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Abstract: Urban green space (UGS) can be regarded as an effective approach to mitigate urban heat 

island (UHI) effects. Many studies have investigated the impacts of composition and configuration 

of UGS on land surface temperature (LST), while little attention has been paid to the impacts among 

different urban blocks. Thus, taking 1835 urban blocks in Beijing as samples, including low-rise 

point (LRP), low-rise street (LRS), low-rise block (LRB), mid-rise point (MRP), mid-rise street (MRS), 

mid-rise block (MRB), high-rise point (HRP), high-rise street (HRS) and high-rise block (HRB), this 

study investigated the impacts of UGS on LST among different urban blocks. The results showed 

that UGS serves as cold islands among different urban blocks. Percentage of landscape (PLAND) of 

UGS in all types of urban blocks, edge density (ED) of UGS in MRS, area-weighted fractal dimension 

index (FRAC_AM) of UGS in HRS and HRB show significantly negative impacts on LST, while ag-

gregation index (AI) of UGS in LRP shows significantly positive impacts. The findings suggest that 

both composition and configuration of UGS can affect LST among different urban blocks and ra-

tional allocation of UGS would be effective for mitigating UHI effects. 
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1. Introduction 

Urban heat island (UHI) is the phenomenon that the temperature in urban areas is 

significantly higher than that in the suburbs [1,2]. It is widely accepted that urbanization 

is the primary factor contributing to UHI effects, while UHI leads to negative impacts on 

the urban climate and dwellers, such as increased energy consumption, increased pollu-

tant concentration, increased health issues and reduced thermal comfort of urban dwell-

ers [3–9]. Noteworthily, with the development of urbanization, the negative impacts will 

be further exacerbated [10,11]. Therefore, mitigating the UHI effects is of great significance 

in improving urban climate and thermal comfort. 

With the development of remote sensing technology, a series of images, such as Mod-

erate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiom-

eter Suite (VIIRS), Landsat and ECOsystem Spaceborne Thermal Radiometer Experiment 

on Space Station (ECOSTRESS), have the advantages of wide cover range, real time and 

rapidity, which can provide credible and fundamental data for land surface temperature 

(LST) research [12–15]. Furthermore, due to different temporal and spatial resolutions, 

these data have been widely used for LST research at city, nation and global scales [12,16–

19]. These studies have provided a better understanding of monitoring LST changes and 

influence mechanisms of UHI effects. 
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Urban landscapes, such as impervious surface, water bodies and vegetation, have 

been recognized as the main factor affecting the UHI [20,21]. Numerous studies have in-

vestigated the impacts of urban landscapes on LST [20,22,23]. Generally, impervious sur-

face can enhance surface sensible heat flux, which leads to increase LST [10,24,25]. On the 

contrary, water bodies and vegetation can decrease LST, and the main reasons are high 

heat capacity and evaporative cooling of the former and increasing latent heat flux of the 

latter, respectively [3,23,26]. Therefore, the reasonable allocation of landscapes has be-

come one of the effective measures to mitigate the UHI effects [27,28]. 

Urban green space (UGS), which is mainly composed of all types of vegetation, such 

as grasslands, forests and green belts, is considered as an effective approach to mitigate 

the UHI effects [28–34]. Many scholars have investigated the impacts of UGS on LST, not-

ing that UGS can significantly reduce LST [4,35–37]. This is mainly because UGS can affect 

humidity and albedo of land surface, which leads to reduce LST [38–40]. It is emphasized 

that both composition and configuration of UGS can affect LST [29,32,41]. Generally, it is 

widely accepted that the higher amount of UGS the better the cooling effect [32,41,42]. For 

example, Mahyar and Puar (2019) [32] investigated the impacts of spatial pattern of UGS 

on LST and emphasized that increasing the amount of UGS can reduce LST. Zhou and 

Cao (2020) [42] also found that UGS has a significantly negative correction with LST in 

summer. Furthermore, configuration (e.g., shape, aggregation and connectivity) of UGS 

is emphasized as another key factor, which can also influence LST. Generally, the more 

complex the shape of UGS, the better the cooling effect [41,43,44]. Additionally, studies 

pointed out that different aggregation of UGS has different impacts on LST. For example, 

Estoque et al. (2017) [23] investigated the relationship between the spatial pattern of UGS 

and LST, noting that the aggregation of UGS has a positive relationship with LST. Kong 

et al. (2016) [45] found that as the aggregation of UGS increases, LST increases initially 

and then decreases. Similar to aggregation, the connectivity of UGS also has different im-

pacts on LST. For example, Asgarian et al. (2015) [46] and Chen et al. (2014) [47] empha-

sized that UGS with higher connectivity can increase the cooling effect, whereas Li et al. 

(2013) [43] and Zhou et al. (2011) [48] observed the opposite effect. 

Existing studies have investigated the impacts of UGS on LST, and the analysis scales 

mainly focus on grid, city and region [25,32,49,50]. However, little attention has been 

given to urban block scale. Generally, cities are composed many urban blocks, including 

many landscapes, especially buildings with different heights and layouts, which can sig-

nificantly affect thermal environment [51]. It also brings great challenges for UGS plan-

ning in mitigating UHI effects among different urban blocks. Therefore, it is necessary to 

investigate the impacts of UGS on LST among different urban blocks. 

Landscape indices, which can reflect landscape pattern characteristics, are widely 

used to quantify the spatial composition and configuration of landscapes. Composition 

indices, such as percentage of landscape (PLAND) and total landscape area (TA), can 

quantify the abundance and variety of landscape [52]. Configuration indices, such as land-

scape shape index (LSI), interspersion juxtaposition index (IJI) and aggregation index (AI), 

can quantify spatial distribution and arrangement of landscape [36,42,52]. These two types 

of indices can not only describe different aspects of the landscape, but also complement 

each other [35,52]. Therefore, both composition and configuration indices were applied to 

characterize the UGS structure in this study. 

The aim of this study is to explore the differences of UGS characteristics influencing 

LST from urban block perspectives. The main objects of this study were (1) to analyze the 

spatial pattern of LST and UGS; (2) to investigate the composition of UGS among different 

urban blocks; (3) to analyze the LST difference between urban blocks and UGS; and (4) to 

explore the impacts of UGS on LST among different urban blocks. This study provides 

scientific guidance to urban planners on how to mitigate the UHI effects among different 

urban blocks through the rational allocation of UGS. 

2. Materials and Methods 
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2.1. Study Area 

Beijing is the capital of China (39°26′–41°03′N, 115°25′–117°30′E), and it covers an area 

of 16, 410 km2 (Figure 1). Since the 1978 economic reform and opening-up policy, Beijing 

has experienced rapid urbanization, which has accelerated the transformation from natu-

ral surface into impervious surface. By the end of 2019, Beijing’s population reached 21.54 

million, with an urbanization ratio of 87.53%. High urbanization level makes Beijing be-

come one of the most severe UHI effects cities in China. 

 

Figure 1. Location of the study area. 

The study area is located within the 5th ring road, which covers an area of approximately 

668 km2 (Figure 1). Although this region comprises only 4.07% of the total area of Beijing, it 

has the highest urbanization level. In particular, due to rapid urbanization, urban surface land-

scapes, especially three-dimensional buildings (low-rise, mid-rise and high-rise buildings), 

have changed drastically, which significantly affects urban ventilation conditions and thermal 

environment [5,7,53–56]. Therefore, the diversity of buildings made this region a good choice 

for investigating the impacts of UGS on LST among different urban blocks. 

2.2. Data Sources 

Urban blocks dataset, Gaofen1 (GF1) image, Landsat 8 OLI image and meteorological 

data were used in this study. 
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Urban blocks dataset was derived from Beijing City Laboratory (BCL). Eleven attrib-

utes, such as ID of the block, number of buildings and types of street block form, are in-

cluded in this dataset. Taking building floors and density as classification criteria, urban 

blocks were classified into nine categories, including low-rise point (LRP), low-rise street 

(LRS), low-rise block (LRB), mid-rise point (MRP), mid-rise street (MRS), mid-rise block 

(MRB), high-rise point (HRP), high-rise street (HRS) and high-rise block (HRB), and the 

details can be seen in Table 1. In this study, nine types of urban blocks in Beijing were 

extracted to investigate the impacts of UGS on LST among different urban blocks. 

Table 1. Classification criteria of urban blocks. 

Types Building Floors Building Density 

LRP 1–3 0–0.15 

LRS 1–3 0.15–0.25 

LRB 1–3 >0.25 

MRP 4–7 0–0.15 

MRS 4–7 0.15–0.25 

MRB 4–7 >0.25 

HRP ≥8 0–0.15 

HRS ≥8 0.15–0.25 

HRB ≥8 >0.25 

GF1 image was derived from Resources and Environmental Scientific Data Center 

(RESDC) and Chinese Academy of Sciences (CAS) and the acquisition dates was 19 Sep-

tember 2020. Four multi-spectral bands (blue, green, red and near infrared) were included 

in this image, with a spatial resolution of 16 m, and the image was cloud-free in the study 

area. The image was used to extract precise UGS because it has better spatial resolution 

than Landsat image. 

Landsat 8 OLI image was acquired from the United States Geological Survey (USGS) 

on 7 August 2020. The thermal infrared band (band10), which had a spatial resolution of 

120 m, was used to retrieve the LST. In particular, the image was cloud-free, which can 

guarantee the accuracy of further processing. 

Meteorological data were derived from China Meteorological Administration. Mete-

orological variables, such as air temperature, precipitation and wind speed, are included 

in this data. Given the acquisition time of the Landsat image was 10:52 (GMT + 8), there-

fore, hourly observed air temperature at 20 meteorological stations was extracted to vali-

date the retrieved LST. 

2.3. Methods 

The flowchart of this study is as follows (Figure 2). First, UGS was extracted by a GF1 

image based on object-oriented method, and LST was retrieved from a Landsat 8 OLI image 

based on image-based method (IBM). Second, urban blocks samples were selected based on 

UGS and urban block dataset. Third, spatial distribution of LST and UGS were analyzed. 

Fourth, composition of UGS among different urban blocks was analyzed. Fifth, LST differ-

ence between urban blocks and UGS were analyzed. Finally, the impacts of composition 

and configuration of UGS on LST among different urban blocks were investigated. 
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Figure 2. Flowchart of this study. 

2.3.1. Extraction of UGS 

Object-oriented method was used to extract UGS based on GF1 image [57,58]. Firstly, 

a multiresolution segmentation method was used to determine optimal segmentation 

scale. After repeated tests, the optimal segmentation scale, shape and compactness were 

determined as 10, 0.4 and 0.5, respectively. Secondly, UGS samples, which were acquired 

from Google Map and Baidu Map were selected and classification rules were established 

based on image information, including spectrum, texture and shape. Finally, neighbor al-

gorithm was applied to extract UGS. To verify the accuracy of UGS, 500 samples were 

randomly selected. Taking Google Map as criteria, the accuracy of UGS was 92.80%. It can 

guarantee the accuracy of UGS for further analysis. 

2.3.2. Selection of Urban Block Samples 

To investigate the impacts of UGS on LST among different urban blocks, nine types 

of urban blocks were used in this study. Given the area of urban blocks and percentage of 

interior UGS, urban block samples were selected as follows. Firstly, percentage of interior 

UGS in each urban block were calculated. Secondly, blocks with an area greater than 15,000 

m2 and percentage of UGS greater than 1% were selected. Finally, 1835 urban blocks, includ-

ing LRP (289), LRS (193), LRB (339), MRP (84), MRS (226), MRB (333), HRP (62), HRS (161) 

and HRB (148), were selected as samples to investigate the impacts of UGS on LST (Table 

2), and the spatial distribution of urban block samples is shown in Figure 3. 
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Figure 3. Spatial distribution of urban block samples. 

Table 2. The number of different types of urban block samples. 

Types Number Proportion 

LRP 289 15.75% 

LRS 193 10.52% 

LRB 339 18.47% 

MRP 84 4.58% 

MRS 226 12.32% 

MRB 333 18.15% 

HRP 62 3.38% 

HRS 161 8.77% 

HRB 148 8.07% 

2.3.3. Retrieval of LST 

Image-based method (IBM) is used to retrieve the LST [39]. The formula is as follows: 

�� =
�

1 + �
��
� � ���

 
(1) 

where �� is the LST, � represents the at-satellite brightness temperature, � and � are 

wavelength at the center of emitted radiance and spectral emissivity, respectively. � is a 
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constant value derived from the headed files of Landsat 8 OLI image. In this case, � 

equals 1.438 × 10−2 mK. 

To calculate �, radiation should be first determined. Radiation is converted by the 

digital number (DN) of thermal band (band 10), and the formula is as follows: 

�� = �� × �� + �� (2) 

where �� is the spectral radiance (W·m−2·sr−1·μm−1), �� and �� are rescaled gain (value 

= 3.3420 × 10−4) and rescaled bias (value = 0.1). 

After calculating ��, the � can be calculated as follows: 

� =
��

�� �
��

��
+ 1�

 (3) 

where �� = 480.89 W·m−2·sr−1·μm−1 and �� = 1201.14 K. 

� is a key parameter in LST retrieval, and it is crucial to retrieval of LST accurately. 

Usually, estimation of � can also be divided into two steps. First, the land surface is clas-

sified into three groups, including water, urban, and natural surface. Then, the � of water 

is set as 0.995, while for urban and natural surface, the � can be calculated by fractional 

vegetation cover (FVC) (Equations (4) and (5)) [14,59]. The FVC is calculated by NDVI 

(Equation (6)). 

������ = 0.9589 + 0.086��� − 0.0671���� (4) 

�������� ������� = 0.9625 + 0.0614��� − 0.0461���� (5) 

��� =
���� − �����

����� − �����
 (6) 

where ������ and �������� ������� are the emissivity values for urban and natural surface, 

respectively. ��� is the fractional vegetation cover. ����� and ����� are the NDVI for 

the vegetation and soil, respectively. 

2.3.4. Analytical Methods 

To explore the impacts of UGS on LST among different urban blocks, a stepwise re-

gression model was used to choose the best fit explaining variance. Some metrics, includ-

ing composition metric (PLAND) and configuration metrics (ED, area-weighted fractal 

dimension index (FRAC_AM), IJI, and AI), which are used to illustrate the structure of 

UGS, are selected as explanatory variables to explain LST among different urban blocks 

[23,29,32,36]. In particular, PLAND represents quantitative characteristics. ED and 

FRAC_AM represent shape complexity characteristics, and IJI and AI represent spatial 

aggregation characteristics. These metrics can be calculated by Fragstats 4.2, and the de-

tails are shown in Table 3. 

Table 3. Description of landscape metrics. 

Landscape Metrics Description 

PLAND 
The proportion of a landscape occupied by patches of a given type, a measure of 

dominance. 

ED 
The total edge length of a given patch type per unit area (hectare), a measure of 

overall shape complexity. 

FRAC_AM 
The patch fractal dimension weighted by relative patch area, a measure of shape 

complexity of individual patches. 

IJI 
A measure of the degree to which the corresponding patch type is equally adjacent 

to all other patch types. 

AI 

The number of joins divided by the maximum possible number of joins involving a 

given patch type, multiplied by 100, a measure of the level of lumpiness of patches 

in a landscape. 
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3. Results 

3.1. Validation of LST 

To validate the precision of LST, observed air temperature at 20 meteorological sta-

tions was extracted and average retrieved LST were calculated from the 5 × 5 grid cells 

near the meteorological station. The relationship between observed air temperature and 

retrieved LST was compared, as shown in Figure 4. The result shows that LST and ob-

served air temperature is highly correlated, with R2 of 0.99. The RMSE of 2.75, and the 

mean difference is −2.54 °C, indicating that retrieved LST is higher than the observed air 

temperature. Although there are differences between observed air temperature and re-

trieved LST, it has high consistency. Therefore, the retrieved LST is reliable, which can 

reflect changes of LST accurately. 

 

Figure 4. Relationship between observed air temperature and retrieved LST. 

3.2. Spatial Distribution of UGS and LST 

The spatial distribution of UGS and LST is shown in Figure 5. The result shows that 

both UGS and LST have significant spatial differences. Figure 5a shows the spatial distri-

bution of UGS, and UGS is mainly distributed within the Fifth Ring Road, especially in 

parks, such as Summer Palace, Old Summer Palace and Olympics Park, where it is scat-

tered within the Fourth Ring Road. The LST of the study area ranged from 24.87 °C to 

47.98 °C, with an average LST of 37.48 °C (Figure 5b). The LST shows a pattern of “high 

in the central and low in the surrounding areas”. The high LST is located in the central 

area, especially in the Second Ring Road, while low in the northwest and northeast of the 

study area. Obviously, there are many buildings and impervious surfaces in the central 

area of the study area, while many parks are located in the surrounding areas. Therefore, 

the LST of UGS is relatively lower than other landscape types, indicating that UGS serves 

as cold islands in the study area. 
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Figure 5. Spatial distribution of UGS and LST in the study area. (a) UGS; (b) LST. 

3.3. Composition of UGS among Different Urban Blocks 

Table 4 shows the composition of UGS among different urban blocks. The result 

shows that the average proportion of UGS in low-density (building density lower than 

0.15) blocks is the highest, followed by middle-density (building density ranged from 0.15 

to 0.25) blocks, and high-density (building density higher than 0.25) blocks is the lowest. 

For low-rise blocks, the average proportion of UGS in LRP, LRS and LRB are 48.98%, 

39.36% and 26.85%, respectively. Additionally, the average proportion of UGS in mid-rise 

blocks and high-rise blocks are similar to low-rise blocks. For mid-rise blocks, the average 

proportion of UGS in MRP, MRS and MRB are 42.07%, 27.21%, and 14.43%, respectively. 

For high-rise blocks, the average proportion of UGS in HRP, HRS and HRB are 36.26%, 

22.47% and 14.79%, respectively. Therefore, the coverage of UGS decreases as the building 

density increases. 

Table 4. Composition of UGS among different urban blocks. 

Types 
Proportion of UGS 

Minimum Maximun Average 

LRP 3.41% 99.97% 48.98% 

LRS 1.00% 79.40% 39.36% 

LRB 0.66% 73.59% 26.85% 

MRP 5.40% 96.87% 42.07% 

MRS 1.56% 80.42% 27.21% 

MRB 1.41% 72.77% 14.43% 

HRP 1.55% 81.26% 36.26% 

HRS 1.91% 81.94% 22.47% 

HRB 1.41% 96.87% 14.79% 

3.4. LST Difference between Urban Blocks and UGS 

To investigate LST difference between urban blocks and UGS, average LST in each 

urban block and UGS were calculated and boxplot was shown in Figure 6. The result 

shows that there are significant differences in LST between urban blocks and UGS. Obviously, 
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average LST in UGS is lower than that in urban blocks. In the study area, average LST ranged 

from 36.31 °C (HRP) to 38.48 °C (MRB) in urban blocks and ranged from 35.91 °C (HRP) to 

37.66 °C (MRB) in UGS. It indicated that UGS plays the role of a cooling island in urban blocks. 

Additionally, average LST in urban blocks and UGS have a positive relationship with building 

density, indicating that the higher the building density, the higher the LST. 

 

Figure 6. Comparison of LST between urban blocks and UGS. 

Moreover, LST difference varies with building density among different urban blocks. 

Comparing different density types, LST differences in low-density blocks is the lowest, 

followed by middle-density blocks and high-density blocks is the highest. 

Furthermore, it is obvious that LST difference increases as building floors increase. 

LST difference in low-rise (building floor ranged from 1 to 3) blocks is the highest, fol-

lowed by mid-rise (building floor ranged from 4 to 7) blocks and high-rise (building floor 

higher than 7) blocks is the least. 

3.5. Impacts of UGS on LST among Different Urban Blocks 

Both composition (PLAND) and configuration (ED, FRAC_AM, IJI and AI) variables 

were used to investigate the impacts of UGS on LST among different urban blocks, and 

the key characteristics of UGS influencing LST among different urban blocks were identi-

fied (Table 5). The result shows that both the composition and configuration of UGS in-

fluences LST, and the contribution of UGS to LST varies among different urban blocks. 

Additionally, it should be noted that PLAND of UGS shows significantly negative impacts 

on LST in all types of urban blocks, while configuration variables of UGS show different 

impacts on LST among different urban blocks. In particular, IJI of UGS was not found to 

have a significant impact on LST in all types of urban blocks.  
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Table 5. Impacts of composition and configuration variables of UGS on LST among different urban 

blocks. 

Types Variables Standardized Cofficient R2 

LRP 
PLAND −0.55 ** 

0.22 
AI 0.23 ** 

LRS PLAND −0.43 ** 0.18 

LRB PLAND −0.48 ** 0.23 

MRP PLAND −0.46 ** 0.20 

MRS 
PLAND −0.39 ** 

0.24 
ED −0.20 ** 

MRB PLAND −0.41 ** 0.17 

HRP PLAND −0.46 ** 0.20 

HRS 
PLAND −0.29 ** 

0.13 
FRAC_AM −0.19 * 

HRB 
PLAND −0.41 ** 

0.15 
FRAC_AM −0.16 * 

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level 

(two-tailed). 

For low-rise urban blocks, the PLAND and AI of UGS in LRP are significantly related 

to LST, while only one composition variable (PLAND) of UGS in LRS and LRB is signifi-

cantly related to LST (Table 5). On average, 21% of low-rise urban blocks’ LST is explained 

by the composition and configuration of UGS. Particularly, the PLAND of UGS has signifi-

cantly negative impacts on LST, while the AI of UGS has positive impacts on LST. The LRP, 

PLAND and AI of UGS can explain 22% of the variance in LST, and the PLAND and AI of 

UGS show significantly negative and positive impacts on LST, respectively, indicating that 

UGS with large density and low aggregation leads to decreased LST. For LRS and LRB, the 

PLAND of UGS can explain 18% and 23% of the variance in LST, and it has significant neg-

ative impacts on LST, suggesting that the larger the UGS density is, the lower the LST. 

For mid-rise urban blocks, the PLAND and ED of UGS in MRS are significantly re-

lated to LST, while only one composition variable (PLAND) of UGS in MRP and MRB is 

significantly related to LST (Table 5). On average, 20% of mid-rise urban blocks’ LST is 

explained by the composition and configuration of UGS. Particularly, the PLAND and ED 

of UGS have significantly negative impacts on LST. The MRS, PLAND and ED of UGS can 

explain 24% of the variance in LST, and the PLAND and ED of UGS show significantly 

negative impacts on LST, indicating that UGS with large density and high edge density 

lead to decrease LST. For MRP and MRB, the PLAND of UGS can explain 20% and 17% of 

the variance in LST, and it has significant negative impacts on LST, suggesting that the 

larger the UGS density is, the lower the LST. 

For high-rise urban blocks, the PLAND and FRAC_AM of UGS in HRS and HRB are 

significantly related to LST, while only one composition variables (PLAND) of UGS in HRP is 

significantly related to LST (Table 5). On average, 16% of high-rise urban blocks’ LST is ex-

plained by the composition and configuration of UGS. Particularly, the PLAND and 

FRAC_AM of UGS have significantly negative impacts on LST. For HRS and HRB, the 

PLAND and FRAC_AM of UGS can explain 13% and 15% of the variance in LST, and the 

PLAND and FRAC_AM of UGS have significantly negative impacts on LST, indicating that 

UGS with large density and high area weighted mean fractal dimension leads to decreased 

LST. For HRP, the PLAND of UGS can explain 20% of the variance in LST, and it has signifi-

cant negative impacts on LST, suggesting that the larger the UGS density is, the lower the LST. 
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4. Discussion 

4.1. Contribution of UGS to LST 

Many studies have pointed out that UGS has cooling effects [28–34,60,61]. However, the 

contribution of UGS to LST is not clear. To further investigate the contribution, contribution 

index (CI), which refers to the degree of contribution (heating or cooling) of landscape to the 

thermal environment, was used in this study [62,63]. CI equals LST difference between UGS 

and urban blocks multiplies percentage of UGS in urban blocks. The positive and negative 

value of CI indicated that UGS is heating or cooling the LST. The spatial distribution of CI 

among different urban blocks is shown in Figure 7. The result shows that UGS has significant 

cooling effects in urban blocks, and the CI of UGS has significant spatial differences. 

 

Figure 7. Spatial distribution of CI among different urban blocks. 

The CI of UGS ranged from −0.003 to −0.35 among different urban blocks, with an 

average CI of −0.10, indicating that UGS can significantly decrease LST (Figure 7). High 

CI of UGS is mainly distributed in central areas, such as the 2nd and 3rd Ring Roads, while 

it is low within the 5th Ring Road. It indicated that UGS has better cooling effects in the 

surrounding areas than that in the central areas because LST in the central areas is high in 

the daytime. There are also differences in the CI of UGS among different urban blocks. 

The CI of UGS in LRB, MRS, MRB, MRP, HRP, HRS and HRB are mainly between −0.1 

and 0, while in other urban blocks it is mainly between −0.2 and −0.1. The number of blocks 

with CI between −0.1 and 0 of UGS in LRB, MRS, MRB, HRP, HRS and HRB are 193, 128, 

288, 25, 113 and 127, with the proportion of 56.93%, 56.64%, 86.49%, 40.32%, 70.19 and 

85.81%, respectively, indicating that UGS has low cooling effects in most of these urban 

blocks. For LRP, LRS and MRP, the number of stations with CI between −0.2 and −0.1 of 
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UGS are 118, 87 and 36, with the proportion of 40.83%, 45.08 and 42.86%, respectively, 

suggesting that UGS has better cooling effects in most of these urban blocks. 

4.2. Comparisons with Other Studies 

Previous studies have investigated the impacts of UGS on LST, noting that UGS plays 

the key role in mitigating the UHI effects. Generally, the analysis scales of existing studies 

were mainly focus on grid, city and region [25,32,49,50]. For example, for grid scale, NDVI 

was widely used to chosen as the indicator to examine the relationship between UGS and 

LST, and a negative correlation were observed [64]. The impacts were explored in city 

(e.g., Beijing, Penang and Brisbane) and region scale (e.g., Singapore and Southeast Asia), 

and pointed out that UGS can effectively mitigate UHI effects [25,32,50,65]. However, little 

attention has been given to the impacts from urban blocks perspectives, and how UGS 

plays a role in LST among different urban blocks is also unclear. Urban block is the basic 

unit of urban fabric, and there are buildings with different heights and layouts in an urban 

block, which can significantly affect thermal environment [51]. Therefore, this study 

adopted urban block as an analysis scale for investigating the impacts, which is different 

from previous studies. We believe that our finding can provide a new perspective on mit-

igating the UHI effects on block scale. 

It is emphasized that both composition and configuration of UGS can affect LST, and our 

findings observed it at the block scale, which is in line with previous studies [29,32,41]. How-

ever, our findings highlight that the role of UGS in mitigating the UHI effects varies with ur-

ban blocks types. For composition variable, the proportion of UGS has negative impacts on 

LST [32,41,42], and our findings emphasized that the PLAND of UGS has significantly nega-

tive impacts on LST in all types of urban blocks. It is consistent with previous studies 

[32,41,42]. For configuration variables, our findings emphasized that the composition of UGS 

affects LST in some types of urban blocks, which is different from previous studies. Our results 

showed that the increased shape complexity of UGS in MRS, HRS and HRB can effectively 

reduce LST because the increased shape complexity of UGS can promote energy exchange 

between vegetation and building area, resulting in cooling the LST [41,66]. Our results showed 

that the increased aggregation of UGS in LRP can effectively increase LST. As Kong et al. 

(2014) [45] reported, discrete UGS has better cooling effect. Though there is no configuration 

variable of UGS in other urban types, it does not invalidate our results. 

4.3. Implications for UGS Planning and UHI Mitigation 

UGS is recognized as an effective approach to mitigate the UHI effects [28–32]. Our 

findings emphasized that both the composition and configuration of UGS can affect LST, 

and the impacts vary with different types of urban blocks [29,32,41]. Therefore, differential 

UGS planning for UHI migration should be implemented among different urban blocks. 

In general, the higher the proportion of UGS, the better the cooling effect [32,41,42]. In 

this study, it is found that the PLAND of UGS has significantly negative impacts on LST in 

all types of urban blocks. It also provides a potential approach to mitigate UHI effects. 

Therefore, the increasing proportion of UGS should be taken into reasonable account in the 

future. Given the limited availability of lands for UGS in the Beijing metropolitan area, some 

strategies, such as roof and vertical greening, can be taken into account [67–69]. 

Moreover, our findings emphasized that the spatial configuration of UGS shows dif-

ferent impacts on LST among different urban blocks. This is mainly because that the con-

figuration of UGS can affect the energy flow between different landscapes [70,71]. For low-

rise blocks, UGS with low aggregation in LRS contributes to decrease LST. The more dis-

crete the UGS, the better the cooling effect. For MRS, the ED of UGS is the key configura-

tion variable. Our finding suggested that UGS with high edge density can significantly 

reduce LST. Increasing the length of UGS boundaries can effectively mitigate LST. Unlike 

low-rise and mid-rise blocks, high-rise blocks usually have better ventilation conditions 

due to more shade and large intervals of high-rise buildings [7,72–74]. One the one hand, 

high-rise buildings create more shade, which can change the impervious ability to absorb 
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and emit energy, contributing to a cooling effect [36]. On the other hand, large intervals 

of high buildings facilitate the heat diffusion outward, leading to decreased LST [41]. Our 

finding also pointed out that the FRAC_AM of UGS is the key configuration variable in 

HRS and HRB, and it has significant negative impacts on LST. Increasing the complexity 

of UGS boundaries can be regarded as an effective approach to mitigate LST. However, 

there is no significant contribution of the configuration variable of UGS to LST in other 

urban blocks. Therefore, the reasonable planning of UGS among different urban blocks 

should be taken into account in the future. 

4.4. Limitations 

In this study, a Landsat 8 OLI image was used to retrieve LST during summer day-

time, and UGS was generated based on a GF1 image. Considering the vigorous UGS 

growth, the strongest UHI effects and data availability, the impacts of UGS on LST were 

investigated in summer. However, this impact of UGS on LST during the day is still not 

investigated because nighttime LST data are lacking, and seasonal impacts should be fur-

ther investigated. Additionally, this study was carried out in a typical urbanization city 

(Beijing). Although UHI effects is severe in the Beijing metropolitan area, the impacts of 

UGS on LST among different urban blocks may vary in different cities, such as inland 

cities and coastal cities. The impacts in other cities should be further investigated. Further-

more, both composition and configuration variables were used to quantitatively charac-

terize the UGS structure, and its impacts on LST were investigated. However, LST is not 

affected by UGS, but also by many landscape factors, such as landscapes (e.g., water, im-

pervious surface and road), urban morphology (e.g., building height, sky view factor and 

frontal area index) and meteorology (e.g., relative humidity, rainfall and wind) 

[25,55,75,76]. Due to data availability, these factors were not taken into account in this 

study, and it should be further investigated to comprehensively understand the impacts. 

5. Conclusions 

Taking Beijing as the study area, this study explored the impacts of UGS on LST 

among different urban blocks based on GF1 image, Landsat 8 OLI image, urban block 

dataset and meteorological data. The key characteristics of UGS influencing LST among 

different urban blocks were identified. 

The results show that both UGS and LST have significant spatial differences. Average 

LST is significantly lower than urban blocks, indicating that UGS serves as cold islands in 

the study area. Both the composition and configuration of UGS can affect LST, and the 

contribution of UGS to LST varies among different urban blocks. The PLAND of UGS in 

all types of urban blocks, the ED of UGS in MRS, the FRAC_AM of UGS in HRS and the 

HRB show significantly negative impacts on LST, while the AI of UGS in LRP shows sig-

nificantly positive impacts. It is emphasized that the reasonable planning of composition 

and configuration of UGS should be taken into account in designing different types of 

urban blocks in the future. The findings can extend the scientific understanding of the 

impacts of UGS characters on LST among different urban blocks. It provides guidance on 

optimizing UGS among different types of urban blocks for urban planners. 
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