3831 0.6729 2.6696 0.4881

No SC 0.7739 0.6615 0.5738 0.4990 0.3842 0.6876 2.7033 0.5017
SFRC (ours) 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5096

We select the experimental ablation results (Table 11) of the model in the Sydney-
Captions dataset with the least number of samples as the example for quantitative analysis.
Self-supervised learning changed the CIDEr score of the algorithm on the Sydney-Captions
dataset from 2.5936 to 2.6388, an improvement of 1.7%. SPICE score changed from 0.4359 to
0.4445, an increase of 1.9%. This demonstrates the effectiveness of using a small number of
unlabeled samples for a self-supervised learning training encoder. However, the effect is not
very prominent. This is the result of not using a large amount of additional remote sensing
data. If more unlabeled remote sensing samples are used for self-supervised training
or additional labeled remote sensing samples are used for training, the performance of
the encoder will be more powerful. The use of the self-ensemble and self-distillation
modules changes the CIDEr score of the method on the Sydney-Captions dataset from
2.3578 to 2.6388, an increase of 11.9%. The SPICE score changed from 0.4029 to 0.4445, an
increase of 10.3%. From the improvement of the evaluation metric scores, we can see the
effectiveness of the combination of self-ensemble and self-distillation. Whether it is the
ensemble model under different time nodes in self-ensemble or the previous generation
model in self-distillation, the “pseudo features” they produce can provide effective and
robust additional knowledge and supervision information for the training of the next
generation model. The mutual promotion of self-ensemble and self-distillation also makes
the training process stable, prevents error information from spreading in the model, reduces
the adverse impact of a single sample or error on the model, and avoids the occurrence
of overfitting in the process of describing remote sensing images. It can be seen from the
significant improvement of the evaluation indicators that the fusion of self-ensemble and
self-distillation also makes the description of remote sensing images and human description
of the model gradually close. It is worth noting that these improvements are achieved
without using additional external data. The self-critical technique changes the CIDEr score
of the method on the Sydney-Captions dataset from 2.5212 to 2.6388, an increase of 4.7%.
SPICE score changed from 0.4395 to 0.4445, an increase of 1.1%. From the effectiveness
of self-critical, we can find that the parameter optimization process of remote sensing
image captioning model training is a noteworthy point of view to improve the performance
of the model. The reinforcement learning design in self-critical mode and the baseline
design with self-ensemble have a good effect on improving the overfitting. We believe
that designing a baseline more suitable for few-shot scenarios for self-critical techniques
in the follow-up work can enable the model to gain more benefit in evaluation metric
scores. We can see from the comparison that the modules have different contributions to
the performance of SFRC in the task of few-shot remote sensing image captioning. Among
them, self-ensemble and self-distillation contribute the most to performance, followed
by the self-critical technique, and finally self-supervised learning. The effect of the SFRC
method on the three datasets is also different. The most improved dataset is the UCM-
Captions dataset, followed by the Sydney-Captions dataset, and finally RSICD dataset.
This is consistent with our analysis of the three datasets in Section 4.4. In a word, the
experimental results of the ablation of different modules in the SFRC method show that
our self-learning designs in the SFRC method are conducive to the remote sensing image
captioning model to adapt to few-shot scenarios.



Remote Sens. 2022, 14, 4606 26 of 29

5. Conclusions

We have designed an image captioning method based on self-learning for few-shot
remote sensing images without relying on external data and external knowledge, which is
named SFRC. On the premise that only a small amount of remote sensing samples with
caption labels can be obtained, we use four “self-learning” components to improve the
performance of the model in few-shot scenarios according to the data structure and the
internal process design of the model. In training the encoder for feature extraction, we
do not use additional caption-labeled remote sensing samples but only a small amount
of remote sensing image samples with caption labels removed and no category labels for
self-supervised learning. We add an additional consideration of local features of remote
sensing images to BYOL, so that the encoder can learn a general feature representation
and extraction method and have a generalization ability in the face of unseen data. In the
training process of the few-shot image captioning model, we introduce both self-ensemble
from the perspective of temporal and self-distillation from the perspective of model training
and incorporate the self-ensemble into the self-distillation. The combined application of
self-ensemble and self-distillation not only improves the quality of the generated remote
captions but also improves the efficiency of the circulation of pseudo labels and pseudo
captions in the model and makes the training process more reliable and stable. These
are definitely beneficial to solve the few-shot problem. Moreover, self-ensemble and self-
distillation are also applicable to scenarios with sufficient samples, which allows our
method to further learn more semantic information as prior knowledge through the use
of external data and achieve better performance. Our image captioning model training
strategy is orthogonal to the training strategies of advanced data augmentation, linear
mixing, and adversarial sample generation, which means we can achieve more performance
gains by cross-using multiple training strategies. In the process of parameter optimization
using self-critical techniques, we construct a baseline function containing a self-ensemble.
The introduction of self-ensemble makes the gradient variance of the whole parameter
optimization process smaller, the training process smoother, and reduces the negative
impact of overfitting. The results of few-shot experiments on the UCM-Captions dataset,
the Sydney-Captions dataset and the RSICD dataset show that the SFRC method benefits
from the above self-learning designs to generate excellent-quality remote sensing captions
with higher evaluation metric scores than classical methods as well as recent methods. The
results of the percentage sampling experiments show that our designed SFRC method can
better adapt to scenarios with sparse samples. The ablation experiments further verify the
contribution of each self-learning design to the performance of the SFRC method in few-
shot scenarios. The SFRC model can not only be used for the task of generating captions of
few-shot remote sensing images but also can be applied to more tasks. Captions generated
by SFRC can be used as input data in a series of NLP tasks, such as text classification
tasks and text clustering tasks. These tasks can further process captions containing key
information in remote sensing images to obtain more concise information. At the same
time, the remote sensing image samples and the corresponding description sentences
obtained by SFRC processing the remote sensing images can form pairs of samples to train
the multi-modal model, such as training a visual question answering (VQA) about key
information of remote sensing images. The recent training of a multimodal visual language
model named “Flamingo” [78] only requires a small number of labeled samples and can
quickly adapt to many tasks. The captions output from the SFRC model can provide sample
support for training similar powerful models in remote sensing images. The subsequent
optimization work can focus on integrating the structure of the method into an end-to-end
structure, using a more powerful decoder or encoder, designing more efficient encoder
training methods with higher data utilization efficiency, and so on.
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