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Abstract: Automatic matching of multimodal remote sensing images remains a vital yet challenging
task, particularly for remote sensing and computer vision applications. Most traditional methods
mainly focus on key point detection and description of the original image, thus ignoring the deep
semantic feature information such as semantic road features, with the result that the traditional
method can not effectively resist nonlinear grayscale distortion, and has low matching efficiency
and poor accuracy. Motivated by this, this paper proposes a novel automatic matching method
named LURF via learned unstructured road features for the multimodal images. There are four main
contributions in LURF. To begin with, the semantic road features were extracted from multimodal
images based on segmentation model CRESIv2. Next, based on semantic road features, a stable and
reliable intersection point detector has been proposed to detect unstructured key points. Moreover,
a local entropy descriptor has been designed to describe key points with the local skeleton feature.
Finally, a global optimization strategy is adopted to achieve the correct matching. The extensive
experimental results demonstrate that the proposed LURF outperforms other state-of-the-art methods
in terms of both accuracy and efficiency on different multimodal image data sets.

Keywords: multimodal image matching; semantic road features; local binary entropy descriptor;
feature matching

1. Introduction

The multimodal remote sensing image matching is a critical and challenging prerequi-
site in computer vision and remote sensing applications [1] such as UAV positioning [2],
image mosaic, image fusion [3,4], object detection, and environment surveillance. The pri-
mary goal of multimodal remote sensing image matching is the process to obtain the
accurate correspondences between the reference image and sensed image with overlapping
regions, and to geometrically align these images. However, it is still an ill-posed problem
that suffers from many uncertainties due to the differences in sensor devices, viewpoints,
and imaging conditions [5]. Thus, for the same scene, the multimodal remote sensing
images have quite different expressions, especially nonlinear radiation distortions (NRD),
and this issue seriously affects image matching reliability and accuracy.

To alleviate the difficulty mentioned above, in our previous work, the triangular
features have been proposed [6] for multimodal urban remote sensing image matching and
has good robustness and efficienc based on semantic road features. On the contrary, its
application limitations are obvious, which are embodied in the following aspects:

(1) The triangular feature construction and matching needs more than three road
intersection points. When the number of detected road intersection points is only one
or two, the method cannot construct and describe the feature information, resulting in a
complete matching failure as seen in Figure 1a.
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(2) When fitting the straight-line features of semantic road information, the perfor-
mance of curve fitting is poor which directly affects the matching success and accuracy as
seen in Figure 1b.

Figure 1. Schematic diagram of the matching method [6] limitations: (a) The number of feature points
is too small to construct triangular features. (b) Poor performance when fitting the curved semantic
roads imformation.

To address these issues, in this paper we propose a novel matching method named
LURF via learned unstructured road features for multimodal remote sensing images. This
article is an extension of our earlier published work [6]. The proposed method, LURF, is
general and efficient, which can handle both very few feature points (even just one feature
point) and road curve information with poor linear fitting. LURF also has good robustness
for parameter estimation of nonlinear roads. The main contributions of this paper can be
listed as follows:

(1) The semantic road features were extracted from multimodal remote sensing images
based on the segmentation model CRESIv2. Based on semantic road features, a stable and
reliable intersection point detector has been proposed to detect unstructured key points.

(2) A local binary entropy descriptor has been designed to describe key points with
the local skeleton feature. The local binary entropy descriptor dimension is smaller,but its
efficiency is higher.

(3) A global optimization strategy is adopted to achieve the correct matching.
(4) Our proposed method LURF has been validated on publicly available datasets,

and LURF obtains better results than other state-of-the-art methods in terms of both
accuracy and efficiency.

The remainder of this article is organized as follows: The related works of image
matching for multimodal remote sensing images are reviewed in Section 1. Section 2
introduces the proposed matching method LURF. In Section 3, the experimental results
and corresponding analyses are exhibited. Finally, Section 4 discusses the experiments and
concludes this article.

2. Related Works

Multi-modal image matching has always been a hot research issue and many scholars
involved in the study of multimodal remote sensing image matching problems in the
past few decades [7]. Generally, the multimodal remote sensing image matching methods
can be mainly divided into two categories [8]: area-based methods and feature-based
methods. Area-based methods [9,10] usually attempt to search for the optimal geometric
transform with a specified similarity metric and depend on an appropriate patch similarity
measurement for pixel-level matching parameter estimation between the multimodal
image pairs, and the distinctive information is provided by pixel intensities rather than by
structure features. These methods generally can be classified into three types: correlation-
like methods [11], Fourier methods [12], and mutual information methods [13]. Correlation-
like methods such as cross-correlation are classical area-based methods [14]. The main
idea of correlation-like methods is to compute the similarities of an overlapping region
in the reference image and sensed image pairs, and consider the largest similarity as a
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correspondence. However, correlation-like methods have some drawbacks such as high
computational complexity and the flatness of the similarity measure in textureless areas.
Fourier methods adopt the Fourier representation of the multimodal image in the frequency
domain. In Fourier methods, a commonly used technique is the phase correlation method
based on the Fourier shift theorem, which was later extended to account for rotation and
scaling [15]. These Fourier methods have some advantages such as computational efficiency
and noise robustness than correlation-like methods. In addition, the mutual information
(MI) methods can provide an attractive metric for maximizing the dependence, which is
robust to NDR to a certain extent. However, MI method has a large amount of calculation,
low efficiency, and is easy to fall into local extremum. Based on MI method, some improved
methods have been proposed such as normalized mutual information (NMI) [16], entropy
correlation coefficient (ECC) [17].

Compared with area-based methods, the feature-based methods have higher efficiency
and better adaptability via point features, line features, contours features, or region features.
The matching process of feature-based methods usually includes feature point detection,
feature point description, and mismatching elimination [18]. The classic and representative
method is scale-invariant feature transform(SIFT) [19]. SIFT can extract feature points in
a DoG pyramid and filter feature points using the Hessian matrix of the local intensity
values. On the basis of SIFT, the speed-up robust feature (SURF) [20] has been proposed.
By approximating the Hessian matrix-based detector using Haar wavelet calculation, SURF
can accelerate the SIFT, significantly. In order to detect and extract more robust feature
points, HOPC [21] and DLSS [22] are proposed based on phase congruency. However,
HOPC relies on accurate geographic information which is essentially a template matching
method. HOPC is only designed for a slight translation and it is very sensitive to scale and
rotation transformations. Based on HOPC, Li [23] proposed a feature matching method
radiation-variation insensitive feature transform (RIFT). RIFT adopts phase congruency in-
formation instead of image intensity for feature point detection, and constructs a maximum
index map (MIM) based on the log-Gabor convolution sequence for feature description.
RIFT can detect and descript robust tie-points between multimodal remote sensing image
pairs. However, RIFT does not build a scale space, and it cannot be applied to all scale
scenes when the scales of the multimodal image are inconsistent. Chen [24] proposed
a partial intensity invariant feature descriptor (PIIED) method for multimodal remote
sensing images via symmetrical gradient direction histogram. EHD [25] adopts the edges
orientation response of multioriented Sobel spatial filter. Based on the local EHD descriptor,
the log-Gabor histogram descriptor(LGHD) [26] is proposed by using a multi-scaled and
multi-oriented log-Gabor filter to replace the multi-oriented spatial filter, but LGHD is easy
to suffers from low efficiency and high dimensionality.

Different from the traditional feature-based multimodal remote sensing image match-
ing methods, learning-based feature matching methods have developed rapidly [27]. Match-
Net [28] uses the deep convolutional neural network to learn local patch feature description
and feature comparison. LIFT [29] uses the deep learning network to realize the complete
image feature matching process and uses the Siamese network to realize the detection and
description of feature points and direction estimation. An image matching method based
on regularization generation adversarial network is proposed [30]. This method designs a
new generative adversarial network for image transformation, and then uses local features
to establish multi-source image matching relationships.

Due to the differences in imaging sensors and imaging conditions in multi-modal im-
ages, the traditional method of directly detecting and describing key points on the original
image has poor robustness and instability. Among them, semantic segmentation informa-
tion is important feature in multimodal remote sensing image pairs. The corresponding
semantic feature is the high-level structure with high similarity of multimodal remote
sensing image pairs. The semantic feature has better detection stability and robustness
such as semantic road, semantic building, and semantic water area. Although our previous
published work has achieved good performance, there are still some limitations such as
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curved roads. Therefore, this paper proposes a method via learned unstructured road
feature (LURF) for multimodal remote sensing image matching, which can effectively
address the above limitations.

3. Proposed Method

In this section, we present the details of the proposed method LURF for multimodal
remote sensing image matching. We start by introducing the adopted semantic segmen-
tation network CRESIv2 [31] and image processing methods to extract road feature from
multimodal remote sensing image pairs. Then, we present a novel method for unstruc-
tured intersection point detection by considering the distribution of local searching point
set. Finally, a descriptor have been designed for the unstructured intersection points.
The flowchart of the proposed method LURF is shown in Figure 2.

Figure 2. The flowchart of proposed method LURF for multimodal remote sensing image pair.

3.1. Semantic Road Feature Extraction

The nonlinear grayscale distortion is a prominent problem that plagues multimodal
image feature extraction. Unlike the traditional method that directly detects low-level
features such as corner features from the multimodal image pair, the semantic feature
is a high-level feature. Extracting semantic feature information from the multimodal
image pair based on the deep learning network is an effective solution to resist nonlinear
grayscale distortion.

In the beginning, the semantic segmentation network CRESIv2 has been adopted to
infer the semantic road information from the multimodal remote sensing image, the model
as shown in Figure 3. This model uses ResNet34 [32] and Unet [33] as encoder and decoder,
respectively. It can also be understood as embedding the ResNet34 as a whole into the
encoding module part of the Unet network, the CRESIv2 can achieve optimal semantic
segmentation detail as a consequence of feature splicing and scale fusion. To meet the
needs of extracting features, the last three layers of structure used for classification are
discarded while retaining the structural body of ResNet34. During the downsampling
step, the size of the stride and kernel in the transposed convolutional layer is set to 2 and
2 × 2. Upsampling and downsampling use the same scale information. At the same time,
the same scale information is used for upsampling and downsampling. At the same time,
in the upsampling and downsampling steps, a combination of 3 × 3 convolutional layers,
batch normalization layers, and ReLU activation functions are used to fuse the same scale
feature information.
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Figure 3. The entire procedure of the semantic segmentation model CRESIv2 for road information
inference.

When training the CRESIv2 network model,the loss function needs to be explicitly
set to specify the learning target of the training model, that is, it is necessary to tell the
model how to train to get the best effect, and how to find the best set of network parameters
during the training process. The loss function L is defined as in Equation (1).

L = α · LBCE + (1− α) · LDice (1)

where, LBCE and LDice denote binary cross entropy loss function and distance loss function,
respectively. During model training, the default value of α is 0.75. In addition, compared
with the SGD [34] (Stochastic Gradient Descent) optimization algorithm, the Adam [35]
(Adaptive Moment Estimation) optimization algorithm is adopted for model optimization
strategy. The Adam optimization can provide different learning rates for different parame-
ters. The learning rate can be acquired adaptively so that the model can converge faster
and more efficiently.

Then, the road semantic information of the multimodal remote sensing image is
inferred based on the deep learning network. This excellent performance can effectively
resist the nonlinear grayscale distortion problem of multimodal images. It is necessary to
extract road centerline features as accurately as possible in order to detect and describe
the road intersection point. The road centerline refers to the set of points in the middle
of the road width, which is inseparable from the detected road skeleton line position.
The diagram of road skeleton curve line extraction from multimodal images is shown
in Figure 4. The main steps in Figure 4 include the grayscale processing, binarization,
morphological operation and skeleton curve line extraction (from left to right). Although
the segmentation model CRESIv2 has good generalization ability and can extract road
information in different imaging environments, there will inevitably be low probability
information in the probability map. The designed road feature extraction method in
Figure 4 can effectively eliminate the inferred false information as much as possible, which
can greatly improve the accuracy of key points and the reliability of the description.
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Figure 4. Schematic diagram of road feature extraction.

When extracting the road skeleton feature, the classic Steger [36] algorithm is adopted
to extract the sub-pixel-level skeleton line as seen in Figure 4e. The core idea of the Steger
algorithm is to calculate the normal direction of the road primitives based on the Hessian
matrix, and to determine the sub-pixel skeleton line through the Taylor expansion. As for
any pixel point Pn(x, y) of morphologically reconstructed image as seen in Figure 4d, its
Hessian matrix can be expressed as:

H(x, y) =

[
rxx rxy
rxy ryy

]
(2)

where parameters rxx, rxy, ryy indicate the second-order partial derivatives of pixel point
Pn(x, y) in different directions. The eigenvector corresponding to the largest eigenvalue of
the Hessian matrix is the normal direction defined as (Nx, Ny). Therefore, assuming that
(x0, y0) represents the current reference point, the corresponding subpixel-level skeleton
point coordinates (Sx, Sy) can be expressed as:

(Sx, Sy) = (x0 + Ts · Nx, y0 + Ts · Ny) (3)

Ts =
rx Nx + ryNy

rxx N2
x + 2 · rxyNx Ny + ryyN2

y
(4)

3.2. The Unstructured Road Intersection Point Detection

To detect the road intersection points from the road skeleton feature, the most direct
idea is to fit straight lines from skeleton features and detect straight line intersections as
intersection point. Such ideas usually are unsatisfactory, because the real roads in reality do
not always maintain the straight line features, that is, the extracted skeleton features are not
linear sets. Therefore, there is a large error in the fitting, and the final confirmed position of
intersection point does not coincide with the actual one. This case can be seen in Figure 1b.

To avoid the interference of global road skeleton features on the intersection point
detection, we propose a road intersection point detection method. The proposed method
contains two main steps as seen in Figure 5: (1) A local distribution characteristic statistics
for all skeleton feature points have be established, and the local searching point set of
intersection point is determined according to certain conditional criteria. (2) The clustering
algorithm is used to determine the final unstructured intersection points on the local search-
ing pointset, and the intersection point can be regarded as the key point for multimodal
remote sensing image matching.

Suppose the central searching point is Sx, the local searching radius is R, and all
skeleton feature point set is Si. Then, the searching point set SPx satisfying the local
searching range constraint can be defined as follows:

SPx =
{

Si ∈ R3|(R− δ) 6‖ Si − Sx ‖6 (R + δ)
}

(5)
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Figure 5. Clustering result of the unstructured local searching point sets.

Figure 6 presents details of the local searching point set detection. Figure 6a presents
several typical searching points, the red dots indicate the central searching point Sx,
the green circles indicate the current search range and its radius is R. When all skele-
ton feature points are traversed and calculated, search point sets are SPi. According to
certain a priori conditions, we propose a criterion for determining the local search point set
around the intersection point, that is, if the number of elements |SPi| in the point set is not
less than 3, the current search point can be regarded as satisfying the local neighborhood
condition. Among them, |SPi| is not less than 1, because the noise point has been filtered
and removed during the morphological operation. Therefore, the decision value Di can be
defined as follows:

Di =

{
1, i f |SPi| ≥ 3
0, i f 1 ≤ |SPi| < 3

(6)

Figure 6b shows the distribution of all searching points. Among them, the red dot
indicates the local effective point, and the blue dot indicates the non-local effective point.
According to this distribution characteristic, the skeleton feature point set in the neighbor-
hood of intersection can be quickly extracted, as seen in Figure 6c.

Figure 6. Schematic diagram of the local searching point set detection.

To detect intersection points regarded as matching key point, DBSCAN [37] algorithm
can quickly and accurately separate high-density regions as the separate intersection point
classes from the local searching point sets. Further, the centroid point of each clustering
category can be regarded as the location of the unstructured intersection point, as shown
in Figure 5c. DBSCAN algorithm is insensitive to individual outlier data and has good
stability for non-convex dataset clustering.
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Figure 7 shows the main flow of road intersection points detection for multimodal
image. As can be seen from the Figure 7, although the segmentation model CRESIv2
has good generalization ability and can extract road information in different imaging
environments, there will inevitably be low probability information in the probability map
such as false features, partial occlusion. The designed road intersection points extraction
method in Figure 7 can effectively eliminate the inferred invalid information as much as
possible, and the correct intersection points represented by the solid red dots are accurately
extracted, which can greatly improve the accuracy of road intersection points and the
reliability of local descriptor.

Figure 7. The flowchart of unstructured road intersection point detection. (The top row is the
flowchart of intersection detection, the bottom row is the magnification displays of the typical road
inference information, and the red solid dots are detection results of the road intersection points).

3.3. The Unstructured Road Intersection Point Description

Compared with other descriptor methods that describe the local information of key
points on the original pixel image, the consistent skeleton feature image is chosen to describe
the local description feature of the intersection points. In order to improve the description
performance and the resistance to slight local geometric distortion, the proposed local
binary entropy descriptor is designed as logarithmic partitions, and the schematic diagram
of the proposed descriptor is shown in Figure 8. It can be seen in Figure 8, unlike other
local descriptors such as SIFT using regular grids to divide local image blocks, the designed
descriptor uses the logarithmic annular grid to divide key point neighborhood region,
the radius of the annular region in each layer increases gradually along the radial direction.
In addition, the number of grids in the different annular regions is different, the number
of grids remains the same trend and increases from inside to outside along the radial
direction. The advantage of designed local binary entropy descriptor is that the it can
ensure the reliability of the description when there are some false road features, making
it more suitable for describing road features in multimodal imaging. The descriptor can
greatly improves the accuracy and robustness of feature matching.

In the details of the proposed descriptor, firstly, the local description region of the circle
is divided into m non-overlapping annular R̂ along the radial direction. Then, the annular
is divided into the grids based on the adaptive angle strategy, and its number can be
expressed as N̂. R̂ and N̂ can be exactly defined as:

R̂ = {r̂1, r̂2, r̂3, . . . , r̂i, . . . , r̂m} (7)

N̂ = {m̂1, m̂2, m̂3, . . . , m̂i, . . . , m̂n} (8)
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where it can be understood that the annular r̂i is divided into m̂i grids with the same size.
Subsequently, the each local binary entropy ei is calculated in each grid gi. The local entropy
ei can be defined as follows [38]:

ei = entropy(gi) = −
n

∑
i

p(gi) log(p(gi)) (9)

In particular, the pixel point in the road skeleton feature image is the binary form,
that is to say, the pixel value in each grid gi satisfies the binomial distribution. Therefore,
the Formula (9) can be simplified into the following formula:

ei = −p(gi) · log(p(gi))− (1− p(gi)) · log(1− p(gi)) (10)

Finally, the local binary entropy values in all grids and all annular regions are sequen-
tially spliced and normalized to form the final feature description vector E, which can be
defined as follows:

E = {e1, e2, e3, . . . , ei, . . . , emn} (11)

Figure 8. Schematic diagram of the local binary entropy descriptor.

Figure 9 shows the local binary entropy descriptor values of the detected road inter-
section points in the optical-NIR image pair. It can be seen that the descriptor information
of the corresponding road intersection points in the multimodal image pair is very close
and has a strong discriminating ability. The descriptor also shows good insensitivity to
some interference factors such as false semantic features and partical occlusion, which will
greatly improve the accuracy and robustness of feature matching.

Figure 9. The schematic diagram of the proposed descriptor for multimodal image pair.
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3.4. Feature Matching

Given two multimodal image pairs S and T, the local feature point sets of all key points
can be defined as Sp and Tp. Therefore, the local feature point sets around key points KPi
and KPj in two image pairs can be represented as Spi and Tpj, respectively. The schematic
diagram of the corresponding local feature point sets is shown in Figure 10. In Figure 10,
the concentric circles (shown in the dotted red circles) can be constructed respectively
with key points KPi and KPj as radius R and R/2. The intersection points of concentric
circles and local feature point sets are {pix} and {pjy}, respectively. Assuming that the
transformation parameters s, θ and t are estimated, the point set Sp can be transformed
into the target image space, and the transformed point set can be denoted as Sp

′
. For each

transformed local feature point set Sp
′
i, there is a corresponding point set in Tpj with

the minimum distance. The minimum distance of these two point sets can be denoted
as Dmin(Sp

′
i, Tpj):

Dmin(Sp
′
i, Tpj) = ∑

x,y
dist(pix, pjy) (12)

Figure 10. Schematic diagram of the corresponding local feature point sets.

When Dmin(Sp
′
i, Tpj) is less than the threshold η, there will exist a pair of overlapping

key points and their local feature point sets in the image pair. Similarly, after traversing
and calculating the distance information of all key points and their local feature point sets,
the number of key points satisfied with the transformation can be presented as NOs,θ,t.
Ultimately, the normalized overlap rate is used for measuring the parameters s, θ and t,
and the normalized overlapping rate is defined as follows:

NOs,θ,t =
NOs,θ,t

max(|Sp|, |Tp|) (13)

For each key point with the local feature point set, it can get a normalized overlapping
rate. Therefore, the transformation parameter at the maximum overlapping rate can be
regarded as the final initial transformation parameter:

(s∗, θ∗, t∗) = arg max
s,θ,t

(NOs,θ,t|η) (14)

4. Experimental Results and Analyses

Here, to evaluate the multimodal remote sensing image matching performance of
our proposed LURF we compare it with other five state-of-the-art feature matching meth-
ods such as SIFT [19], SURF [20], EHD [25], LGHD [26] and LPM [39] on two different
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multimodal remote sensing image data sets. Throughout the qualitative and quantitative
evaluation experiments, all six methods’ parameters are all fixed. The experiments are
performed on a laptop with 3.4-GHz CPU, 4GB memory, and MATLAB code.

4.1. Data Sets and Evaluation Metrics

The data sets mainly include training data set and test data set. For the training
data set, we use the SpaceNet 3 data set [40] with road label to train our road semantic
segmentation network CRESIv2. The data set includes the remote sensing images of Las
Vegas, Paris, Shanghai, and Khartoum areas. To improve the generalization of our semantic
segmentation network CRESIv2, the selected data sets with road labels contain some wide
remote sensing geographic areas from 400 to 3600 square kilometers under different seasons
and lighting conditions.

For the test data set, it contains two kinds of remote sensing image pairs with very
different imaging styles as shown in Figure 11. Optical-NIR (near-infrared) image pairs
are from the Potsdam data set [30] which contains 38 patches of equal size. The Potsdam
data set mainly includes the multispectrum remote sensing images with a large number of
ground repeatable structures and road feature information. Each patch image has the same
size 6000 × 6000, and the resolution is about 5 cm/pixel. Furthermore, another test data set
is the optical-Intensity image data set. The optical-Intensity image pair as aerial images
contain optical spectral band and LiDAR intensity information on the Niagara city area
in Canada. The intensity image refers to the echo intensity of laser pulse emitted by the
LiDAR sensor, which is mainly related to laser incidence angle, ground reflectance, laser
pulse transmission distance, and other factors. Under ideal conditions, the intensity value
satisfies the Lambertian reflection model [41]. Therefore, there are great differences between
optical image and intensity image in imaging principle and imaging conditions, and there
is serious nonlinear mapping distortion in the grayscale values of the corresponding pixels,
this nonlinear mapping distortion will bring a great challenge to the matching methods.

For all image pairs, the optical-NIR image pairs have been strictly aligned to evaluate
the accuracy of all methods. While the optical-Intensity image pairs have not been aligned,
and there is no true geometric transformation between image pairs. Therefore, quantitative
evaluation can only be carried out by using the approximate value as the true value.
In the specific operation process, we can manually select multiple uniformly distributed
correspondence point pairs in the image pair, and use the Linear Least Squares to estimate
the transformation parameters that are close to the true value.

Figure 11. Examples of multimodal remote sensing image pairs from different test data sets. (The
top row are optical images, and the bottom row from left to right present near infrared and intensity
images, respectively).
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In order to evaluate the matching performance of our proposed method LURF, state-
of-the-art methods including SIFT, SURF, LGHD, and LPM are used to compare with LURF
on multimodal remote sensing image data sets for qualitative and quantitative evaluations.
According to the homography matrix between the image pair, it can be calculated to
determine whether the feature points are repetitive, the repeatability Rep as the evaluation
metric can be defined as follows:

Rep =
Nc

(ns + nt)/2
=
|{‖ xs

i − H · xt
i} ‖≤ 3}ns

i=1|
(ns + nt)/2

(15)

where Nc represents the number of repetitive correspondences, ns and nt represent the
number of feature points in scene image S and target image T, respectively. H is the ground
truth transformation between image S and T. xs

i and xt
i are the homogeneous coordinates

of a feature in S and T, respectively. |{‖ xs
i − H · xt

i} ‖≤ 3}ns
i=1| represents the number of

corresponding feature points pairs whose re-projection error less than three pixels.
Moreover, the correct matches rate (CMR) can be chosen as another evaluation criterion.

CMR is defined as follows:
CMR =

#CM
#C

(16)

where #CM and #C represent the number of correct matching points and total matching
point pairs, respectively.

In order to evaluate the registration alignment accuracy of the transformed image,
the root mean square error (RMSE), mean error (ME), and the success rate can be adopted
as the evaluation metrics.

4.2. Performance with Respect to Feature Point Detection

In this part, to evaluate the feature detection performance of the proposed LURF,
a comparison of it with three state-of-the-art feature key point detectors is made, which
are SIFT, SURF, and FAST [42]. Among five comparison methods including SIFT, SURF,
EHD, LGHD and LPM, SIFT, and SURF find extreme points as feature points in constructed
Gaussian scale space. Both EHD and LGHD chose to use the FAST detector to detect the key
points. LPM is used to remove the mismatching relationship when SIFT is usually adopted
to establish putative feature correspondences, and its essence is still to use SIFT to detect
key points. In order to evaluate the key point detection methods fairly and effectively,
the parameters of each comparison method are fine-tuned to obtain the best performance
and are consistent in all test image pairs. SIFT is implemented by the open-source VLFEAT
toolbox, and other comparison methods are obtained from the authors’ website. The results
of our proposed LURF and the comparison methods for detecting key points in test image
pairs are shown in Table 1.

Table 1. Rep and Nc achieved by comparison methods and proposed LURF.

Optical-NIR Optical-Intensity

Methods Rep Nc Rep Nc

SIFT 0.45 540 0.45 553
SURF 0.42 511 0.43 528
FAST 0.45 524 0.43 549
LURF 1.00 7 1.00 9

Table 1 has shown the evaluation metrics Rep and Nc , the highest repeatability values
are highlighted with boldface font. Through observation and comparison, it can be found
that Rep of our LURF maintains a high feature point repetition rate in all test data set,
and is more than twice that of other comparison methods. It is worth noting that the
number of repetitive correspondences Nc, Nc of LURF is not so many and far less than
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other key point detection comparison methods. The essential reason is that our proposed
LURF is closely related to the actual number of intersection points in each multimodal
image. Although there are not many intersection points in the image, considering these
stable intersection points as key points can greatly improve the repetition rate Rep of key
points and reduce redundant descriptions of a large number of invalid key points. This
consideration for key point extraction will greatly improve the matching efficiency.

4.3. Performance with Respect to Matching

To demonstrate the matching performance of our proposed LURF, we compare it with
the above five state-of-the-art methods, and the qualitative evaluation of all six methods
is shown in Figures 12 and 13. To investigate the influence of rotation and scale changes,
we test the proposed method on two groups simulated images with different rotation
angles and scale factors. The NIR image has affine transformation with rotate transform
(θ = 6◦) and scale transform (s = 0.75), and the intensity image has affine transformation
with rotate transform (θ = 0◦) and scale transform (s = 0.75). In order to fairly compare
the performance of all methods, the threshold value of Nearest Neighbor Distance Ratio
(NNDR) for SIFT and SURF methods was been set as 0.7. SIFT, SURF, EHD, and LGHD
these four comparison methods can adopt Ransac [43] to remove mismatching point pairs.
LPM can remove mismatching point pairs by preserving the local structure consistency of
correct correspondences matching. The proposed LURF has a global optimization strategy
to achieve the correct match.

4.3.1. Qualitative Comparisons

Figures 12 and 13 show the qualitative comparison results of SIFT, SURF, EHD, LGHD,
LPM, and proposed LURF in the sample image pairs from different multimodal data sets.
As seen, SIFT, SURF, EHD, LGHD, LPM, and LURF all methods have a certain matching
effect on the optical-NIR image pair shown in Figure 12, and the reason is that the spectrum
of the near-infrared image is relatively close to that of optics, the grayscale value of the pixel
corresponding to the image satisfies a certain linear mapping relationship, the nonlinear
grayscale distortion is not obvious, and the details in the optical-NIR image pair have
certain common characteristics. Among all methods, our proposed method LURF has
obvious advantages and can accurately extract almost all intersection points as key points
for matching. LURF has a high matching accuracy than the other five comparison methods.
At the same time, we can also see that EHD has the least number of correct matches in all
comparison methods, followed by the LGHD. The number of correct matches of LPM is
significantly higher than other comparison methods, but there are still a small number of
mismatching point pairs.

Figure 12. Qualitative comparison results of proposed method and other five methods on optical-NIR
image data set. The NIR image has affine transformation with rotate transform (θ = 6◦) and scale
transform (s = 0.75). The feature matching points in two images have been marked as red dots and
green dots, and yellow and blue matching lines mean true positive and true negative.
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Figure 13. Qualitative comparison results of proposed method and other five methods on optical-
Intensity image data set. The intensity image has affine transformation with rotate transform (θ = 0◦)
and scale transform (s = 0.75). The feature matching points in two images have been marked as red
dots and green dots, and yellow and blue matching lines mean true positive and true negative.

Due to the serious nonlinear grayscale distortion between the image pairs as seen in
Figure 13, the number of correct matching point pairs in the image pair by all comparison
methods is less than four, so the transformation matrix cannot be effectively and accurately
estimated, and the image matching task can be regarded as a failure. In contrast, our
proposed method LURF still achieves a good matching performance, despite serious
differences in optical-Intensity image styles. The comparison method such as SIFT seems
powerless in this case, the robustness of comparison methods is greatly reduced.

The image registration results with checkerboard mosaic display obtained by the
proposed method LURF are shown in Figure 14. As seen, LURF can effectively overcome
the different geometric transformation interferences of different image data sets to achieve
the registration task.

Figure 14. The multimodal remote sensing image registration results with checkerboard mosaic
display of our approach.

Taken together, it can be seen from the qualitative evaluation experiments that our
proposed method LURF is far superior to other state-of-the-art feature matching methods
for multimodal remote sensing image matching. The reasons may be as follows: (1) Even
though multimodal remote sensing image pairs may have a certain degree of nonlinear
grayscale distortion, the deep semantic features will maintain a good consistency. (2) Com-
pared with directly extracting feature key points from pixel grayscale, choosing more stable
and reliable semantic intersection feature points with structural properties as key points
undoubtedly is a better idea.

4.3.2. Quantitative Comparison

Figure 15 indicates the quantitative experiment results in terms of CMR values of all
comparison methods and proposed method in different image pairs. As can be seen from
Figure 15, in the optical-NIR data set, our proposed method LURF and five comparison
methods have an overall correct match rate of more than 15%, and the EHD has the
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lowest CMR value among all the comparison methods. Compared with other comparison
methods, LPM has the highest CMR value, which is nearly five times that of EHD. The CMR
of our proposed LURF is slightly higher than LPM, and the gap is not obvious. In the
optical-Intensity data set, it can be clearly seen that all comparison methods perform poorly,
even fail completely. At the same time, our proposed method has obvious advantages
and achieves the best correct matching performance, and the CMR of LURF exceeds the
best results of the comparative method by more than three times. Among five comparison
methods, SURF and LPM have better results than SIFT, EHD and LGHD.

Figure 15. The CMR of all methods on the optical-NIR and optical-Intensity data sets.

To verify the alignment accuracy of proposed method LURF, Table 2 reports the evalu-
ation metrics RMSE , ME and the success rate on all data sets. As seen, the proposed LURF
has high accuracy, the RMSE error is 1.32 and 1.88 pixels in the optical-NIR and optical-
Intensity image data sets, respectively. The ME error is only 1.27 and 1.57, respectively.
The values of RMSE and ME are all less than the three-pixel error requirements. From the
success rate evaluation metric, it can be seen that the proposed LURF achieves excellent
performance on all datasets, with scores of 100% and 97.6%, respectively.

Table 2. Quantitative Evaluation Error Results of Proposed Method LURF.

Metrics Optical-NIR Optical-Intensity

RMSE/pixel 1.32 1.88
ME/pixel 1.27 1.57

Success rate 100% 97.6%

As well as the matching accuracy, the computational efficiency is another important
metric for evaluating the matching performances. Figure 16 represents the average running
time of each compared method on the whole image pairs. The running time experiment
has been implemented in Matlab using a PC equipped with a 3.4 GHz CPU and 4 GB
memory. As can be seen, the running time of LURF costs the shortest running time than
other compared methods, which is about twice that of LPM and five times that of SIFT.
Among all comparison methods, LGHD has the lowest matching efficiency and takes an
average of about 20 and 35 s on the data set, respectively. The proposed method can achieve
excellent matching efficiency, the reason is that the adopted CRESIv2Res-Unet network can
quickly infer and extract road semantic features from the multimodal image. Meanwhile,
the traditional method builds descriptors for all candidate key points, which increases the
computational complexity. To cope with this issue, the proposed LURF focuses on the few
but stable intersection points and the dimension of the local binary entropy descriptor is
smaller than others.
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Figure 16. The runtime metric of all methods on the optical-NIR and optical-Intensity data sets.

In general, the proposed method LURF can have a higher CMR value while maintain-
ing a shorter running time. The number of detected key points is small, but these key points
have excellent stability and robustness, and the key point repetition rate and matching
efficiency is better than the other five compared methods.

4.4. Performance with Respect to Curved Road Condition

Figure 17 shows the matching performance of the proposed LURF on multimodal
image pair with curvy road information. Comparing Figure 17 with Figure 1, we can
conclude that the proposed method LURF can effectively deal with the curvy road case for
the multimodal image matching that the earlier method [6] can not. As can be seen from
Figure 17, when the deep learning model CRESIv2 estimates road probability information,
There are certain interfering factors such as false feature and partial occlusion, resulting in
incomplete extraction of the semantic road features.

Figure 17. The matching performance of the proposed LURF on multimodal image pair under curved
road condition.



Remote Sens. 2022, 14, 4595 17 of 19

However, these issues can not prevent LURF from successfully achieving the feature
matching task for multimodal images as seen in Figure 17c. It can be seen in Figure 17a,b,
LURF can stably detect and accurately describe the road intersection points under the
curved road condition, and the description values of the corresponding road intersection
points are highly consistent, ensuring matching accuracy and reliability.

5. Conclusions

In this paper, we proposed a novel matching method named LURF via learned un-
structured road feature for multimodal remote sensing image pairs. Firstly, the semantic
road features were extracted from multimodal remote sensing images based on CRESIv2
network, which were invariant to nonlinear radiation distortions of multimodal image
pair. Subsequently, based on semantic road features, a novel and accurate road intersection
point detector has been proposed, and the detected unstructured intersection points can be
considered as key points for matching. Then, a local binary entropy descriptor has been de-
signed to represent key points with the local skeleton feature. Finally, for feature matching,
a global optimization strategy is adopted to achieve the correct matching. The qualitative
and quantitative experimental results on different multimodal remote sensing image data
sets demonstrate that LURF is superior to other state-of-the-art methods, and has great
efficiency and robustness for multimodal remote sensing image matching.
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