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Abstract: Superpixels could aggregate pixels with similar properties, thus reducing the number of
image primitives for subsequent advanced computer vision tasks. Nevertheless, existing algorithms
are not effective enough to tackle computing redundancy and inaccurate segmentation. To this end, an
optimized superpixel generation framework termed Boundary Awareness and Content Adaptation
(BACA) is presented. Firstly, an adaptive seed sampling method based on content complexity is
proposed in the initialization stage. Different from the conventional uniform mesh initialization,
it takes content differentiation into consideration to incipiently eliminate the redundancy of seed
distribution. In addition to the efficient initialization strategy, this work also leverages contour
prior information to strengthen the boundary adherence from whole to part. During the similarity
calculation of inspecting the unlabeled pixels in the non-iterative clustering framework, a multi-
feature associated measurement is put forward to ameliorate the misclassification of boundary pixels.
Experimental results indicate that the two optimizations could generate a synergistic effect. The
integrated BACA achieves an outstanding under-segmentation error (3.34%) on the BSD dataset over
the state-of-the-art performances with a minimum number of superpixels (345). Furthermore, it is
not limited to image segmentation and can be facilitated by remote sensing imaging analysis.

Keywords: superpixel; seed initialization; boundary awareness; content adaptation

1. Introduction

With the massive increase in image data, traditional segmentation algorithms based on
pixel processing can no longer meet the needs of daily processing. Superpixel segmentation
can deal with this problem effectively to a certain extent.

The new concept of the superpixel was first proposed in [1], which defines it as a
pixel collection where the color, texture or other information of pixels is basically the
same. The superpixel algorithm divides the image into different regions that contain
more perceptual information by using correlation measurement based on visual features.
Compared with pixel features, the superpixel is a region-based feature, which is the
extraction of local information from an image and it is beneficial to the expression of
image structure information. Users can segment the image into hundreds or thousands of
superpixels according to their own requirements, and directly process these hundreds or
thousands of superpixels, which reduces the amount of data to be processed, reduces the
computational complexity, speeds up the task processing, and improves the performance
of the algorithm.

A superpixel does not continue to subdivide the ordinary pixels of a pixel-level
image into region-level images, forming a series of pixel sets. Instead, it divides a pixel-
level image into a region-level image to form a series of pixel sets. In other words, basic
information elements are abstracted by adding constraints, such as color, texture [2] and
distance between pixels. Superpixels “aggregate” pixels with similar properties into a larger,
more representative “element” that will serve as the basic unit for other image processing
algorithms. Compared with semantic segmentation and instance segmentation, superpixel
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segmentation can reduce dimensions and eliminate some abnormal pixels [3]. In fact,
the traditional pixel level processing can be considered to transform into superpixel level
processing. Excellent superpixel algorithms can effectively extract visual information from
images and improve the efficiency of the following work. They have a high comprehensive
evaluation in terms of Algorithm speed [4], object contour retention [5] and superpixel
shape, and are more in line with the expected segmentation effect.

Focusing on the field of remote sensing, many applications use superpixels as process-
ing units, which is conducive to reducing data dimension and computational complexity,
thus significantly improving performance, and opening up new application scenarios for
superpixels in the field of remote sensing. In 2019, Girau et al. [6] proposed a color transfer
model based on superpixels, using a fast parity neighbor matching algorithm to achieve
color transfer. Our team has shown in [7] that the superpixel contributes to the application of
remote sensing analysis and image segmentation. Arisoy et al. [8] proposed a mixture-based
superpixel segmentation and classification of SAR images. With its many advantages, the
superpixel has developed rapidly in recent years in domestic and foreign institutions, and
new algorithms keep emerging. The superpixel algorithm has become a key technology in the
field of computer vision and application research of image analysis and understanding [9–17].
Figure 1 shows the application of some superpixels in remote sensing.
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Figure 1. Three applications of superpixels in remote sensing images. (a) Remote sensing image
segmentation; (b) Color transfer of remote sensing images. The image in the red box is the target
image; (c) Reconstruction of average color on Superpixel-based is used for remote sensing tasks, such
as supervised land—sea area change detection.

The existing algorithms are not effective enough to solve the problems of computa-
tional redundancy and inaccurate segmentation, which often lead to complex computation
while pursuing accurate segmentation. This is contrary to the original intention of reduc-
ing computational redundancy and the number of image primitives through superpixel
processing. In addition, blurred boundaries between foreground and background may
occur in the image [18]. Such pixels with similar color and spatial distance are easy to be
misjudged as congeneric pixels. General correlation measurements are unable to solve the
above problems.

Based on these considerations, an optimized Superpixel algorithm called Superpixel
Segmentation with Boundary Awareness and Content Adaptation (BACA) is proposed.
In this work, we use Simple Non-iterative Clustering (SNIC) [19], a well-known and
solid algorithm, which promotes the computing efficiency of Simple Linear Clustering
(SLIC) [20]. Different from other superpixel algorithms whose sole purpose is to improve
superpixel performance, BACA’s initialization optimization and correlation measurement
can be grafted onto mainstream superpixel algorithms to optimize the overall structure
and improve performance.



Remote Sens. 2022, 14, 4572 3 of 19

BACA also belongs to the non-iterative clustering framework. In the initialization
stage, we abandon the traditional initialization method of uniform grid sampling and
generate initialization seeds adaptively through content complexity. It could distribute
seeds adaptively according to the image content. Fewer seed points are allocated in the
background simple region to reduce unnecessary computation and constrain the number
of seeds in essence. The complex content or the region of interest formulate the initializa-
tion strategy to form detail superpixels. This is conducted to reduce the computational
redundancy of pixels in a simple region.

In order to solve the problem of the non-iterative clustering framework, a large number
of pixels are checked multiple times. We use the contour enhancement factor to judge the
foreground and background at one time to avoid double calculation. The contour constraint
metric is combined with the color-spatial five-dimensional joint metric to aggregate pixels
in a more accurate manner.

In the context of previous work, the improvements and contributions of this paper
can be listed as follows:

(1) An adaptive seed sampling method based on content complexity is proposed in the
initialization stage, which can effectively reduce the computational cost and lays a
good foundation for the subsequent steps of the superpixel algorithm.

(2) A new correlation distance measurement method integrating boundary perception
and contour prior is proposed. It also overcomes the limitation of multiple calculations,
further facilitating the generation of more accurate superpixels.

(3) It objectively and truly proves the feasibility of the above two points from both
quantitative and qualitative aspects and compares it with the current nine excellent
algorithms [19,21–28]. Experimental results further verify that BACA’s segmentation
results are uniform, accurate and effective.

This paper is organized as follows. Nine excellent methods are presented in the next
section. In Section 3, the proposed BACA method is expanded on in detail. Qualitative
and quantitative results, as well as applications in remote sensing imagesare analyzed in
Section 4. Finally, Section 5 makes a brief conclusion and prospect.

2. Backgrounds

A large number of superpixel segmentation algorithms with remarkable performance
are constantly produced in this field [29–35]; they are dedicated to being ultra-fast, high-
precision, or a balanced performance to accomplish specific visual tasks. The mathematical
principles of these emerging superpixel algorithms are diverse, and the classification
methods in various investigations also emerge in endlessly.

1. Accuracy-oriented. Linear Spectral Clustering (LSC) [21] designs an approximate
correlation measurement that maps pixels to a ten-dimensional feature space and then
uses weighted K-means clustering to generate superpixels. It has a good output effect,
but the running speed of the algorithm is slow. Entropy Rate Superpixel (ERS) [22]
generates superpixels by solving the extremum of the objective function. The two
terms of the objective function affect the compactness and regularity of superpixels,
respectively. Therefore, the output results of this algorithm have a good boundary fit.

2. Efficiency-oriented. Compact Watershed (CW) [23] is an extremely efficient super-
pixel generating algorithm based on the marker-controlled watershed transformation.
It introduces spatial constraint into the gradient-based region-growing framework,
thus producing a uniform appearance with desirable segmentation quality. Superpix-
els extracted via energy-driven sampling (SEEDS) [24] starts from a regular grid, and
then refines superpixels by constantly modifying the boundary. During the iterations,
it adopts hill-climbing to solve the maximized energy cost function. In 2021, Serge
Bobbia et al. proposed the Iterative Boundaries Implicit Identification (IBIS) [25]
algorithm, which uses only a fraction of pixels in the image and implicitly identifies
superpixel boundaries, significantly improving the computational efficiency. Xia Ren
et al. proposed Structure-sensitive Superpixel Algorithm based on Non-iteration
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(SSAN) [26]. By using the priority queue structure to extend the pixel label and
designing a new centroid splitting and merging operator according to the manifold
space area element, the structure-sensitive superpixels are quickly generated.

3. Balance-oriented. Achanta et al. put forward the epoch-making Simple Linear Clus-
tering (SLIC) [20] and then updated it to Simple Non-Iterative Clustering (SNIC) [19].
Compared with the conventional K-means clustering method, it restricts the searching
range and proposes a novel color-spatial distance measurement from seed points.
Nevertheless, it does not consider the global information of the image due to its
simplicity. In the subsequent SNIC, the iterative clustering framework is substituted
by a non-iterative implementation. The optimized algorithm could execute in a single
loop with better region connectivity, less memory and faster speed. Moreover, Edge
Augmented Mean Shift (EAMS) [27] could search for patterns according to the density
in the image, which proves sufficient boundary compliance for superpixel generation
from the perspective of density estimation. Minimum Barrier Distance for Superpixel
Segmentation (MBS) [28] was published in 2018 to provide a propagation scheme for
clustering centers between adjacent levels on a hierarchical architecture, which makes
a simple trade-off between performance and efficiency.

BACA proposed in this paper belongs to the SLIC-like framework, and this clustering
superpixel algorithm is mainly introduced here.

SLIC generates superpixels by clustering pixels based on K-means clustering. In
CIELAB color space, the spatial position of pixels Ii in an image I can be represented
as vector P(Ii) = [x(Ii), y(Ii)], and their color information can be represented as vector
C(Ii) = [L(Ii), a(Ii), b(Ii)]. L(), a() and b() are the color components corresponding to
pixels of images in the CLELAB color space model. L() represents brightness, a() is range
from magenta to green, and b() represents the yellow to blue range. According to the
Euclidean distance between the cluster center and the pixels in the restricted region, the
correlation measurement is carried out, and then the labels are assigned to each pixel. The
calculation methods of color and spatial feature are Formulas (1) and (2).
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=
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(
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In order to combine the above two formulas, normalization is required, and the
normalized calculation method is Formula (3).

D
(

Ii, Ij
)
==

((
Dc

m

)2
+

(
Ds

S

)2
) 1

2

(3)

Among them, the values of m and S reflect the importance of color and spatial position
characteristics to similarity, respectively. Generally, m is selected as a fixed constant to
measure the importance of spatial and color characteristic information. When m is very
large, it means that the spatial distance is more important, and when m is very small, it
means that the color distance is more important. The size of m affects the compactness of
superpixels and it is also known as the compactness coefficient. S is set to be

√
N/K. N is

the total number of image pixels, and K is the number of superpixels preset by the user.
SNIC is an improvement on SLIC, which introduces the priority queue structure and

shift the clustering mode from the original iterative clustering to non-iterative clustering,
greatly improving the efficiency of the algorithm. The algorithm still measures the similarity
between pixels in a five-dimensional Euclidean space. Distance is measured in the same
way as the SLIC. The specific steps of the SNIC algorithm are as follows (Algorithm 1):
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Algorithm 1. SNIC segmentation algorithm

Input: the RGB image I, the total number of pixels N, the expected number K, compactness C
Output: Assigned label map L
/*Initialization*/
Initialize the label map L(xi, yi) = 0, i = 1, 2, . . . , N
divided the whole image into grids
Convert image I from RGB space to CIELAB space
/*Joint assignment and updating*/
The centers of grids are taken as the initial clustering centers
Si = (Li, ai, bi, xi, yi), i = 1, 2, . . . , K}
for k ∈ {1, 2, . . . , K} do

element e = (x, y, k, d)
Push element e into priority queue Q

end for
While Q is not empty do

Pop the top element ei of priority queue Q
Update clustering center of all region Si
If L(xi, yi) = 0 then

L(xi, yi) = ki
for Pop four or eight neighborhood pixels L(xj, yj) of the pixel do

Calculate the distance between pop pixel and clustering center Si
If L(xj, yj) = 0 then

Push element e = (x, y, k, d) into priority queue Q
end if

end for
end if
end while
return Assigned label map L

3. Our Approach

This section introduces the proposed BACA framework in detail. Firstly, an adaptive
seed sampling method based on content complexity is proposed to form an efficient
initialization strategy thus avoiding seed redundancy caused by grid sampling. At the
same time, the contour prior information is introduced to activate boundary awareness,
which strengthens the ability of accurate boundary segmentation. The schematic of the
BACA algorithm is illustrated in Figure 2.
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3.1. Optimized Initialization by Complexity

In a seed-demand algorithm, the incipient location of each seed is critical to the sub-
sequent generation of a superpixel. Nevertheless, most superpixel algorithms ignore the
importance of initialization, including SLIC and its variant algorithms, which merely utilize
a simple clustering (greedy) algorithm. Initially, the seeds are spread evenly over the entire
image. As the steps are iterated, the seed pixels merge with the surrounding pixels to form a
superpixel, as shown in Figure 3a. Figure 3b shows the initialization of SEEDS, which is to
evenly divide the image into quite a few rectangles. The initial superpixels are these rectangles.
With each iteration, the edges of the superpixels change until they converge.
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and its variant algorithms; (b) The initialization of SEEDS [24].

Neither of these initialization methods takes into account the complexity of the content
of the image itself. In general, the content of a natural image is usually uneven, and there
are multiple objects with different feature complexity. Not treating them differently incurs
additional computation and time costs. For example, superpixels find it difficult to accu-
rately capture boundaries due to their compactness. In the area of complex image content,
more attention should be paid and more seeds should be set, so that the segmentation
effect will be more accurate. In simple areas of image content, the number of seeds can
be appropriately reduced, and then the number of superpixels can be reduced to achieve
higher computational speed.

Instead of directly uniform distribution, the initialization method in this paper is based
on adaptive image content. The schematic diagram of the proposed and traditional grid
initialization is shown in Figure 4 below.

As the initial number of seeds increases, the Gaussian distribution can describe the
color content of each superpixel [36]. As shown below:

f (E; µ, σ) =
1√
2πσ

exp

−
√

(E− µ)T(E− µ)

σ2

 (4)

where E is the color vector of R′,G′,B′ three-channel of the image, where R′ = R − G,
G′ = R + G, B′ = 1

2 G′ − B. µ and σ are their corresponding mean and standard deviation,
respectively.

In this paper, the degree of prosperity color richness is used as a condition for image
content adaptation. Color richness can measure the complexity of the image content and
determine the location of seed initialization. The core of the algorithm judges the complexity
of the current region and the strategy of seed initialization. The goal of the first step is to
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calculate the color richness C(i) of each area, the color richness Call of the whole image,
and the mean value C of the color richness of n grid areas. The calculation method of color
richness is as follows:

C(i) =
√

σiR′
2 + σiB′

2 + ε×
√

µiR′
2 + µiB′

2 (5)

Call =
√

σall R′
2 + σall B′

2 + ε×
√

µall R′
2 + µall B′

2 (6)

C =
1
n

i=n

∑
i=1

C(i) (7)

where ε is the weight parameter set by the user. σR′ ,σB′ are the standard deviation of R′, B′,
respectively.µR′ , µB′ are the mean values of R′, B′.

σR′ =

√√√√√ n
∑

i=1

(
R′ i − R′

)2

n
(8)

σB′ =

√√√√√ n
∑

i=1

(
B′ i − B′

)2

n
(9)

µR′ =
1
n

i=n

∑
i=1

R′ i (10)

µB′ =
1
n

i=n

∑
i=1

B′ i (11)

where n is the expected number of superpixel blocks set by the user in advance.
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In order to make full use of the characteristics of the image itself for accurate seg-
mentation, in the following steps, the corresponding region will be initialized adaptively
according to the calculation results. After several experiments, the seed initialization
strategy will be finally set up. A schematic of the content complexity is shown in Figure 5.{

Cmax = Call, Cmin = C if C ≤ Call

Cmax = C, Cmin = Call otherwise
. (12)
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1. If the color richness of the current grid C(i) < Cmin, the current grid is defined as the
content simple region;

2. If the color richness of the current grid Cmin < C(i) < Cmax, the current grid is defined
as the content of the general complex region;

3. If the color richness of the current grid C(i) ≥ Cmax, the current grid is defined as the
content complex region.

It is worth mentioning that the natural image will appear in the whole grid, whose
color is black or white, resulting in complex content but low color richness. The current
region is treated in the same way as a region with general content complexity.

The pseudocode summary of initialization seed by complexity optimization is pre-
sented in Algorithm 2.

Algorithm 2. Seed initialization

Input: the RGB image I, the expected number K
Output: coordinates of seeds
/*Initialization*/
divided the whole image into grids
calculate the colorfulness Call of the image I by Equation (3).
for each cluster region n do

calculate the colorfulness C(i) of cluster region by Equation (2).
end for

calculate the mean value C of all n
for each cluster region n do

If C(i) ≥ max
{

C, Call
}

then
place three seeds evenly diagonally on cluster region N

else if min
{

C, Call
}
< C(i) < max

{
C, Call

}
then

place a seed in the cluster region N center
else C(i) < threshold

place a seed in the cluster region N center
end if

end for
return coordinates of seeds
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3.2. Optimized Correlation Measurement

In addition to the seed initialization, the distance measurement directly impacts the
clustering results. Previous works mainly adopt a joint measurement of color and spatial
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position to perceive color homogeneity and reflect spatial relations, which is beneficial to
the aggregation of pixels with similar color and distance in the image.

In images, the boundary between the foreground and background is frequently blurred.
Seeing Figure 6, the target pixel is similar to the background pixel. In other words, the
target pixel is semblable in color and distance to the background pixel but actually belongs
to different objects. The color—distance metrics alone often do not do a good job of
distinguishing the contours between foreground and background. In the area with small
color differences, the measurement method cannot well show the difference between pixels.
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Figure 6. Schematic diagram of blurred boundaries between foreground and background.

It is deserved to be mentioned that the outline and edge information of foreground
and background is the important information for superpixel segmentation, and also the
significant basis of accurate segmentation of the superpixel. The active contour model
transforms the segmentation problem into solving the minimum energy functional problem.
Minima drive the contour towards the edge of the object, and eventually, it will fit perfectly.
Using contour information as a tool of boundary awareness and combining it with color-
distance measurement can solve the above segmentation failure problem to a certain extent
and make the segmentation edges fit better.

Gray image G = {gi}N
i=1 is the contour map of image I (see Figure 7d), where gi is the

pixel in the contour map G and N is the number of pixels in the image I. The gray value
φ(gi) is between 0 and 255 in the contour graph G. If gi is a pixel on the contour line, then
φth ≤ φ(gi), φth is the preset threshold. In this paper, φth = 200. Before calculating the
similarity between the pixel Ii and Ij in an image, the linear path Lgij between gi and gj
in the corresponding contour graph G is traversed to see whether there is a contour line.
If there is φth ≤ φ(gk), gk ∈ Lgij on the linear path Lgij between gi and gj, it indicates that
there are contours between pixels Ii and Ij in image I, as shown in Figure 7.

λ
(

Ii, Ij
)
=

{
1, if ∃gk ∈ Lgij , s.t. φth ≤ φ(gk)

0, if ∀gk ∈ Lgij , s.t. φth > φ(gk)
(13)

Combining the contour constraint metric with the color-distance five-dimensional
joint metric:

Dnew = D
(

Ii, Ij
)
·
(
1 + ω · λ

(
Ii, Ij

))
(14)

where ω is the contour enhancement factor. When λ
(

Ii, Ij
)
= 0, the formula is the color-

space five-dimensional joint metric.
After the optimization of the color-spatial five-dimensional joint metric, the image

contour information is reflected in the formula as an important impact factor. When
the difference between foreground and background is small, the trimmer as the contour



Remote Sens. 2022, 14, 4572 10 of 19

enhancement factor will play an important role in pixel classification. The correlation
measurement framework incorporating contour information is shown in Figure 7.

It should be noted here that any effective contour edge detection algorithm can be
applied to the framework of this paper. The choice of a suitable contour detection algorithm
depends on the current application scenarios and fields.
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input image; (g) Illustration of pixels in different context in contour gray image; (h) Final result of
superpixel generation.

4. Experiment and Discussion

The experimental and analytical framework is designed. First, the dataset and the
related algorithms for comparison are explained. Secondly, the qualitative and quantitative
advantages of BACA are evaluated from whole to part, and the synergistic effect of the two
strategies is further verified by ablation experiments. More importantly, BACA is discussed
in the field of remote sensing in Section 4.3.

4.1. Experiment Setup

This experiment is performed on the Berkeley Segmentation Data Set and Benchmarks
500 (BSDS500) [37], including 500 natural images, ground-truth human annotations and
benchmarking code. In this paper, 150 images are randomly selected in the data set for
the experiment. Accuracy-oriented superpixel algorithms LSC [21], ERS [22], efficiency-
oriented superpixel algorithms CW [23], SEEDS [24], IBIS [25], SSAN [26] and balance-
oriented superpixel algorithms SNIC [19], EAMS [27], IBIS [28] are compared to prove the
superiority of BACA. The abovementioned methods borrow their default parameters and
code. All methods are executed on an Intel Core i7 4.2 GHz with 16 GB RAM without any
parallelization or GPU processing.

4.2. Algorithm Analysis

In this part, the performance of the proposed BACA is fully verified and analyzed to
verify its superiority. Firstly, the visual effects of the output superpixel are demonstrated
along with several other state-of-the-art (SOTA) algorithms, which are all based on valid code
and parameters. Secondly, the quantitative results of several metrics including Boundary
Recall (BR), Achievable Segmentation Accuracy (ASA), Under-segmentation Error (UE) and
Compactness (CO) are compared to show the desirable performance. Finally, the effectiveness
of boundary awareness for the superpixel algorithm is verified by ablation experiments.
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4.2.1. Visual Comparisons of Superpixel Results

Figure 8 shows the visual segmentation results of eight methods on the BSDS500
dataset. It can be observed from Figure 8c,d that the segmentation curves of EAMS, ERS
and SEEDS are chaotic and uneven. Among them is ERS, which captures almost all the
details, but the over-segmentation results cannot provide support for successful work. On
the contrary, the remaining five algorithms could generate compact and uniform superpix-
els. CW is a spatially constrained superpixel algorithm with a controllable number and
compactness to produce a trim appearance. However, BACA was better able to segment
the contours of objects in areas with complex colors. LSC keeps the segmentation relatively
accurate but the anti-texture effect is dissatisfactory. SNIC passably balances shape regu-
larity and boundary adherence. In particular, the BACA algorithm can adaptively adjust
the granularity of segmentation according to the contour structure and color of different
regions in the image.
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4.2.2. Quantitative Evaluation by Metrics

In addition to the visual evaluation, four evaluation indicators are introduced in this
section for quantitative and objective analysis [38]:

1. Boundary Recall (BR). BR is a popular metric to describe the fit degree between
the superpixel outlines and the object boundaries. A greater BR indicates that the
superpixel boundary is closer to the real boundary of the image.

2. Under-segmentation Error (UE). UE measures a ratio of the spilled pixels to the real
segmented pixels, wherein the former refers to the pixels beyond the intersection of the
superpixel and the ground truth. It is negatively correlated with segmentation accuracy.

3. Achievable Segmentation Accuracy (ASA). ASA describes the accuracy of segmen-
tation results. It reveals the percentage of the correct segmentation in terms of the
ground truth.

4. Compactness (CO). CO describes the roundness of each superpixel block, which is
positively associated with the regularity and uniformity of the superpixel shape.

Figure 9 gives a quantitative analysis of eight methods using the above four indicators.
Theoretically speaking, BR measures the fitting rate between the segmentation result
boundary and the Ground Truth boundary. From a practical point of view, some algorithms
with a high BR value have over-segmentation, resulting in meandering and irregular
segmentation curves, such as ERS and SEEDS. Figure 9d measures the compactness and
regularity of the superpixel block, and CO is another important index to measure the
performance of the superpixel algorithm. The CO values in ERS and SEEDS further
confirmed the presence of false detections. The ASA best illustrates the effectiveness of
the superpixel algorithm. The inclusion of contour information gives BACA a comparable
performance to ASA. When k = 50, BACA’s UE value is 24% lower than the best performer
among the remaining SOTA algorithms and more than two times lower than the most
unsatisfactory (the lower the UE value, the better). BACA is the optimization product of
SNIC. Compared with the SNIC algorithm, BACA has advantages no matter which of the
four indicators is considered.

4.2.3. Ablation Experiments

As the name suggests, BACA contains two optimizations, boundary awareness and
content adaptation, which work synergistically on the clustering framework. In order to
further illustrate the effectiveness of every single strategy on SNIC, BA-SNIC (boundary
aware SNIC) and CA-SNIC (content adapted SNIC) are designed to be the baselines,
respectively. This section further explores the impact of these two strategies on the overall
framework from both qualitative and quantitative aspects. In addition, the relationships
and differences among SNIC, BA-SNIC, CA-SNIC and BACA are also explained.

Figure 10 visually shows the qualitative analysis results of SNIC, BA-SNIC, CA-SNIC
and BACA. Compared with the conventional SNIC, BA-SNIC adds contour terms to
measure the similarity, and the effects are quite immediate. For example, SNIC sometimes
cannot accurately distinguish the boundary between foreground and background in the
area with a small color difference between foreground and background. Conversely, BA-
SNIC could accurately segment regions with small color differences based on prior contours.
Different from the SNIC algorithm, the CA-SNIC algorithm makes positive improvements
in seed initialization. The seed initialization within CA-SNIC could adaptively adjust the
number of seeds in different regions. It places more seeds in the region with complex color
and structure to produce finer segmentation, which essentially promotes more detailed
boundary adherence. BACA combines the advantages of BA-SNIC and CA-SNIC to achieve
more comprehensive superpixel segmentation results.
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Figure 10. Visual results of superpixels on BSDS500. Each column represents superpixels generated
by (a) SNIC; (b) BA-SNIC; (c) CA-SNIC; (d) BACA. The excepted number of superpixels is fixed to
100. Alternating columns show each segmented image followed by local details.

Figure 11 illustrates the quantitative results from four aspects. In comparison to SNIC,
CA-SNIC increases the content complexity in the initialization stage, which adaptively
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adjusts the initialization according to the complexity of the image itself. As a result, it could
avoid seed redundancy, thus reducing the computational complexity from the beginning.
For BA-SNIC, contour information makes the segmentation curve closer to the boundary
and performs better on UE and ASA. Meanwhile, the content adaptive optimization step
improves the compactness of the superpixel block, resulting in a better visual effect.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

(a) (b) (c) (d) 

Figure 10. Visual results of superpixels on BSDS500. Each column represents superpixels generated 
by (a) SNIC; (b) BA-SNIC; (c) CA-SNIC; (d) BACA. The excepted number of superpixels is fixed to 
100. Alternating columns show each segmented image followed by local details. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Quantitative evaluation of different algorithms on four evaluation indicators. (a) Boundary
recall; (b) Under-segmentation error; (c) Achievable segmentation accuracy; (d) Compactness. The
expected number of superpixels ranges from 50 to 500.

In addition to the above four indicators, the actual and expected segmentation numbers
of superpixels are also the focus of the researcher. The number of superpixels determines
the refinement degree of the segmentation effect. The more the number of superpixels, the
more redundancy and over-segmentation will occur to a certain extent. Content adaptation
can precisely solve this problem, ensuring that BACA has the minimum number of actual
superpixels while holding the same performance as SOTA. As shown in Table 1.
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Table 1. Comparison of the superpixels number between actual generation and user-expected on the
eleven algorithms.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

SLIC 40 94 146 185 226 260 327 378 397 439
SNIC 40 96 150 187 260 294 330 400 442 504
CW 50 101 145 198 242 309 346 407 447 509

EAMS 50 100 150 200 250 300 350 400 450 500
SEEDS 88 145 197 246 280 350 384 453 481 533

LSC 76 141 205 279 343 413 470 562 658 758
ERS 50 100 150 200 250 300 350 400 450 500

SSAN 38 89 138 175 244 304 349 390 432 497
IBIS 40 93 125 182 223 256 291 372 392 435
MBS 40 96 150 187 228 260 330 394 400 442

BACA 38 87 130 158 188 211 262 302 314 345

4.3. More Discussion

With the development of remote sensing technology, the characteristics of remote
image sensing, such as a large amount of data, high complexity and broad perspective,
are increasingly prominent. Typical feature analysis, road extraction, urban planning and
other practical applications are of great civil and military significance. The traditional
segmentation algorithm can only extract low-level features, which cannot meet the require-
ments of high-resolution remote sensing image segmentation. In order to prove that the
proposed superpixel generation algorithm BACA is beneficial to the analysis of remote
sensing images, BACA is compared with the latest two published segmentation algorithms
in three years in three years and the classical SNIC framework. In addition, the above
sections have detailed the excellent performance of BACA in four evaluation indicators
(BR, UE, ASA, CO), and this section focuses on the comparison of visual quality and the
number of primitives to be processed.

In order to ensure the universality of the algorithm in different application scenarios,
images from three different remote sensing datasets are used for experiments, some of
which are shown in Figure 12. It is worth noting that the size of the images in each dataset
is not consistent, so the size of the images should be unified to ensure the scientificity and
accuracy of the experiment. There is no limit to the size of the image.
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Figure 12. Remote sensing images of parts of the three datasets. (a) NWPU VHR-10 [39];
(b) DOTA [40]; (c) CHN6-CUG [41]. Each dataset is collected in different scenarios, such as air-
port, sea area, wharf, city road, farmland, etc.
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Figure 13 shows the visual quality performance of the four algorithms, including
BACA, on the three datasets. It can be seen from Figure 13a that the pixel segmentation
blocks are large and sparse in the region with simple image content, while the pixel seg-
mentation blocks are small and dense in the region with more details in the image content.
This is because the initial seed points can be distributed adaptively with the addition of
the content adaptive strategy. As a superpixel generation framework optimized from the
overall structure, the boundary sensing strategy makes BACA superior in boundary fitting.
It can also be accurately segmented small targets, as shown by the detection of small boats
in Picture 3.
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Figure 13. Visual comparison of segmentation results with 100 expected superpixels. (a) BACA;
(b) MBS; (c) IBIS; (d) SNIC.

From another perspective, the actual generated superpixel block is the basic process-
ing unit of subsequent visual tasks, which determines the computational amount of the
subsequent processing. BACA has great advantages in actually generating the number
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of superpixels and keeps the minimum amount of computation to be processed without
losing or even better segmentation accuracy. Table 2 illustrates the numerical comparison
of superpixels between actual generation and user-preset (k = 100) superpixels of the four
images in Figure 13 under different algorithms.

Table 2. Actual superpixels number of different algorithms on different pictures (k = 100).

Picture
Algorithm (k = 100)

BACA MBS IBIS SNIC

Picture 1 75 96 90 90
Picture 2 82 96 93 90
Picture 3 51 96 75 90
Picture 4 83 96 88 90

A total of 150 images are randomly selected from three remote sensing datasets for
the experiment. The parameters are adjusted so that the segmentation accuracy has an
identical accuracy level. Under this condition, the actual number of superpixels of different
algorithms can be calculated with different preset numbers of superpixels. As shown in
Table 3 for details.

Table 3. Comparison of the superpixels number between actual generation and user-preset on the
four algorithms.

Algorithm
User-Preset Superpixel Number

50 100 150 200 250 300 350 400 450 500

MBS 46 98 153 192 233 278 334 398 426 463

IBIS 49 98 130 192 230 264 304 372 415 458

SNIC 40 93 150 196 274 298 336 400 436 402

BACA 32 73 128 146 162 196 223 264 305 321

In summary, BACA can play a positive role in the preprocessing stage of remote
sensing images with a large amount of data and strong complexity, significantly reducing
the number of units to be processed, fundamentally reducing the burden of subsequent
visual tasks and thus contributing to the analysis and processing of remote sensing images.

5. Conclusions

This paper presents an optimized superpixel generation framework, termed Boundary
Awareness and Content Adaptation (BACA). Firstly, a new seed initialization method is
proposed with emphasis on the complexity of image content, which could both reduce the
number of superpixels as well as the amount of computation. As a result, it improves the
running efficiency and acquires content adaptation. In addition, a multi-feature correlation
measurement is proposed to improve the misclassification of boundary pixels. The contour
prior information enables the whole algorithm framework to follow the real boundary and
further achieves excellent performance in segmentation accuracy. The proposed BACA
achieved a significantly improved UE (3.34%) and ASA (95.59%) over the state-of-the-art
performances while maintaining the highest CO (70.91%) and a minimum number of
superpixels (345). Experimental results indicate that the two optimizations could generate a
synergistic effect, which runs in a limited actual superpixel number with the most advanced
performance on the public dataset.

Future work will focus more on exploring strategies to improve the work efficiency
of BACA and applying the proposed algorithm to advanced tasks in the remote sensing
field. For example, most trackers use high-level appearance structures or low-level clues to
represent and match target objects. Inspired by BACA, a discriminative appearance model
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based on superpixels can be proposed from the perspective of intermediate vision. The
target and background in remote sensing images are quickly distinguished by a tracking
method that captures the structural information in the superpixel algorithm.
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