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Abstract: Urban green space (UGS) can be regarded as an effective approach to mitigate urban heat
island (UHI) effects. Many studies have investigated the impacts of composition and configuration of
UGS on land surface temperature (LST), while little attention has been paid to the impacts among
different urban blocks. Thus, taking 1835 urban blocks in Beijing as samples, including low-rise
point (LRP), low-rise street (LRS), low-rise block (LRB), mid-rise point (MRP), mid-rise street (MRS),
mid-rise block (MRB), high-rise point (HRP), high-rise street (HRS) and high-rise block (HRB), this
study investigated the impacts of UGS on LST among different urban blocks. The results showed
that UGS serves as cold islands among different urban blocks. Percentage of landscape (PLAND) of
UGS in all types of urban blocks, edge density (ED) of UGS in MRS, area-weighted fractal dimension
index (FRAC_AM) of UGS in HRS and HRB show significantly negative impacts on LST, while
aggregation index (AI) of UGS in LRP shows significantly positive impacts. The findings suggest that
both composition and configuration of UGS can affect LST among different urban blocks and rational
allocation of UGS would be effective for mitigating UHI effects.

Keywords: urban green space; land surface temperature; urban blocks; composition and configuration

1. Introduction

Urban heat island (UHI) is the phenomenon that the temperature in urban areas is
significantly higher than that in the suburbs [1,2]. It is widely accepted that urbanization is
the primary factor contributing to UHI effects, while UHI leads to negative impacts on the
urban climate and dwellers, such as increased energy consumption, increased pollutant con-
centration, increased health issues and reduced thermal comfort of urban dwellers [3–9].
Noteworthily, with the development of urbanization, the negative impacts will be fur-
ther exacerbated [10,11]. Therefore, mitigating the UHI effects is of great significance in
improving urban climate and thermal comfort.

With the development of remote sensing technology, a series of images, such as Moder-
ate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer
Suite (VIIRS), Landsat and ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station (ECOSTRESS), have the advantages of wide cover range, real time and rapid-
ity, which can provide credible and fundamental data for land surface temperature (LST)
research [12–15]. Furthermore, due to different temporal and spatial resolutions, these data
have been widely used for LST research at city, nation and global scales [12,16–19]. These
studies have provided a better understanding of monitoring LST changes and influence
mechanisms of UHI effects.

Urban landscapes, such as impervious surface, water bodies and vegetation, have
been recognized as the main factor affecting the UHI [20,21]. Numerous studies have
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investigated the impacts of urban landscapes on LST [20,22,23]. Generally, impervious
surface can enhance surface sensible heat flux, which leads to increase LST [10,24,25]. On
the contrary, water bodies and vegetation can decrease LST, and the main reasons are high
heat capacity and evaporative cooling of the former and increasing latent heat flux of the
latter, respectively [3,23,26]. Therefore, the reasonable allocation of landscapes has become
one of the effective measures to mitigate the UHI effects [27,28].

Urban green space (UGS), which is mainly composed of all types of vegetation, such
as grasslands, forests and green belts, is considered as an effective approach to mitigate the
UHI effects [28–34]. Many scholars have investigated the impacts of UGS on LST, noting
that UGS can significantly reduce LST [4,35–37]. This is mainly because UGS can affect
humidity and albedo of land surface, which leads to reduce LST [38–40]. It is emphasized
that both composition and configuration of UGS can affect LST [29,32,41]. Generally, it
is widely accepted that the higher amount of UGS the better the cooling effect [32,41,42].
For example, Mahyar and Puar (2019) [32] investigated the impacts of spatial pattern of
UGS on LST and emphasized that increasing the amount of UGS can reduce LST. Zhou
and Cao (2020) [42] also found that UGS has a significantly negative correction with LST
in summer. Furthermore, configuration (e.g., shape, aggregation and connectivity) of
UGS is emphasized as another key factor, which can also influence LST. Generally, the
more complex the shape of UGS, the better the cooling effect [41,43,44]. Additionally,
studies pointed out that different aggregation of UGS has different impacts on LST. For
example, Estoque et al. (2017) [23] investigated the relationship between the spatial pattern
of UGS and LST, noting that the aggregation of UGS has a positive relationship with
LST. Kong et al. (2016) [45] found that as the aggregation of UGS increases, LST increases
initially and then decreases. Similar to aggregation, the connectivity of UGS also has
different impacts on LST. For example, Asgarian et al. (2015) [46] and Chen et al. (2014) [47]
emphasized that UGS with higher connectivity can increase the cooling effect, whereas
Li et al. (2013) [43] and Zhou et al. (2011) [48] observed the opposite effect.

Existing studies have investigated the impacts of UGS on LST, and the analysis scales
mainly focus on grid, city and region [25,32,49,50]. However, little attention has been
given to urban block scale. Generally, cities are composed many urban blocks, including
many landscapes, especially buildings with different heights and layouts, which can
significantly affect thermal environment [51]. It also brings great challenges for UGS
planning in mitigating UHI effects among different urban blocks. Therefore, it is necessary
to investigate the impacts of UGS on LST among different urban blocks.

Landscape indices, which can reflect landscape pattern characteristics, are widely used
to quantify the spatial composition and configuration of landscapes. Composition indices,
such as percentage of landscape (PLAND) and total landscape area (TA), can quantify
the abundance and variety of landscape [52]. Configuration indices, such as landscape
shape index (LSI), interspersion juxtaposition index (IJI) and aggregation index (AI), can
quantify spatial distribution and arrangement of landscape [36,42,52]. These two types
of indices can not only describe different aspects of the landscape, but also complement
each other [35,52]. Therefore, both composition and configuration indices were applied to
characterize the UGS structure in this study.

The aim of this study is to explore the differences of UGS characteristics influencing
LST from urban block perspectives. The main objects of this study were (1) to analyze the
spatial pattern of LST and UGS; (2) to investigate the composition of UGS among different
urban blocks; (3) to analyze the LST difference between urban blocks and UGS; and (4) to
explore the impacts of UGS on LST among different urban blocks. This study provides
scientific guidance to urban planners on how to mitigate the UHI effects among different
urban blocks through the rational allocation of UGS.
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2. Materials and Methods
2.1. Study Area

Beijing is the capital of China (39◦26′–41◦03′N, 115◦25′–117◦30′E), and it covers an
area of 16, 410 km2 (Figure 1). Since the 1978 economic reform and opening-up policy,
Beijing has experienced rapid urbanization, which has accelerated the transformation from
natural surface into impervious surface. By the end of 2019, Beijing’s population reached
21.54 million, with an urbanization ratio of 87.53%. High urbanization level makes Beijing
become one of the most severe UHI effects cities in China.
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Figure 1. Location of the study area.

The study area is located within the 5th ring road, which covers an area of approx-
imately 668 km2 (Figure 1). Although this region comprises only 4.07% of the total area
of Beijing, it has the highest urbanization level. In particular, due to rapid urbanization,
urban surface landscapes, especially three-dimensional buildings (low-rise, mid-rise and
high-rise buildings), have changed drastically, which significantly affects urban ventilation
conditions and thermal environment [5,7,53–56]. Therefore, the diversity of buildings made
this region a good choice for investigating the impacts of UGS on LST among different
urban blocks.

2.2. Data Sources

Urban blocks dataset, Gaofen1 (GF1) image, Landsat 8 OLI image and meteorological
data were used in this study.

Urban blocks dataset was derived from Beijing City Laboratory (BCL). Eleven at-
tributes, such as ID of the block, number of buildings and types of street block form, are
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included in this dataset. Taking building floors and density as classification criteria, urban
blocks were classified into nine categories, including low-rise point (LRP), low-rise street
(LRS), low-rise block (LRB), mid-rise point (MRP), mid-rise street (MRS), mid-rise block
(MRB), high-rise point (HRP), high-rise street (HRS) and high-rise block (HRB), and the
details can be seen in Table 1. In this study, nine types of urban blocks in Beijing were
extracted to investigate the impacts of UGS on LST among different urban blocks.

Table 1. Classification criteria of urban blocks.

Types Building Floors Building Density

LRP 1–3 0–0.15
LRS 1–3 0.15–0.25
LRB 1–3 >0.25
MRP 4–7 0–0.15
MRS 4–7 0.15–0.25
MRB 4–7 >0.25
HRP ≥8 0–0.15
HRS ≥8 0.15–0.25
HRB ≥8 >0.25

GF1 image was derived from Resources and Environmental Scientific Data Cen-
ter (RESDC) and Chinese Academy of Sciences (CAS) and the acquisition dates was
19 September 2020. Four multi-spectral bands (blue, green, red and near infrared) were
included in this image, with a spatial resolution of 16 m, and the image was cloud-free in
the study area. The image was used to extract precise UGS because it has better spatial
resolution than Landsat image.

Landsat 8 OLI image was acquired from the United States Geological Survey (USGS)
on 7 August 2020. The thermal infrared band (band10), which had a spatial resolution of
120 m, was used to retrieve the LST. In particular, the image was cloud-free, which can
guarantee the accuracy of further processing.

Meteorological data were derived from China Meteorological Administration. Meteo-
rological variables, such as air temperature, precipitation and wind speed, are included in
this data. Given the acquisition time of the Landsat image was 10:52 (GMT + 8), therefore,
hourly observed air temperature at 20 meteorological stations was extracted to validate the
retrieved LST.

2.3. Methods

The flowchart of this study is as follows (Figure 2). First, UGS was extracted by
a GF1 image based on object-oriented method, and LST was retrieved from a Landsat
8 OLI image based on image-based method (IBM). Second, urban blocks samples were
selected based on UGS and urban block dataset. Third, spatial distribution of LST and
UGS were analyzed. Fourth, composition of UGS among different urban blocks was
analyzed. Fifth, LST difference between urban blocks and UGS were analyzed. Finally, the
impacts of composition and configuration of UGS on LST among different urban blocks
were investigated.

2.3.1. Extraction of UGS

Object-oriented method was used to extract UGS based on GF1 image [57,58]. Firstly,
a multiresolution segmentation method was used to determine optimal segmentation
scale. After repeated tests, the optimal segmentation scale, shape and compactness were
determined as 10, 0.4 and 0.5, respectively. Secondly, UGS samples, which were acquired
from Google Map and Baidu Map were selected and classification rules were established
based on image information, including spectrum, texture and shape. Finally, neighbor
algorithm was applied to extract UGS. To verify the accuracy of UGS, 500 samples were
randomly selected. Taking Google Map as criteria, the accuracy of UGS was 92.80%. It can
guarantee the accuracy of UGS for further analysis.
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Figure 2. Flowchart of this study.

2.3.2. Selection of Urban Block Samples

To investigate the impacts of UGS on LST among different urban blocks, nine types of
urban blocks were used in this study. Given the area of urban blocks and percentage of
interior UGS, urban block samples were selected as follows. Firstly, percentage of interior
UGS in each urban block were calculated. Secondly, blocks with an area greater than
15,000 m2 and percentage of UGS greater than 1% were selected. Finally, 1835 urban blocks,
including LRP (289), LRS (193), LRB (339), MRP (84), MRS (226), MRB (333), HRP (62), HRS
(161) and HRB (148), were selected as samples to investigate the impacts of UGS on LST
(Table 2), and the spatial distribution of urban block samples is shown in Figure 3.

Table 2. The number of different types of urban block samples.

Types Number Proportion

LRP 289 15.75%
LRS 193 10.52%
LRB 339 18.47%
MRP 84 4.58%
MRS 226 12.32%
MRB 333 18.15%
HRP 62 3.38%
HRS 161 8.77%
HRB 148 8.07%
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2.3.3. Retrieval of LST

Image-based method (IBM) is used to retrieve the LST [39]. The formula is as follows:

Ts =
T

1 + ( λT
ρ )lnε

(1)

where Ts is the LST, T represents the at-satellite brightness temperature, λ and ε are
wavelength at the center of emitted radiance and spectral emissivity, respectively. ρ is a
constant value derived from the headed files of Landsat 8 OLI image. In this case, ρ equals
1.438 × 10−2 mK.

To calculate T, radiation should be first determined. Radiation is converted by the
digital number (DN) of thermal band (band 10), and the formula is as follows:

Lλ = ML× DN + AL (2)

where Lλ is the spectral radiance (W·m−2·sr−1·µm−1), ML and AL are rescaled gain
(value = 3.3420 × 10−4) and rescaled bias (value = 0.1).

After calculating Lλ, the T can be calculated as follows:

T =
K2

ln
(

K1
Lλ + 1

) (3)

where K1 = 480.89 W·m−2·sr−1·µm−1 and K2 = 1201.14 K.
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ε is a key parameter in LST retrieval, and it is crucial to retrieval of LST accurately.
Usually, estimation of ε can also be divided into two steps. First, the land surface is classified
into three groups, including water, urban, and natural surface. Then, the ε of water is set as
0.995, while for urban and natural surface, the ε can be calculated by fractional vegetation
cover (FVC) (Equations (4) and (5)) [14,59]. The FVC is calculated by NDVI (Equation (6)).

εurban = 0.9589 + 0.086FVC− 0.0671FVC2 (4)

εnatural sur f ace = 0.9625 + 0.0614FVC− 0.0461FVC2 (5)

FVC =
NDVI − NDVIs

NDVIv − NDVIs
(6)

where εurban and εnatural sur f ace are the emissivity values for urban and natural surface,
respectively. FVC is the fractional vegetation cover. NDVIs and NDVIv are the NDVI for
the vegetation and soil, respectively.

2.3.4. Analytical Methods

To explore the impacts of UGS on LST among different urban blocks, a stepwise regres-
sion model was used to choose the best fit explaining variance. Some metrics, including
composition metric (PLAND) and configuration metrics (ED, area-weighted fractal dimen-
sion index (FRAC_AM), IJI, and AI), which are used to illustrate the structure of UGS, are
selected as explanatory variables to explain LST among different urban blocks [23,29,32,36].
In particular, PLAND represents quantitative characteristics. ED and FRAC_AM represent
shape complexity characteristics, and IJI and AI represent spatial aggregation characteris-
tics. These metrics can be calculated by Fragstats 4.2, and the details are shown in Table 3.

Table 3. Description of landscape metrics.

Landscape Metrics Description

PLAND The proportion of a landscape occupied by patches of a given
type, a measure of dominance.

ED The total edge length of a given patch type per unit area (hectare),
a measure of overall shape complexity.

FRAC_AM The patch fractal dimension weighted by relative patch area, a
measure of shape complexity of individual patches.

IJI A measure of the degree to which the corresponding patch type is
equally adjacent to all other patch types.

AI
The number of joins divided by the maximum possible number of
joins involving a given patch type, multiplied by 100, a measure
of the level of lumpiness of patches in a landscape.

3. Results
3.1. Validation of LST

To validate the precision of LST, observed air temperature at 20 meteorological stations
was extracted and average retrieved LST were calculated from the 5 × 5 grid cells near the
meteorological station. The relationship between observed air temperature and retrieved
LST was compared, as shown in Figure 4. The result shows that LST and observed air
temperature is highly correlated, with R2 of 0.99. The RMSE of 2.75, and the mean difference
is −2.54 ◦C, indicating that retrieved LST is higher than the observed air temperature.
Although there are differences between observed air temperature and retrieved LST, it
has high consistency. Therefore, the retrieved LST is reliable, which can reflect changes of
LST accurately.
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3.2. Spatial Distribution of UGS and LST

The spatial distribution of UGS and LST is shown in Figure 5. The result shows
that both UGS and LST have significant spatial differences. Figure 5a shows the spatial
distribution of UGS, and UGS is mainly distributed within the Fifth Ring Road, especially
in parks, such as Summer Palace, Old Summer Palace and Olympics Park, where it is
scattered within the Fourth Ring Road. The LST of the study area ranged from 24.87 ◦C to
47.98 ◦C, with an average LST of 37.48 ◦C (Figure 5b). The LST shows a pattern of “high in
the central and low in the surrounding areas”. The high LST is located in the central area,
especially in the Second Ring Road, while low in the northwest and northeast of the study
area. Obviously, there are many buildings and impervious surfaces in the central area of
the study area, while many parks are located in the surrounding areas. Therefore, the LST
of UGS is relatively lower than other landscape types, indicating that UGS serves as cold
islands in the study area.

3.3. Composition of UGS among Different Urban Blocks

Table 4 shows the composition of UGS among different urban blocks. The result
shows that the average proportion of UGS in low-density (building density lower than
0.15) blocks is the highest, followed by middle-density (building density ranged from
0.15 to 0.25) blocks, and high-density (building density higher than 0.25) blocks is the
lowest. For low-rise blocks, the average proportion of UGS in LRP, LRS and LRB are 48.98%,
39.36% and 26.85%, respectively. Additionally, the average proportion of UGS in mid-rise
blocks and high-rise blocks are similar to low-rise blocks. For mid-rise blocks, the average
proportion of UGS in MRP, MRS and MRB are 42.07%, 27.21%, and 14.43%, respectively.
For high-rise blocks, the average proportion of UGS in HRP, HRS and HRB are 36.26%,
22.47% and 14.79%, respectively. Therefore, the coverage of UGS decreases as the building
density increases.
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Table 4. Composition of UGS among different urban blocks.

Types
Proportion of UGS

Minimum Maximun Average

LRP 3.41% 99.97% 48.98%
LRS 1.00% 79.40% 39.36%
LRB 0.66% 73.59% 26.85%
MRP 5.40% 96.87% 42.07%
MRS 1.56% 80.42% 27.21%
MRB 1.41% 72.77% 14.43%
HRP 1.55% 81.26% 36.26%
HRS 1.91% 81.94% 22.47%
HRB 1.41% 96.87% 14.79%

3.4. LST Difference between Urban Blocks and UGS

To investigate LST difference between urban blocks and UGS, average LST in each
urban block and UGS were calculated and boxplot was shown in Figure 6. The result shows
that there are significant differences in LST between urban blocks and UGS. Obviously,
average LST in UGS is lower than that in urban blocks. In the study area, average LST
ranged from 36.31 ◦C (HRP) to 38.48 ◦C (MRB) in urban blocks and ranged from 35.91 ◦C
(HRP) to 37.66 ◦C (MRB) in UGS. It indicated that UGS plays the role of a cooling island
in urban blocks. Additionally, average LST in urban blocks and UGS have a positive
relationship with building density, indicating that the higher the building density, the
higher the LST.

Moreover, LST difference varies with building density among different urban blocks.
Comparing different density types, LST differences in low-density blocks is the lowest,
followed by middle-density blocks and high-density blocks is the highest.

Furthermore, it is obvious that LST difference increases as building floors increase.
LST difference in low-rise (building floor ranged from 1 to 3) blocks is the highest, followed
by mid-rise (building floor ranged from 4 to 7) blocks and high-rise (building floor higher
than 7) blocks is the least.
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3.5. Impacts of UGS on LST among Different Urban Blocks

Both composition (PLAND) and configuration (ED, FRAC_AM, IJI and AI) variables
were used to investigate the impacts of UGS on LST among different urban blocks, and the
key characteristics of UGS influencing LST among different urban blocks were identified
(Table 5). The result shows that both the composition and configuration of UGS influences
LST, and the contribution of UGS to LST varies among different urban blocks. Additionally,
it should be noted that PLAND of UGS shows significantly negative impacts on LST in all
types of urban blocks, while configuration variables of UGS show different impacts on LST
among different urban blocks. In particular, IJI of UGS was not found to have a significant
impact on LST in all types of urban blocks.

Table 5. Impacts of composition and configuration variables of UGS on LST among different
urban blocks.

Types Variables Standardized Cofficient R2

LRP
PLAND −0.55 **

0.22AI 0.23 **
LRS PLAND −0.43 ** 0.18
LRB PLAND −0.48 ** 0.23
MRP PLAND −0.46 ** 0.20

MRS
PLAND −0.39 **

0.24ED −0.20 **
MRB PLAND −0.41 ** 0.17
HRP PLAND −0.46 ** 0.20

HRS
PLAND −0.29 **

0.13FRAC_AM −0.19 *

HRB
PLAND −0.41 **

0.15FRAC_AM −0.16 *
** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).

For low-rise urban blocks, the PLAND and AI of UGS in LRP are significantly related to
LST, while only one composition variable (PLAND) of UGS in LRS and LRB is significantly
related to LST (Table 5). On average, 21% of low-rise urban blocks’ LST is explained by the
composition and configuration of UGS. Particularly, the PLAND of UGS has significantly
negative impacts on LST, while the AI of UGS has positive impacts on LST. The LRP,
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PLAND and AI of UGS can explain 22% of the variance in LST, and the PLAND and AI
of UGS show significantly negative and positive impacts on LST, respectively, indicating
that UGS with large density and low aggregation leads to decreased LST. For LRS and LRB,
the PLAND of UGS can explain 18% and 23% of the variance in LST, and it has significant
negative impacts on LST, suggesting that the larger the UGS density is, the lower the LST.

For mid-rise urban blocks, the PLAND and ED of UGS in MRS are significantly
related to LST, while only one composition variable (PLAND) of UGS in MRP and MRB
is significantly related to LST (Table 5). On average, 20% of mid-rise urban blocks’ LST is
explained by the composition and configuration of UGS. Particularly, the PLAND and ED
of UGS have significantly negative impacts on LST. The MRS, PLAND and ED of UGS can
explain 24% of the variance in LST, and the PLAND and ED of UGS show significantly
negative impacts on LST, indicating that UGS with large density and high edge density
lead to decrease LST. For MRP and MRB, the PLAND of UGS can explain 20% and 17%
of the variance in LST, and it has significant negative impacts on LST, suggesting that the
larger the UGS density is, the lower the LST.

For high-rise urban blocks, the PLAND and FRAC_AM of UGS in HRS and HRB are
significantly related to LST, while only one composition variables (PLAND) of UGS in HRP
is significantly related to LST (Table 5). On average, 16% of high-rise urban blocks’ LST
is explained by the composition and configuration of UGS. Particularly, the PLAND and
FRAC_AM of UGS have significantly negative impacts on LST. For HRS and HRB, the
PLAND and FRAC_AM of UGS can explain 13% and 15% of the variance in LST, and the
PLAND and FRAC_AM of UGS have significantly negative impacts on LST, indicating that
UGS with large density and high area weighted mean fractal dimension leads to decreased
LST. For HRP, the PLAND of UGS can explain 20% of the variance in LST, and it has
significant negative impacts on LST, suggesting that the larger the UGS density is, the lower
the LST.

4. Discussion
4.1. Contribution of UGS to LST

Many studies have pointed out that UGS has cooling effects [28–34,60,61]. However,
the contribution of UGS to LST is not clear. To further investigate the contribution, contribu-
tion index (CI), which refers to the degree of contribution (heating or cooling) of landscape
to the thermal environment, was used in this study [62,63]. CI equals LST difference be-
tween UGS and urban blocks multiplies percentage of UGS in urban blocks. The positive
and negative value of CI indicated that UGS is heating or cooling the LST. The spatial
distribution of CI among different urban blocks is shown in Figure 7. The result shows
that UGS has significant cooling effects in urban blocks, and the CI of UGS has significant
spatial differences.

The CI of UGS ranged from −0.003 to −0.35 among different urban blocks, with an
average CI of −0.10, indicating that UGS can significantly decrease LST (Figure 7). High CI
of UGS is mainly distributed in central areas, such as the 2nd and 3rd Ring Roads, while
it is low within the 5th Ring Road. It indicated that UGS has better cooling effects in the
surrounding areas than that in the central areas because LST in the central areas is high in
the daytime. There are also differences in the CI of UGS among different urban blocks. The
CI of UGS in LRB, MRS, MRB, MRP, HRP, HRS and HRB are mainly between −0.1 and 0,
while in other urban blocks it is mainly between −0.2 and −0.1. The number of blocks with
CI between −0.1 and 0 of UGS in LRB, MRS, MRB, HRP, HRS and HRB are 193, 128, 288,
25, 113 and 127, with the proportion of 56.93%, 56.64%, 86.49%, 40.32%, 70.19 and 85.81%,
respectively, indicating that UGS has low cooling effects in most of these urban blocks. For
LRP, LRS and MRP, the number of stations with CI between −0.2 and −0.1 of UGS are 118,
87 and 36, with the proportion of 40.83%, 45.08 and 42.86%, respectively, suggesting that
UGS has better cooling effects in most of these urban blocks.
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4.2. Comparisons with Other Studies

Previous studies have investigated the impacts of UGS on LST, noting that UGS plays
the key role in mitigating the UHI effects. Generally, the analysis scales of existing studies
were mainly focus on grid, city and region [25,32,49,50]. For example, for grid scale, NDVI
was widely used to chosen as the indicator to examine the relationship between UGS and
LST, and a negative correlation were observed [64]. The impacts were explored in city
(e.g., Beijing, Penang and Brisbane) and region scale (e.g., Singapore and Southeast Asia),
and pointed out that UGS can effectively mitigate UHI effects [25,32,50,65]. However,
little attention has been given to the impacts from urban blocks perspectives, and how
UGS plays a role in LST among different urban blocks is also unclear. Urban block is the
basic unit of urban fabric, and there are buildings with different heights and layouts in
an urban block, which can significantly affect thermal environment [51]. Therefore, this
study adopted urban block as an analysis scale for investigating the impacts, which is
different from previous studies. We believe that our finding can provide a new perspective
on mitigating the UHI effects on block scale.

It is emphasized that both composition and configuration of UGS can affect LST, and
our findings observed it at the block scale, which is in line with previous studies [29,32,41].
However, our findings highlight that the role of UGS in mitigating the UHI effects varies
with urban blocks types. For composition variable, the proportion of UGS has negative
impacts on LST [32,41,42], and our findings emphasized that the PLAND of UGS has
significantly negative impacts on LST in all types of urban blocks. It is consistent with
previous studies [32,41,42]. For configuration variables, our findings emphasized that the
composition of UGS affects LST in some types of urban blocks, which is different from
previous studies. Our results showed that the increased shape complexity of UGS in MRS,
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HRS and HRB can effectively reduce LST because the increased shape complexity of UGS
can promote energy exchange between vegetation and building area, resulting in cooling
the LST [41,66]. Our results showed that the increased aggregation of UGS in LRP can
effectively increase LST. As Kong et al. (2014) [45] reported, discrete UGS has better cooling
effect. Though there is no configuration variable of UGS in other urban types, it does not
invalidate our results.

4.3. Implications for UGS Planning and UHI Mitigation

UGS is recognized as an effective approach to mitigate the UHI effects [28–32]. Our
findings emphasized that both the composition and configuration of UGS can affect LST,
and the impacts vary with different types of urban blocks [29,32,41]. Therefore, differential
UGS planning for UHI migration should be implemented among different urban blocks.

In general, the higher the proportion of UGS, the better the cooling effect [32,41,42]. In
this study, it is found that the PLAND of UGS has significantly negative impacts on LST
in all types of urban blocks. It also provides a potential approach to mitigate UHI effects.
Therefore, the increasing proportion of UGS should be taken into reasonable account in
the future. Given the limited availability of lands for UGS in the Beijing metropolitan area,
some strategies, such as roof and vertical greening, can be taken into account [67–69].

Moreover, our findings emphasized that the spatial configuration of UGS shows
different impacts on LST among different urban blocks. This is mainly because that the
configuration of UGS can affect the energy flow between different landscapes [70,71].
For low-rise blocks, UGS with low aggregation in LRS contributes to decrease LST. The
more discrete the UGS, the better the cooling effect. For MRS, the ED of UGS is the
key configuration variable. Our finding suggested that UGS with high edge density can
significantly reduce LST. Increasing the length of UGS boundaries can effectively mitigate
LST. Unlike low-rise and mid-rise blocks, high-rise blocks usually have better ventilation
conditions due to more shade and large intervals of high-rise buildings [7,72–74]. One
the one hand, high-rise buildings create more shade, which can change the impervious
ability to absorb and emit energy, contributing to a cooling effect [36]. On the other hand,
large intervals of high buildings facilitate the heat diffusion outward, leading to decreased
LST [41]. Our finding also pointed out that the FRAC_AM of UGS is the key configuration
variable in HRS and HRB, and it has significant negative impacts on LST. Increasing the
complexity of UGS boundaries can be regarded as an effective approach to mitigate LST.
However, there is no significant contribution of the configuration variable of UGS to LST
in other urban blocks. Therefore, the reasonable planning of UGS among different urban
blocks should be taken into account in the future.

4.4. Limitations

In this study, a Landsat 8 OLI image was used to retrieve LST during summer daytime,
and UGS was generated based on a GF1 image. Considering the vigorous UGS growth, the
strongest UHI effects and data availability, the impacts of UGS on LST were investigated
in summer. However, this impact of UGS on LST during the day is still not investigated
because nighttime LST data are lacking, and seasonal impacts should be further inves-
tigated. Additionally, this study was carried out in a typical urbanization city (Beijing).
Although UHI effects is severe in the Beijing metropolitan area, the impacts of UGS on
LST among different urban blocks may vary in different cities, such as inland cities and
coastal cities. The impacts in other cities should be further investigated. Furthermore,
both composition and configuration variables were used to quantitatively characterize the
UGS structure, and its impacts on LST were investigated. However, LST is not affected
by UGS, but also by many landscape factors, such as landscapes (e.g., water, impervious
surface and road), urban morphology (e.g., building height, sky view factor and frontal
area index) and meteorology (e.g., relative humidity, rainfall and wind) [25,55,75,76]. Due
to data availability, these factors were not taken into account in this study, and it should be
further investigated to comprehensively understand the impacts.
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5. Conclusions

Taking Beijing as the study area, this study explored the impacts of UGS on LST among
different urban blocks based on GF1 image, Landsat 8 OLI image, urban block dataset and
meteorological data. The key characteristics of UGS influencing LST among different urban
blocks were identified.

The results show that both UGS and LST have significant spatial differences. Average
LST is significantly lower than urban blocks, indicating that UGS serves as cold islands
in the study area. Both the composition and configuration of UGS can affect LST, and the
contribution of UGS to LST varies among different urban blocks. The PLAND of UGS
in all types of urban blocks, the ED of UGS in MRS, the FRAC_AM of UGS in HRS and
the HRB show significantly negative impacts on LST, while the AI of UGS in LRP shows
significantly positive impacts. It is emphasized that the reasonable planning of composition
and configuration of UGS should be taken into account in designing different types of
urban blocks in the future. The findings can extend the scientific understanding of the
impacts of UGS characters on LST among different urban blocks. It provides guidance on
optimizing UGS among different types of urban blocks for urban planners.
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