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Abstract: Building information models (BIM) in the civil industry are very popular nowadays. The
basic information of these models is the 3D geometric model of a building structure. The most
applied methodology to model the existing buildings is by generating 3D geometric information
from point clouds provided by laser scanners. The fundamental principle of this methodology is the
recognition of structures shaped in basic geometric primitives, e.g., planes, spheres, and cylinders.
The basic premise of the efficiency of this methodology is the automation of detection, since manual
segmentation of a point cloud can be challenging, time-consuming, and, therefore, inefficient. This
paper presents a novel algorithm for the automated segmentation of geometric shapes in point clouds
without needing pre-segmentation. With the designed algorithm, structures formed in three types
of basic geometrical primitive can be identified and segmented: planar (e.g., walls, floors, ceilings),
spherical (e.g., laser scanner reference targets), and cylindrical (e.g., columns, pillars, piping). The
RANSAC paradigm partially inspires the proposed algorithm; however, various modifications must
be made. The algorithm was tested on several point clouds and was compared with the standard
RANSAC algorithm; this part is described in the last section of the paper. One of the tests was
performed on a double cylinder-shaped test object, the parameters (radius and height) of this object
were available with high accuracy (0.1 mm), and the differences between the known and estimated
parameters were below 0.5 mm in each case, indicating the correctness of the proposed algorithm.
Also, a comparison with the standard RANSAC algorithm was performed, where the algorithm
proposed showed better results than the standard RANSAC algorithm. The segmentation quality
was, on average, increased from 50% to 100%.

Keywords: point cloud; automated detection; geometric shapes; plane; sphere; cylinder; point
cloud segmentation

1. Introduction

Point clouds are becoming an increasingly common digital representation of real-
world objects. They are the results of laser scanning or photogrammetry. With the increased
availability of instruments needed for measurement, the popularity of point cloud usage
is also growing. Point clouds can have an important role in creating high-quality 3D
models of objects in a variety of areas, e.g., interior (exterior) design, building information
modeling (BIM), urban information systems, documentation of objects [1], 3D cadaster,
deformation analysis [2,3], etc. With the currently available technology, massive data sets
(millions of points) can be collected relatively easily and in a short time. The next step in the
information retrieval process is point cloud processing. The term processing often means
initial adjustment (registration, filtration) and generation of 3D geometric information from
point clouds.

The three most frequently occurring geometric shapes in in-built objects are planes,
cylinders, and spheres. Since, in most cases, objects in the industrial environment consist of
basic geometrical shapes, detecting and segmenting these shapes can be an essential step in
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the data processing. The detected shapes can be used in a variety of tasks, e.g., simplified
3D model creation, BIM model generation (Scan-to-BIM), reverse engineering, terrestrial
laser scanning (TLS) calibration, camera calibration, point cloud registration, simultaneous
localization and mapping (SLAM) [4,5], etc.

Identification and segmentation of geometric primitives in point clouds has been
investigated for a long time. The methods and algorithms that have been suggested can
generally be divided into five categories [6,7]:

• Edge-based methods are based on detecting the boundaries of separate sections in a
point cloud to obtain some segmented regions, for example [8,9]. These methods give
us the ability for fast segmentation, but in most cases, they are susceptible to noise and
uneven point cloud density, which is often the case [6,7].

• Region-based methods use neighborhood information to merge close points with
identical properties to obtain segregated regions and consequently find dissimilarities
between separate regions. A well-known approach from this category is the region-
growing method [10], also applied in [11,12]. The region-growing method is based on
the similarity between the neighboring points. Its first step is to select a seed point,
and the regions grow from these points to adjacent points depending on a specified
criterion. In most cases, some local surface smoothness index defines the requirements
for point cloud segmentation. The result of this method is a set of segments, where
each segment is a set of points that are considered as a part of the same smooth surface.
An octree-based region-growing methodology was introduced in [11] by Vo et al. The
region-based methods are generally less sensitive to noise than edge-based methods.
In addition, they can be relatively simple and can be applied on large point clouds.
Conversely, the disadvantage of these methods is that the result hardly depends on
the choice of the seed point, local surface characteristics, and the choice of threshold
values [6,7].

• Attribute-based methods (alternatively clustering-based methods) consist of two separate
steps. The first step is the computation of the attribute, and in the second step,
the point cloud is clustered based on the attributes computed, e.g., [13,14]. These
methods usually are not based on a specific mathematical theory. The clustering-based
methods can be divided into hierarchical (e.g., [15]) and non-hierarchical (e.g., [16]).
Furthermore, attribute-based methods are often combined with other segmentation
methods, such as region-based methods in [12]. The advantage of these methods is
that they can also be employed for irregular objects, e.g., vegetation. Moreover, these
approaches do not require seed points, unlike other methods like region-growing.
Three of the most used algorithms from this category are K-means, mean shift, and
fuzzy clustering [17].

• Model-based methods use geometric shapes (e.g., planes, spheres, cylinders, and
cones) to organize points. Points that have the same mathematical representation are
grouped as one segment. Two of the algorithms most widely used in this category are
the random sample consensus (RANSAC) [18] and the Hough transform (HT) [19].
Various modifications of the original RANSAC algorithm can be found in [20–22]. The
advantage of these methods is that they can be applied to noisy and complex point
clouds. However, segmentation can be time-consuming in the case of large, rugged
point clouds [6,7]. RANSAC is an iterative method for estimating the parameters of a
mathematical model from an observed data set that contains outliers. The algorithm
works by identifying the inliers in a data set and estimating the desired model using
the data that do not contain outliers; therefore, the RANSAC paradigm extracts shapes
from the point data and constructs the corresponding primitive forms based on the
notion of minimal sets [18]. Authors Li et al. [23] made RANSAC the method of choice
for fitting primitives in a point cloud in their approach called Globfit. Tran et al. [24]
also focused on reliable estimation using RANSAC. The Hough transform is a well-
known technique initially developed to extract straight lines; since then, it has been
extended to extract parametric and nonparametric shapes. The main challenges of
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the HT-based approaches are the memory requirements and the computation time
needed. Moreover, it is also a sequential method that cannot detect multiple shapes
simultaneously [25]. For example, Drost and Ilic [26] used the local Hough transform
to detect cylinders, planes, and spheres in point clouds.

• Graph-based methods deal with point clouds in terms of a graph. For example,
Strom et al. [27] extended a graph-based method to segment colored 3D laser data.
Other approaches for segmentation-based on graph-based methods are presented
in [28–31].

In recent years, numerous methods and approaches based on deep learning have been
introduced for point cloud processing, e.g., 3D shape classification, 3D object detection
and tracking, and 3D point cloud segmentation [32]. In general, the segmentation methods
can be divided into four groups: projection-based, discretization-based, point-based, and
hybrid. Some important approaches are presented in [33–35].

In some shape segmentation approaches, the point cloud of each structural element is
first manually separated from the point cloud of the whole scanned structure. This step
significantly reduces the processing efficiency and increases the time required.

This paper proposes an algorithm capable of automated detection and segmentation
of several geometric shapes at once without the need for pre-segmentation. The segmen-
tation process is effective in the case of complex point clouds with uneven density and
a large number of outliers and noise. The proposed seed point selection technique and
validation steps minimize the results’ dependency on the seed point’s choice and the local
surface characteristics in the neighborhood of this point. The proposed algorithm combines
the modified RANSAC algorithm with the region-growing method and the seed point
selection technique, proposed based on local normal vector variation for each shape type.
Three types of shapes can be segmented with the algorithm presented: planes, spheres,
and cylinders.

The proposed approach for geometric shape segmentation from the point cloud is
described in detail in the following section. After that, the results of testing the proposed
method on several point clouds are illustrated.

2. Methodology
2.1. Proposed Approach for Point Cloud Segmentation

The following chapter proposes a robust algorithm for automated segmentation of
geometric shapes (planes, spheres, cylinders) from point clouds. The proposed method
can be applied to processing high-density point clouds. The algorithm process is shown in
Figure 1. The input data for the algorithm is a point cloud. The next step is selecting the
type of geometric shapes for segmentation and threshold values.

With the algorithm developed, it is possible to perform segmentation of only the picked
shapes (e.g., only planes, only spheres, only cylinders) or their combination. The threshold
type is the same for all types of geometric shapes, but their value must be selected separately
for each type. The mentioned threshold parameters are the assumed maximal number of a
given shape in the point cloud and threshold values for the distance- and normal-based
filtering. The meaning of each parameter will be explained in the related chapters.

In the case of segmentation of planes, spheres, and cylinders at once, the algorithm
process is illustrated by the flowchart in Figure 1. Before the segmentation procedure
itself, some preprocessing steps are performed. First, the normal vectors at each point
of the point cloud are calculated using small local planes, calculated from the 3D coordi-
nates of the given point and the k-nearest neighbors. Orthogonal regression is used for
plane estimation.
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After the normal vectors are calculated, a new seed point selection technique is
performed based on the local normal variation (LNV) value. The LNV value is estimated
as the average value of the scalar products of the normal vectors from the k-nearest points
based on Equation (1):

LNVi = 1− 1
n ∑ n

i=1abs(dotNormi), (1)

where abs(dotNormi) is the absolute value of the scalar product of the normal vector at a
given point and the normal vectors at the neighboring points.

Based on the LNV values at each point, it is possible to approximately determine the
points where the occurrence of a planar surface is assumed (or, on the contrary, where a
curved surface is expected to occur). Thus, points on a planar surface have LNV values
close to zero, while points on a curved surface have higher values of LNV. In Equation (1),
the LNV is calculated as a unitless parameter, but for better understanding and imagination,
it is expressed in degrees in the following sections.

The whole segmentation procedure is divided into three main stages based on the
shape types and is described in the following subsections.

2.2. Plane Segmentation

Of the three shape types, the task of plane segmentation is the simplest, so the al-
gorithm starts with this task. The plane segmentation algorithm combines a modified
RANSAC algorithm and the region-growing method.

The plane segmentation starts with the selection of the seed points. The seed point
candidates are determined based on the proposed seed point selection technique. The
selected seed points are the points where the value of LNV is the points where the value
of LNV is less than 1◦ (i.e., the orientation of the normal vector at the given point is
approximately parallel to the normal vectors at the k-nearest neighbors). This seed point
is used as a starting point for the plane estimation. The first plane is estimated using the
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nest nearest points. The number (nest) of the nearest points depends on the local point
density (LPD) at the selected seed point. In the proposed approach, this means selecting the
points at a distance of 50 mm from the seed point. For the estimation of plane parameters,
orthogonal regression is used, which minimizes the orthogonal distances to the estimated
plane. The solution is based on the general equation of a plane (Equation (2)).

a·X + b·Y + c·Z + d = 0, (2)

where a, b, and c are the parameters of the normal vector of the plane; X, Y, and Z are the
coordinates of a point lying on the plane; and d is the scalar product of the normal vector
of the plane and the position vector of any point of the plane.

First, the elements of the best-fit regression plane’s normal vector (a, b, and c) from the
selected points are calculated using singular value decomposition (SVD). Next, the parame-
ter d is calculated by substituting the coordinates of the center point and the elements of the
normal vector into the rearranged form of the general equation of the plane (Equation (3)).
These elements (a, b, c, and d) define the best-fit regression plane.

d = −(a·X0 + b·Y0 + c·Z0), (3)

where X0, Y0, and Z0 are the coordinates of the centroid point of the selected points for
plane estimation.

Furthermore, the orthogonal distances of the points from the regression plane and the
standard deviation of the plane estimation are calculated.

In the next step, the inliers for the given plane are identified (i.e., the points lying on
the surface of the estimated plane) by testing the estimated regression plane against the
nearest neighbors. Inlier selection is performed using two criteria:

• distance-based criterion: only the points that are closer to the estimated plane than
the selected threshold values are considered as inliers;

• normal-based criterion: inliers are the points where the angle between the normal
vector at a given point and between the normal vector of the regression plane is less
than the threshold value.

The plane re-estimation and the inlier selection are performed iteratively, with a
gradual increase in the number of the neighboring points tested. It is repeated until the
number of points belonging to the plane stops increasing. Figure 2 illustrates the plane
segmentation process, where the initial point cloud (top-left) is shown (the points are
colored by the intensity of the reflected measuring signal), then the approx. 102 thousand
nearest points (top-right with yellow color) to the seed point, followed by the approx.
1.6 million nearest neighbors (bottom-left with green color), and with red color, the inliers
for the given plane are shown (bottom-right).

Since the plane estimation strongly depends on the seed point selection and its neigh-
borhood, it was necessary to introduce several validation steps to eliminate incorrect
estimations. These validation steps are based first on determining whether there are
enough inliers at each iteration, i.e., after the second iteration, at least two times more
inlier points than the number of points from the first estimation (nest). It is expected that
the number of inliers (points lying on the segmented surface) from the surroundings will
increase gradually if the selected seed point lies on a planar surface. Then, it is determined
whether the plane has sufficient point coverage. The local point density (LPD) value is
calculated at each inlier point. In addition, the theoretical value of the LPD is calculated
(if the plane has a uniform ideal coverage). The criterion is that at least 50% of the points
need a higher LPD (with a certain tolerance) than the ideal LPD. This value (50%) was
determined empirically based on testing the algorithm on several point clouds with various
densities, complexities, and different levels of noise. This criterion is necessary in some
cases, e.g., when processing a point cloud from an indoor environment of a building where
there are several objects (e.g., furniture, PC accessories, etc.). In such cases, a plane can be
estimated from some subsets of points that are lying on different objects (not lying on the
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planar surface), i.e., the result of the estimation can be a plane (though this plane is not a
real one), since these points are from a separate dense subset of points lying on a surface of
any object. The mentioned cases are eliminated from the estimation by this criterion.
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If any of the validation steps are unsuccessful, the algorithm skips to the new segmen-
tation cycle with a new seed point for a new plane candidate.

In most cases, the number of planes in the point cloud is not known in advance.
Therefore, a technique is proposed to stop the calculation. The algorithm automati-
cally breaks the calculation after segmenting all the planes located in the point cloud.
If 100 incorrect segmentation attempts (incorrect attempt means that no plane is found at
the selected seed point) are made in a row (after several successfully segmented planes),
the calculation is stopped. In practical applications of the described algorithm on complex
point clouds with several shapes (several plane-, sphere- or cylinder-shaped objects), the
number of individual geometric shapes is usually not known in advance. Due to the higher
level of automation, in the case of our algorithm, it is not necessary to enter the number of
these shapes precisely. However, the algorithm automatically stops after these 100 incorrect
attempts. The number 100 was also determined empirically, based on testing, but it can be
adjusted based on the size and the complexity of the point cloud. Otherwise, if the number
of planes in the point cloud is known, this number can be selected at the beginning of the
algorithm, and the algorithm segments the chosen number of planes.

The results of the plane segmentation are the segmented point clouds for each plane
and the parameters of the planes, which are: the parameters of the normal vector of
the plane (a, b, c), parameter d, number of inliers, the standard deviation of the plane
estimation (calculated from the orthogonal distances of the inlier points from the best-fit
regression plane). After this part of the algorithm, further processing is performed only on
the remaining point cloud (i.e., the points belonging to the segmented planes are excluded
from the initial point cloud). This step indeed contributes to increasing the efficiency of
the algorithm.

2.3. Sphere Segmentation

The data input into the sphere segmentation part are the remaining point cloud safter
the plane segmentation, if plane segmentation has been performed (otherwise, it is the
input point cloud). The part of the algorithm which has the role of the sphere segmentation
is also partially inspired by the RANSAC algorithm. The least-square spherical fit is used
to calculate the sphere parameter.

The process of the algorithm is similar to the plane segmentation algorithm. The
first step is the selection of seed points based on the LNV values at each point (seed point
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candidates for spheres are the points where the LNV value is greater than 5◦). This seed
point selection technique significantly increases the efficiency of the algorithm. In cases
of processing complex point clouds that contain several walls (planar surfaces, where the
points have small local curvature—usually up to 5 degrees, because of undulation of the
planar surface in some cases), with this step, the points lying on these surfaces are removed
from the seed point candidates for sphere estimation. This technique is mainly for a rough
removal of the points, where it is assumed that no sphere object can be found.

Then, the first approximate parameters of the sphere are calculated using the nest
number of nearest points to the selected seed point. The value of the nest is calculated in the
same way as in the case of planes. The estimation is based on a least-square spherical fit,
which minimizes the perpendicular distances of the points from the sphere. The solution is
based on the general equation of a sphere (Equation (4)).

(x− cx)
2 +

(
y− cy

)2
+ (z− cz)

2 = r2, (4)

where x, y, and z are the coordinates of the points on the surface of the sphere, cx, cy, and
cz are the coordinates of the center of the sphere, and r is the radius of the sphere.

By expanding Equation (4), we get the rearranged equation expressed in Equation (5):

x2 + y2 + z2 = 2·x·cx + 2·y·cy + 2·z·cz + r2 − c2
x − c2

y − c2
z . (5)

Next, Equation (5) is represented in consolidated terms; which serves as an overde-
termined system suitable for spherical fit. In this way, the approximate parameters of the
sphere are obtained.

The iterative fitting and extraction process then uses the sphere’s approximate esti-
mated parameters. Extraction, thus selecting the inliers for the estimated sphere candidate,
is performed based on distance-based and normal-based filtration (similar to the plane
segmentation part). In contrast to the plane algorithm, the extraction process is performed
on the whole point cloud at once. The iterative re-estimation is performed until all the
points of the detected sphere have been selected. The maximum number of iterations is
set to 15. This number was determined empirically based on processing several point
clouds with different complexity, noise, and number of spheres. However, this value is
sufficiently oversized and was not reached in any of the mentioned tests due to several
conditions to stop the calculation. It means that if no new point is added in 3 consecutive
iterations, and there is no difference in the parameters of the sphere, the calculation is
automatically stopped.

Moreover, several validation steps were proposed. The first was based on inlier num-
ber (whether there are enough inliers for the selected seed point—at least twice more inliers
than the value of nest after the fourth iteration). The next was based on the convergence
of the sphere parameters. Therefore, the differences in the estimated parameters of the
sphere are determined in two consecutive iterations (after the fifth iteration), and the con-
vergence parameter gives the maximum allowed difference (ε = 10−4). The last validation
step ensures that the standard deviation of the spherical fit is not greater than the specified
parameter. The standard deviation is estimated based on the orthogonal distances of the
inliers from the sphere surface. If any of these validations are unsuccessful, the algorithm
skips to a new segmentation cycle with a new seed point. The proposed technique to stop
the calculation automatically is also included in this part (sphere segmentation part) of
the algorithm.

The results are the segmented point clouds and the parameters for each shape (sphere
parameters [cx, cy, cz, r], inlier number, the standard deviation of the sphere fitting). The
segmented clouds for each sphere are also excluded from further processing.

From experiments (processing of several point clouds containing sphere objects),
it was found that coverage of only approximately 40–50% of the scanned sphere surface
(e.g., when scanning only from a single position of the instrument) is sufficient for extraction
of the sphere with the algorithm depicted. However, a certain LPD is needed, i.e., at
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least 100 points are required to be homogeneously distributed on the scanned part of the
sphere surface.

2.4. Cylinder Segmentation

The last part is for cylinder segmentation, which is the most complex. The algorithm
developed for cylinder segmentation can be categorized into model-based methods and is
partially based on the elements of the Hough transform. Similar to the sphere segmentation
part, the input data is only the remaining point cloud if the segmentation of other geometric
primitives has been performed.

The sequence of the processing steps is similar to the plane and sphere segmentation
algorithms. The algorithm starts with selecting seed points based on the calculated LNV
values (the seed point candidates are the points where the LNV is greater than 3◦). Next,
the first cylinder is estimated from the nest number of closest neighbors to the seed point.
The value of the nest is calculated in the same way as in the case of planes and spheres. The
estimated cylinder parameters are illustrated in Figure 3.
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The cylinder estimation is divided into four main steps:

1. Computing the cylinder axis orientation (
→
o )—vector, perpendicular to the normal

vectors in nest closest neighbors.
2. Projection of these points onto a plane that is orthogonal to the cylinder axis (

→
o ). If

the selected points lie on the cylinder’s surface, they are distributed in a circle.
3. Estimating the projected circle parameters (i.e., coordinates of the circle’s center

and radius). This estimation uses algebraic fitting, where algebraic distances are
minimized [36]. The coordinates of the circle’s center point are considered as the point
po, which lies on the cylinder axis. The radius of the estimated circle equals the radius
of the cylinder shell.

4. Computation of the base centers of the cylinder (top and bottom base center points).
First, the distances between the inliers and the center point of the cylinder axis po are
calculated according to Formula (6). The maximal and minimal distances are then
determined from the vector t. These values are then substituted into the Formula (7)
to calculate the coordinates of the top and bottom base centers.

t = (p− po)·→o , (6)

cbottom = po + tmin·
→
o , ctop = po + tmax·

→
o , (7)

where p is the vector containing the 3D coordinates of the inlier points, cbottom and ctop are
the coordinates of the center points of the top and bottom bases of the cylinder.

The estimation steps described above are applied iteratively for the inlier points.
The set of points considered as inliers is updated at each iteration based on two criteria,
mathematically formulated as follows:

(|∆disti| < r·td[%]) ∧ (|∆normi| < tn), (8)
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where ∆disti is the orthogonal distance between the selected point and the cylinder surface,
∆normi is the angle between the normal vector of the selected point and the vector that is
perpendicular to the cylinder axis

→
o in the selected point. The parameters td and tn are the

selected threshold values. The threshold parameter for the distance-based filter is chosen as
a percentage of the radius of the cylinder, as the point cloud may contain several cylinders
with different radii.

Based on the criteria in Equation (8), the inliers are automatically updated in every
iteration, and the outliers are removed from the estimations. After every iteration, the
cylinder parameters are re-estimated using all the inliers that meet the specified conditions.
The inlier updating is performed on the whole point cloud at once, similar to the sphere
segmentation part.

The iterative re-estimation is performed until all the points of the detected cylinder
have been selected, and the maximum number of iterations is set to 15. In this case, several
validation steps were also proposed. They are based on inlier numbers (similar to the
planes and spheres) and parameter convergence (similar to the spheres). Furthermore, a
novel validation step based on cylinder coverage was proposed. In this validation method,
the cylinder shell is first transformed into a plane, then divided into a grid (the size of the
grid is determined automatically based on the dimensions of the cylinder), and the number
of points in each cell of the grid is determined. Next, a cell’s ideal average density (in the
case of an evenly covered cylinder surface with inliers) is computed. The value of the ideal
density is estimated based on the known dimensions of the cylinder, the known size of the
grid, and the known number of inliers. If at least 25% of the cells have ideal coverage, the
cylinder is considered a reliable one.

The method of automatically stopping the calculations is also included in this part of
the algorithm, as in the case of planes and spheres. The results are the segmented point
clouds and the parameters (a point on the cylinder axis po, the orientation of the cylinder
axis

→
o , the radius r and the height h of the cylinder shell) for each identified cylinder.

2.5. Development of a Standalone Application for Automation of the Segmentation Process

A standalone computational application (PoCSegmentation) was developed to sim-
plify and automate the segmentation procedure. The application’s graphical user inter-
face (GUI) was designed in MATLAB® software. Also, the calculation takes place in the
MATLAB® software environment, so the Matlab Runtime is required to run the application,
which is freely available. The dialogue window of the application (Figure 4) consists of
three major sections. The top section is for importing the point cloud. The point cloud can
be imported in several file formats, which are as follows: *.txt, *.xyz, *.pts. *.pcd, *.ply, *.mat.

The middle part serves for the segmentation itself, where at the top the types of
geometric shapes can be chosen, and the threshold parameters can be selected. The
segmentation procedure is started by pressing the Run Segmentation button. At the bottom
of this section, the application’s progress is described, i.e., the individual processes executed
step by step and the time required for its execution. The bottom part of the dialog window is
used to export the segmentation results. The PoCSegmentation application offers various
options to export the results. On the left, the segmented point clouds can be exported
in several file formats (*.txt, *.pts, *.xyz, *.pcd, *.ply, *.mat). In addition, it is also possible
to export the segmented point clouds into *.DXF (Drawing Exchange Format), which is
a CAD data file format for vector graphics, and which can be imported into more than
25 applications from various software developers. The advantage of the application is that,
in the DXF file, the individual segmented point clouds are divided into separate layers.
Next, the parameters of the geometric shapes can be exported to an Excel file, and the
remaining point cloud can also be exported to *.pts format.
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2.6. Testing of the Proposed Approach

Experimental testing of the PoCSegmentation application, implemented based on
the algorithm proposed, was performed on several point clouds with various densities,
complexities, and different levels of noise. For the first experiment, a point cloud from
an industrial building (Point Cloud No. 1) (Figure 5) was used that contained 12 planar
surfaces and 6 sphere objects. The mentioned point cloud was obtained from an online
point cloud database accessible at [37].
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The initial point cloud contained approximately 815 thousand points. In this case, the
threshold values were chosen as follows: the shapes for segmentation were planes and
spheres, the threshold for the distance filter was 0.050 m for the planes and 0.020 m for the
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spheres, and the threshold for the normal-based filter was 5◦ for the planes and 10◦ for
the spheres. The developed application segmented 13 planes and six spheres (reference
sphere targets).

The results of the segmentation process are shown in Figure 6. The left side of Figure 6
shows the segmented points of the individual planes differentiated by color, and on the
right, the points of the segmented spheres are shown in red color. To verify the results of
sphere segmentation, the differences among the known parameters (radius of the sphere
targets are defined by the producer of the targets) and the estimated parameters from the
application were calculated. The differences were below 1.2 mm in any case.
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Figure 6. The segmented planes (left) and spheres (right).

The scanned object contained 12 planar and six spherical surfaces. Using the developed
application, 13 planes and six spheres were automatically segmented. However, the
difference in one plane is not caused by the imperfection of the algorithm but by the
undulation and the bumpy surface of the roof of the building. The algorithm divided the
roof into two parts while, based on the selected threshold values, some points of the roof
did not belong to the plane shown in orange.

After segmenting the depicted planes and spheres, the remaining point cloud repre-
sented only 8% of the points from the initial point cloud. These points were mostly the
edges of the individual planes and points on the mounting pads for the spherical targets,
so the points did not belong to any plane or sphere.

The entire segmentation procedure (13 planes and six spheres) was executed in
approximately 8 min on a PC with the following basic parameters: operating system—
Windows 10 Pro, CPU—Intel Core i7 9700F Coffee Lake 4.7 GHz, RAM—32.0 GB DDR4,
Motherboard—MSI B360 Mortar, Graphics—NVIDIA GeForce RTX 2070 SUPER 8 GB,
SSD—WD Blue SN500 NVMe SSD 500 GB.

In the next test, the point cloud of a chosen room of the Pavol Országh Hviezdoslavov
Theatre in Bratislava was used (Point Cloud No. 2), which contained more than 1.8 million
points. Scanning was also performed with a Trimble TX5 3D laser scanner. The average
point cloud density was 2 cm, and the accuracy in the spatial position of a single measured
point was less than 5 mm. The initial point cloud from two views is shown in Figure 7.
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The scanned room contained 22 planar surfaces (walls, floor, etc.) and six cylinder-
shaped columns. The threshold values for segmentation were as follows: for the distance-
based filter, 0.020 mm for the planes and 15% (of the estimated radius) for the cylinders; for
the normal-based filter, 2◦ for the planes and 15◦ for the cylinders. The algorithm identified
and segmented 22 planes and six cylinders from the point cloud. The result of the plane
segmentation is shown in Figure 8, where the individual planes are differentiated by color.
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Figure 8. Result of the plane segmentation.

Figure 9 shows the remaining point cloud after the plane segmentation since, after
the individual planes are segmented from the point cloud, they are removed from further
processing. The noted point cloud represents only 34% of the initial point cloud, so in the
next step of the algorithm, that is, cylinder segmentation, the processing is performed on a
much smaller set of points.
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Figure 10 shows the remaining point cloud after the plane segmentation with the
segmented cylinders, which are differentiated by color. With the mentioned threshold
values, segmentation of 6 cylinders was performed.
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To verify the results of cylinder segmentation, the known (real) parameters of indi-
vidual cylinders were compared with the estimated parameters from processing the point
cloud with the application developed. The cylindrical columns had a uniform radius (rreal)
of approximately 0.400 m and a height (hreal) of approximately 3.900 m. The parameters
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of each of the columns were measured by a measuring tape at various positions, and the
final parameters were calculated as average values. The radiuses (rapp) and heights (happ)
obtained from the processing are shown in Table 1 with the calculated absolute deviations.
The maximal deviation in radiuses was 9 mm and in height was 9 mm. In these deviations,
the imperfection of the construction of these columns, the effect of the environmental con-
ditions, the systematic errors of the instrument, the measurement error, and the processing
errors (the standard deviation (s in Table 1) of the cylinder fitting to the segmented points
was 10 to 15 mm at the mentioned threshold values) are also included.

Table 1. Real parameters and parameters from the application with the calculated absolute deviations
for the cylinders.

Cylinder No.
Real Parameters Parameters from the Application Absolute Deviations s

[mm]rreal [m] hreal [m] rapp [m] happ [m] ∆r [mm] ∆h [mm]

1

0.400 3.900

0.409 3.902 9 2 10
2 0.408 3.909 8 9 15
3 0.406 3.895 6 5 12
4 0.395 3.892 5 8 11
5 0.394 3.899 6 1 13
6 0.402 3.906 2 6 15

Figure 11 shows the remaining point cloud after segmenting 22 planes and six cylin-
ders. These points are on the edges of the individual shapes and objects in the room
(e.g., parts of the room, lightning, flowerpots with plants, chairs, tables, etc.). The remain-
ing cloud represents only 15% of the initial point cloud.

Remote Sens. 2022, 13, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 11. The remaining point cloud after plane and cylinder segmentation. 

Using the proposed application, all the planes and cylinders that form the room’s 
structural elements (walls, columns, etc.) were correctly and automatically detected and 
segmented from the point cloud. 

The segmentation procedure (22 planes and 6 cylinders) was executed in approxi-
mately 11 min on the same PC, as in the first test case. 

The last test was performed on a point cloud of the double-cylinder-shaped test ob-
ject (Point Cloud No. 3). The measurement was performed with TLS Leica Scanstation 2 
(average density 1 cm, the accuracy of a single measured point up to 2.5 mm, approxi-
mately 202 thousand points). The threshold values for segmentation were as follows: the 
threshold for the distance-based filter was 10 mm for the planes and 10% for the cylinders, 
and the thresholds for the normal-based filter were 0.5° for the planes and 5° for the cyl-
inders. Figure 12 shows the segmentation result; on the left side, the two segmented planes 
are shown, and on the right side, the two segmented cylinders are shown. 

 
Figure 12. Result of the segmentation of the double-cylinder model. 

In this case, the differences between the known geometric parameters (radius and 
height of the cylinders) and the estimated parameters from the processing were also cal-
culated to verify the cylinder estimation (Table 2). The geometric parameters of the cylin-
der object were measured by a CMM (Coordinate Measuring Machine) measuring system 
with an accuracy of 0.1 mm. The radius differences were 0.2 mm for the larger cylinder 
and 0.1 mm for the smaller cylinder. The height differences were 0.3 mm for the larger 
cylinder and 0.5 mm for the smaller cylinder.  

  

Figure 11. The remaining point cloud after plane and cylinder segmentation.

Using the proposed application, all the planes and cylinders that form the room’s
structural elements (walls, columns, etc.) were correctly and automatically detected and
segmented from the point cloud.

The segmentation procedure (22 planes and 6 cylinders) was executed in approxi-
mately 11 min on the same PC, as in the first test case.

The last test was performed on a point cloud of the double-cylinder-shaped test
object (Point Cloud No. 3). The measurement was performed with TLS Leica Scanstation 2
(average density 1 cm, the accuracy of a single measured point up to 2.5 mm, approximately
202 thousand points). The threshold values for segmentation were as follows: the threshold
for the distance-based filter was 10 mm for the planes and 10% for the cylinders, and the
thresholds for the normal-based filter were 0.5◦ for the planes and 5◦ for the cylinders.
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Figure 12 shows the segmentation result; on the left side, the two segmented planes are
shown, and on the right side, the two segmented cylinders are shown.
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Figure 12. Result of the segmentation of the double-cylinder model.

In this case, the differences between the known geometric parameters (radius and
height of the cylinders) and the estimated parameters from the processing were also
calculated to verify the cylinder estimation (Table 2). The geometric parameters of the
cylinder object were measured by a CMM (Coordinate Measuring Machine) measuring
system with an accuracy of 0.1 mm. The radius differences were 0.2 mm for the larger
cylinder and 0.1 mm for the smaller cylinder. The height differences were 0.3 mm for the
larger cylinder and 0.5 mm for the smaller cylinder.

Table 2. Comparison of the real parameters and parameters from the application.

Cylinder
Real Parameters Parameters from the Application Absolute Deviations

rreal [m] hreal [m] rapp [m] happ [m] ∆r [mm] ∆h [mm]

Large 0.200 0.250 0.202 0.253 0.2 0.3
Small 0.090 0.250 0.091 0.255 0.1 0.5

The whole segmentation procedure (2 planes and 2 cylinders) was executed in less
than 1 min on the same PC, as in the case of the first two tests.

3. Results and Discussion
3.1. Comparison with the Standard RANSAC Approach

For a demonstration of the potentiality and advantages of the proposed approach, a
comparison with the standard RANSAC algorithm was performed on several datasets. The
comparison is executed for each geometric shape type separately. The geometric shape
segmentation process is performed 50 times for each dataset with the same parameters,
and the comparison of the best results is described.

3.2. Plane Segmentation

First, plane segmentation was compared between the two mentioned algorithms. The
thresholds adopted for the first point cloud (Figure 5, Point Cloud no. 1) were as follows:
the maximum number of planes = 15, the distance threshold = 0.05 m, and the normal
threshold = 5◦ (only for the proposed algorithm, as in the standard RANSAC algorithm,
filtration based on normal vectors is not executed). The threshold values are specific to the
density of the point cloud but were chosen to obtain the best results. The results are shown
in Figure 13, where the segmented planes are differentiated by color.
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Figure 13. Result of the plane segmentation from the proposed algorithm (left) and the standard
RANSAC algorithm (right).

With the proposed algorithm, 13 planes were segmented (Figure 13—left), which
also shows the usability and the functionality of the proposed approach for stopping the
calculations (described in Section 2.1) in case the number of planes in the point cloud is
not known in advance. In this case, the maximum number of planes was set to 15, but the
algorithm automatically stopped the calculations after 13 planes.

The right side of Figure 13 shows the plane segmentation result using the standard
RANSAC algorithm. Segmentation of 15 planes was executed, although the point cloud
consisted of 12 planar surfaces (since the technique to stop the calculations automatically is
not included in the standard RANSAC algorithm).

The left side of Figure 14 shows the correctly (with some toleration) segmented
planes (7) using the standard RANSAC algorithm. Although in these cases, some points
are incorrectly assigned to the planes (e.g., in the case of the horizontal plane surface (roof)
with green color, where some points on the edges are assigned from the nearby vertical
plane surfaces). On the right side of Figure 14, the incorrectly segmented planes are shown,
which are color differentiated.
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Figure 14. The plane segmentation result using the standard RANSAC algorithm with the correctly
segmented planes (left), and the incorrectly segmented planes (right).

In addition to visual comparison, statistical analysis was performed, where a quality
indicator of segmentation was calculated for both approaches. The quality indicator
(Equation (9)) was calculated as a ratio of the number of correctly detected planes (plcorrect)
to the incorrectly detected (plincorrect) and undetected planes (plundetect).

Qpl =
plcorrect

plcorrect + plincorrect + plundetect
(9)
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Figures 13 and 14 show that the proposed algorithm shows better results than the
standard RANSAC algorithm in the test described. The segmentation quality increased
from 35% to 92% (Table 3).

Table 3. Characteristics of plane segmentation.

Point Cloud No. 1 Point Cloud No. 2

Proposed
Algorithm

Standard
RANSAC

Proposed
Algorithm

Standard
RANSAC

plcorrect 12 7 22 12
Plincorrect 1 8 0 13
plundetect 0 5 0 10

time 2 min 21 s 3 min 43 s 5 min 37 s 8 min 19 s
s 8 mm 112 mm 5 mm 75 mm

Qpl 92% 35% 100% 34%

The computational time needed for the entire segmentation process was reduced
approximately by 30% in the case of the proposed algorithm. Table 3 also compares the
standard deviation of plane fitting, which is calculated based on the orthogonal distances
of the inlier points from the estimated best-fit regression plane. The average standard
deviation (s) is 8 mm with the proposed algorithm, which is 14 times less than in the case
of the RANSAC algorithm.

The second comparison was made on the point cloud (Point Cloud No. 2), shown in
Figure 7. The threshold values adopted for this point cloud were the following: maximum
number of planes = 25, distance threshold 20 mm, and normal threshold 5◦. The result of
the plane segmentation with the proposed algorithm is shown in Figure 8. The result of the
standard RANSAC algorithm is shown in Figure 15. The analysis of the results, with the
quality indicator, is shown in Table 3.
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Figure 15. The plane segmentation result using the standard RANSAC algorithm in the case of a
chosen room of the P.O. Hviezdoslavov Theater with the correctly segmented planes (left), and the
incorrectly segmented planes (right).

Figure 15 shows the result of the plane segmentation using the standard RANSAC
algorithm. On the left side of the figure, the correctly segmented planes are shown, also
with some tolerances, as was in the previous case, shown in Figure 14. On the right side,
the incorrectly segmented planes are shown, e.g., the parts of the cylinder-shaped columns,
parts of the lightning, etc. (points that do not belong to a planar surface). In this case,
the quality indicator of segmentation increased from 34% to 100% (Table 3). The standard
deviation was 15 times less than the proposed algorithm, and the computational time was
reduced approximately by 30%.
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3.3. Sphere Segmentation

Next, the sphere segmentation part was compared to two point clouds, first on a
point cloud (Point Cloud No. 4) with three sphere objects (reference targets) and a planar
surface (Figure 16). The threshold values adopted for this point cloud were the following:
maximum number of spheres = 6, distance threshold 20 mm, and normal threshold 5◦.
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Figure 16. Comparison of the result of the sphere segmentation from the proposed algorithm (left)
and the standard RANSAC algorithm (right).

The left side of Figure 16 shows the segmentation result from the proposed algorithm;
with red color the segmented spheres are shown, and with grey, the initial point cloud. On
the right side of the figure, the result from the standard RANSAC algorithm is shown; the
segmented parts are color differentiated. With the algorithm proposed, the quality indicator
increased from 50% to 100% since the standard RANSAC algorithm assigned the points of
the planar surface situated in the point cloud to three separate sphere objects (apparently,
these points are not lying on a surface of a sphere object). The statistical analysis is shown
in Table 3. In this table, the average standard deviation (s) of the sphere fitting is also
compared (estimated only from the correctly detected spheres). The standard deviation
is calculated based on the distances of the inlier points for the detected sphere from the
estimated sphere surface. The standard deviation was 15 times lower than the proposed
algorithm and the computational time was approximately equal.

The second comparison was performed on the point cloud (Point Cloud No. 1) of a
part of an industrial building, shown in Figure 5. The threshold values adopted for this
point cloud were the same as in the previous case. The statistical analysis is also shown in
Table 4. In this case, the quality increased from 27% to 100% since the standard RANSAC
algorithm resulted in several incorrectly detected spheres, and some of the sphere objects
were undetected.

Table 4. Qualitative characteristics of sphere segmentation.

Point Cloud No. 4 Point Cloud No. 1

Proposed
Algorithm

Standard
RANSAC

Proposed
Algorithm

Standard
RANSAC

sphcorrect 3 3 6 3
sphincorrect 0 3 0 5
sphundetect 0 0 0 3

time 1 min 17 s 1 min 35 s 5 min 29 s 5 min 15 s
s 3 mm 46 mm 4 mm 58 mm
Q 100% 50% 100% 27%

3.4. Cylinder Segmentation

Lastly, the cylinder segmentation part was compared based on two datasets. The
first comparison was made to the point cloud of the selected room in the theatre building
(Figure 7, Point Cloud no. 2). The threshold values adopted for this point cloud were
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the following: maximum number of cylinders = 15, distance threshold 15%, and normal
threshold 10◦. The result from the proposed algorithm is shown in Figure 10, and Figure 17
shows the result from the standard RANSAC algorithm. The statistical analysis is shown
in Table 5.
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Figure 17. The cylinder segmentation results from the standard RANSAC algorithm.

Table 5. Qualitative characteristics of cylinder segmentation.

Point Cloud No. 2 Point Cloud No. 3

Proposed
Algorithm

Standard
RANSAC

Proposed
Algorithm

Standard
RANSAC

cylcorrect 6 6 2 2
cylincorrect 0 7 0 3
cylundetect 0 0 0 0

time 5 min 22 s 6 min 5 s 0 min 30 s 0 min 25 s
s 3 mm 35 mm 2 mm 15 mm
Q 100% 46% 100% 40%

The standard RANSAC algorithm resulted in six correctly and nine incorrectly seg-
mented cylinders. However, the correctly segmented cylinders had a higher standard
deviation of fitting since, in the case of the proposed algorithm, the outlier and noise
removal from the fitting process is more thorough. As shown in Figure 17, the standard
RANSAC algorithm segmented some planar surfaces (walls, floor, ceiling, doors, etc.)
as cylinders. The segmentation quality increased to 100% from 46%, the standard devi-
ation was reduced 11 times, and the computational time was reduced by 10% with the
proposed approach.

The second comparison was made on the point cloud (Point Cloud No. 3) of the
double-cylinder model (Figure 12). The threshold values were as follows: maximum
number of cylinders = 5, distance threshold 10%, and normal threshold 5◦. The statistical
analysis of the results is shown in Table 5. The segmentation quality increased to 100%
from 40%, the standard deviation was reduced 7 times, and computational time was the
same as the proposed approach.

The proposed algorithm shows better results than the standard RANSAC algorithm
based on the described experiments. On average, the segmentation quality calculated
based on Equation (9) was less than 50% in the case of the standard RANSAC algorithm,
and in the case of the proposed algorithm, it was mostly 100% (only in one case, in the case
of the first plane comparison, it was 92% since the roof of the building was divided into
2 planar surfaces, due to its undulation, and so it was not caused by the imperfection of the
proposed algorithm). The standard deviation of the fitting is ten times lower on average
using the proposed algorithm since the outlier and noise removal process is more thorough,



Remote Sens. 2022, 14, 4591 19 of 21

and a normal-based filtration technique is added to the distance-based filtration. Moreover,
several validation steps are executed to remove incorrectly detected shapes from the results.
Furthermore, in the case of the proposed algorithm, there is no need to select the number
of geometric shapes in the point cloud exactly since an approach was proposed to stop
the calculations after the correctly segmented shapes. The next advantage of the proposed
algorithm is the possibility to segment three shape types at once in a semi-automated way.

4. Conclusions

Data acquisition is almost fully automated with the currently available laser scanners.
Measurement can be performed relatively easily and in a short time. However, manually
processing the measured point clouds can be time-consuming and complicated. Therefore,
a basic premise of the efficiency of using point clouds is a high degree of automation of the
processing steps. For example, when creating a 3D model (or BIM) of an existing building,
one of the basic steps is the identification and segmentation of the basic structural elements
of the object. In most cases, these basic elements are formed in the shape of basic geometric
primitives (e.g., walls—planes; columns or piping network—cylinders; etc.). Therefore,
automation of identification and segmentation of sphere objects can be useful, for example,
in the case of point cloud registration based on spherical targets, and it also simplifies the
3D model creation.

The paper describes the algorithm proposed for automated identification and segmen-
tation of geometric shapes from point clouds with the requirement of selecting a minimal
number of input parameters. The algorithm can detect end-segment subsets of points
belonging to planes, spheres, and cylinders from complex, noisy, unstructured point clouds.
Inlier detection is performed using distance-based and normal-based filtering. Additionally,
several validation steps were proposed to eliminate incorrect estimations. The algorithm
proposed was tested on several point clouds with various densities, complexity, and differ-
ent levels of noise. Specifically, testing on three different point clouds was described, one
containing planes and spheres and two other point clouds with planes and cylinders. In
all cases, the proposed algorithm correctly identified the geometric shapes regardless of
their size, number, or complexity. Moreover, one of the most significant advantages of the
algorithm is that the results can be exported directly to DXF exchange format for further
processing. Besides that, comparison between the proposed algorithm and the standard
RANSAC algorithm was performed separately for the individual geometric shapes on
several point clouds. On average, the segmentation quality was increased from 50% to
100% with the described algorithm.

A standalone application that enables semi-automation of the point cloud segmenta-
tion procedure is developed in MATLAB® software. However, for its execution, the Matlab
Runtime is necessary. In the future, approaches for the identification and segmentation of
free-form objects from point clouds will be proposed and programmed.
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