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Abstract: Invasive alien species (IAS) are a threat to biodiversity and ecosystem function worldwide. 

Unfortunately, researchers, agencies, and other management groups face the unresolved challenge 

of effectively detecting and monitoring IAS at large spatial and temporal scales. To improve the 

detection of soniferous IAS, we introduced a pipeline for large-scale passive acoustic monitoring 

(PAM). Our main goal was to illustrate how PAM can be used to rapidly provide baseline 

information on soniferous IAS. To that aim, we collected acoustic data across Puerto Rico from 

March to June 2021 and used single-species occupancy models to investigate species distribution of 

species in the archipelago and to assess the peak of vocal activity. Overall, we detected 16 IAS (10 

birds, 3 mammals, and 3 frogs) and 79 native species in an extensive data set with 1,773,287 1-minute 

recordings. Avian activity peaked early in the morning (between 5 a.m. and 7 a.m.), while 

amphibians peaked between 1 a.m. and 5 a.m. Occupancy probability for IAS in Puerto Rico ranged 

from 0.002 to 0.67. In general, elevation and forest cover older than 54 years were negatively 

associated with IAS occupancy, corroborating our expectation that IAS occurrence is related to high 

levels of human disturbance and present higher occupancy probabilities in places characterized by 

more intense human activities. The work presented here demonstrates that PAM is a workable 

solution for monitoring vocally active IAS over a large area and provides a reproducible workflow 

that can be extended to allow for continued monitoring over longer timeframes. 

Keywords: birds; anurans; mammals; occupancy model; ecoacoustics; soundscape; Puerto Rico; 
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1. Introduction 

Invasive alien species (IAS) are one of the largest threats to biodiversity around the 

world [1]. It is estimated that the global costs of damage caused by IAS exceed hundreds 

of billions of U.S. dollars a year [2,3] and that IAS have negatively affected more than a 

hundred critically endangered native terrestrial vertebrates [4]. The number of 

established IAS has exponentially increased during the last century for different biological 

groups [5], and climate change is expected to further expand the distribution of some 

invasive species [6]. After reaching and becoming established in a new area, IAS can 

impact local biodiversity through direct and indirect negative interactions with native 

taxa, such as predation, competition, disease spread, predator poisoning, and altering 

habitat characteristics [2]. The impact of introducing an alien species can be even more 

dramatic for native species on islands, which may experience rapid extirpation of native 

fauna after the arrival and establishment of an IAS [7–9]. Insular species often have small 

populations and home ranges, low genetic diversity, and lack morphological adaptations 

against IAS [7]. Islands in warmer regions of the globe are hotspots for IAS and tend to 

have more established invasive species than mainland areas, generating a profound 

concern for the conservation of native species on tropical islands [5,8]. 
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One of the main obstacles that wildlife managers and conservationists face in 

opposing the threat of invasive species is acquiring rapid, reliable, large-scale baseline 

information on the distribution of fauna—data which are critical in guiding effective 

wildlife management programs [10]. A central challenge to this type of monitoring is how 

to cover a large sampling area with a limited number of researchers (an issue faced by 

many projects and agencies) and still complete surveys in a short period of time, which 

has the dual benefit of avoiding temporal bias and providing distribution data quickly. 

Moreover, the success of IAS control or eradication efforts is typically greater when 

species are detected in an early stage before they become established in a new location 

[11]. Therefore, the development of early-stage detection systems is urgent in order to 

identify IAS before they can become a significant threat [12–14]. The rapid evolution of 

remote sensing tools has made it possible to conduct large-scale monitoring in a short 

period of time, providing detailed baseline information of ecosystems and biodiversity 

[15]. 

Remote sensing through satellite and airborne images has been successfully used to 

detect and monitor changes in forest cover, vegetation type, disturbance regimes, plant 

phenology, and ecosystems [16–20]. However, remote sensing is still mostly overlooked 

for invasive fauna, though camera traps and autonomous acoustic devices have been 

successfully used to detect and monitor alien animal species [15,21,22]. Other noninvasive 

methods such as eDNA have also been used recently to detect IAS [21,22]. The emergence 

of new autonomous recording units (ARUs) and platforms to store and analyze massive 

amounts of audio data has greatly improved the utility of passive acoustic monitoring 

(PAM) to monitor soniferous wildlife and its threats [23–28]. Taxa that regularly produce 

species-specific vocalizations, such as birds, anurans, bats, insects, and some mammals, 

are well suited for ecoacoustic surveys [29,30]. Although PAM has great potential for 

monitoring biodiversity and researching a variety of ecological issues [31], it has not been 

used yet to its maximum potential for investigation of soniferous terrestrial IAS [32,33]. 

However, PAM has been used for investigating the occurrence of invasive freshwater 

drum in the New York State Canal System and assessing the phenology of the invasive 

cane toad in Australia [34,35]. 

Passive acoustic monitoring has numerous benefits for rapid assessment and early 

detection of sound-producing fauna, as well as large-scale and long-term monitoring, and 

can decrease the response time for managing soniferous IAS [28,31,33,36]. Amongst the 

primary benefits, PAM is a standardized noninvasive survey method that can be used 

simultaneously in numerous locations, allowing for the monitoring of hundreds to 

thousands of sites at the same time, which would otherwise be impossible if trained 

researchers were required to be in the field at each location [36]. Additionally, PAM 

facilitates sampling during all periods of the day, covering the peak of activity of different 

taxa; devices can be easily deployed with little or no specialized training; and recordings 

can be permanently stored, providing insights on temporal patterns of biodiversity 

[36,37]. 

Passive acoustic monitoring generates the detection and non-detection data required 

for species distribution models, one of the most used tools for IAS risk assessment [38–

42]. Due to the substantial volume of data collected by the ARU in the field, one constraint 

on PAM has been the ability to examine all of the recordings collected. As a result, the 

development of protocols that optimize inspection of recordings together with 

semiautomatic or automatic techniques that speed up data analysis is necessary to extract 

the maximum amount of information from the acoustic data collected. In addition, to 

expedite biological and ecological insights from data acquired through PAM, it is 

important to develop user interface tools that allow availability, visibility, and 

management of results for the nonacademic public (e.g., citizen scientists, birdwatchers, 

practitioners, and wildlife managers). 

Here, we used a large-scale PAM survey across the Puerto Rican archipelago (841 

sampling sites) to investigate the spatial distribution and peak of vocal activity of IAS. 
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Our main goal was to generate baseline population data for soniferous native and IAS in 

Puerto Rico. Moreover, we provide a roadmap on how remote soundscape data collection 

can be used to rapidly provide distribution information for soniferous species through a 

free, user-friendly web interface designed to be accessible to diverse stakeholder groups 

as biologists, ecologists, wildlife managers, and citizen scientists. Our workflow offers a 

balance between manual inspection of recordings with semiautomatic analysis, which 

considerably reduces the time required to analyze the large amount of data typically 

generated by PAM, and providing assessment for the peak activity of species and 

detection/nondetection data for each day and site sampled. To assess the status of IAS 

populations in Puerto Rico, we used Bayesian single-species occupancy models to 

investigate how the spatial distribution of IAS varied through environmental gradients. 

The last step of our end-to-end pipeline for large-scale passive acoustic monitoring 

consisted in the development of a web page connecting and summarizing data from the 

Arbimon platform to display and share the results of the ecoacoustic analyses and close 

the gaps between academia and wildlife managers and decision makers. We expect that 

our study can provide baseline information on soniferous IAS for wildlife managers and 

decision makers in Puerto Rico and support future research focused on the rapid 

assessment or long-term monitoring of sound-producing wildlife across a broad spatial 

area using acoustic survey methods. 

2. Materials and Methods 

2.1. Passive Acoustic Monitoring 

The Caribbean is a hotspot of biodiversity [43]; unfortunately, the islands in the 

region are also hotspots of established IAS [8]. Amongst them, Puerto Rico has a long 

history of IAS, which raises concerns about the prior and future impacts of those species 

on the native and endemic flora and fauna [44,45]. There is a gap in the knowledge of 

population assessment of IAS in the archipelago, primarily for birds and frogs. We 

conducted a large-scale PAM survey in the Puerto Rican archipelago, including the main 

island of Puerto Rico and the major offshore islands of Culebra, Desecheo, Mona, and 

Vieques (Appendix A). Overall, we successfully deployed ARUs at 841 sites: 198 sites in 

and around six preselected regions in the interior of Puerto Rico and 643 sites distributed 

in 14 regions across coastal areas in the main island of Puerto Rico (n = 485 ARU), Culebra 

(n = 49), Desecheo (n = 7), Mona (n = 52), and Vieques (n = 50). The selection of sampling 

sites within each region and protected area followed an approximate systematic sampling 

design to capture the full range of conditions found there. 

We made use of lightweight and low-cost Open Acoustic Devices AudioMoth 

recorders to record the soundscapes across Puerto Rico [26,36]. We used the Open 

Acoustic Devices AudioMoth Configuration App to program the audio devices to record 

1 min every 5 min with mean gain and at a 48 kHz sampling rate. Four teams of two field 

agents deployed AudioMoths between March 1 and June 6, 2021. The ARUs were placed 

in a protective waterproof plastic case and then affixed to a tree/vine/shrub using wooden 

clothespins at a height of 1.5 m (Appendix A). A total of approximately 200 AudioMoths 

were simultaneously in the field at any given time during the survey period; the 

AudioMoths were rotated across sampling sites after about 1 week of data collection, with 

ARUs simultaneously in the north, south, east, and west of the island at all times. The 

AudioMoths recorded in the field for at least seven consecutive days; thereafter, field 

agents revisited each site to retrieve the ARUs that had been deployed and move them to 

a new location. Due to logistical issues and the occasional malfunction of the devices, the 

number of days recorded at a site ranged from 1 to 11 (mean = 8.3, sd = 1.11). The main 

factors contributing to data loss or site failure were device malfunction (n = 10) and theft 

(n = 4). 

We made an effort to deploy the ARUs no less than 200 m apart from each other, 

which was an adequate distance to ensure that a calling event of most species was not 
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recorded by more than one device simultaneously (the great majority of the distances be-

tween nearest points were above 500 m; mean = 865.03 m, sd = 714.05). Moreover, we 

expected that 200 m was a good proxy of the home range of most low-vagility forest birds 

and frogs, ensuring site independence for these species. Field agents manually 

documented the date, site ID, recorder ID, latitude, longitude, and additional relevant cli-

mate and environmental factors. The Rainforest Connection (RFCx) Companion App was 

also used during AudioMoth deployments to sync the ARUs and add site metadata (e.g., 

GPS coordinates, elevation, photos, and notes) with sites in the RFCx Arbimon web plat-

form (https://apps.apple.com/us/app/rainforest-connection/id1178078181 (accessed on 1 

March 2021)). Once the ARUs were retrieved, all recordings were uploaded to RFCx Ar-

bimon web-based platform, where all the sound files are now permanently stored 

(https://arbimon.rfcx.org/project/puerto-rico-island-wide/dashboard (accessed on 5 July 

2021)). 

2.2. Semiautomatic Species Identification Workflow 

Large-scale and long-term investigations using ARUs commonly generate a colossal 

number of recordings [27], quantities that quickly become unworkable to examine 

through manual approaches. We developed a protocol for acquiring species detections 

from audio recordings using a semiautomated procedure that requires a relatively small 

time investment from researchers to produce a preliminary list of species occurring in a 

study area and provides a validation data set [46–49] (Figure 1). RFCx Arbimon is a free, 

cloud-based, user-friendly acoustic analysis platform for storage, management, visualiza-

tion, and analysis of ecoacoustic data. Using the spectrograms generated by Arbimon, two 

of the coauthors with extensive experience in audio surveys (G.A.L. and T.N.M.) manu-

ally inspected all 1-minute recordings from two nonconsecutive days at each site (576 1-

minute recordings per site were inspected) to search for species’ sound signals and noted 

if each species call was present in each record [49]. During this process, hereafter referred 

to as “manual annotation”, animal sounds with a high signal-to-noise ratio were identified 

and selected as the templates for template-matching analyses, known as Pattern Matching 

(PM) analysis in the RFCx Arbimon system [49] (Figure 1). During these steps we identi-

fied and tagged other characteristics and sound sources such as the quality of recordings, 

noises caused by internal malfunction of AudioMoth devices, external interference, an-

throphony (e.g., noise of machines, vehicles, and voices), and domestic animals. This man-

ual annotation of the data was an important step in providing a consistent preliminary list 

of species recorded by ARUs throughout the study area, selecting good templates for PM 

analysis, and generating validated data sets [23,46,49]. 

The preliminary species list created by the manual annotation of a subset of record-

ings provided the templates that were subsequently used to select species of greatest con-

servation need (SGCN; https://www1.usgs.gov/csas/swap (accessed on 30 September 

2021)), native and endemic species and all IAS detected for the ecological analyses. We 

ran a PM analysis for a total of 65 species in the RFCx Arbimon platform (37 SGCN, 16 

IAS and 12 extra species). Using available audio libraries (e.g., Xeno-Canto) we also cre-

ated PMs for other SGCN and IAS that are known to occur in Puerto Rico but were not 

detected during the manual validation or that did not have acceptable templates. Use of 

external templates did not result in the detection of any new species. Pattern Matching, a 

template-based detection algorithm, take a sound template and an audio file playlist as 

inputs and searches a selected playlist for signals that correlated with the template in the 

spectrogram domain [46]. All audio segments with a correlation equal to or greater than 

a user-chosen threshold were detected as regions of interest (ROI) and displayed in a 

graphical user interface (GUI) in a grid format. We assigned a correlation threshold equal 

to 0.2 and ran the models on all sites included in the playlists. The selection of a low 

threshold resulted in a high number of false positives, though the number of false nega-

tives was assumed to be negligible. M.C.C., G.L., and T.M. manually reviewed the tem-

plate-matching results. In this step, we annotated the results as either positive or negative 
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to indicate the corresponding species’ presence or absence, respectively. This ensured that 

the final data set used in the analyses only included expert-verified detections and ex-

cluded all false-positive detections. 

 

Figure 1. Infographic representing the main steps of an end-to-end pipeline for large-scale passive 

acoustic monitoring (PAM). Step 1—The project begins with study design, during which fundamen-

tal research questions are defined. To increase the chance of success of wildlife monitoring pro-

grams, three central questions should be made clear at this point: Why? What? How? (see Yoccoz et 

al. (2001) [50]). During this process, important environmental variables should be gathered to assist 

with survey design; for example, spatial data can provide the main habitat types and most appro-

priate locations for the deployment of the autonomous recording units (ARUs; e.g., land cover, ele-

vation, watercourses, trails, and roads). Step 2—Set temporal PAM designs depending on the goals 

of the project and deployment of ARUs in the field. The literature and pilot studies can assist in 

more effective adjustments to sample target species. Step 3—The large volume of recordings col-

lected during large-scale and long-term studies are processed via a software or web platform to 

store, visualize, manage, and analyze the audio recordings efficiently. Step 4—A subset of record-

ings is manually inspected (i.e., “manual annotations”) to search for target acoustic signals with a 

high signal-to-noise ratio and select the templates for further use in an Arbimon Pattern Matching 

analysis (PM), also known as Template Matching analysis. Step 5—In the semiautomatic approach, 

the PM analysis is a crucial step in searching for and detecting target acoustic signals through all 

recordings in a playlist. There is a trade-off in choosing the PM threshold: a low threshold returns a 

high number of false positives while reducing the possibility of false negatives. We chose to use a 
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low PM threshold and manually validated a subset of PM per site (i.e., best-scored ROI per site per 

day). This process enhanced the chances of detecting at least one call of the species at the site and 

aided in the removal of false positives. In addition to producing useful ecological data per se, the 

PM provides training data for artificial intelligence models (e.g., a convolutional neural network 

[46]). Training data can also be acquired through automatic event detection of acoustic signals 

through audio event detection analyses that can be clustered to identify groups with similar sound 

characteristics. Even for this automatic identification process, manual post validation of a subset of 

recordings is necessary. Step 6—The last step is to summarize all information and make the ecolog-

ical information available to decision makers. This step can be the final point of PAM or can provide 

a feedback loop for new questions to be investigated. 

We created two playlists on which to run the PM: a diurnal playlist with all record-

ings from 5 a.m. to 6 p.m. and a nocturnal playlist with all recordings from 6 p.m. to 5 a.m. 

The diurnal playlist was applied to 41 bird species and three mammal species; the noctur-

nal playlist was applied to 18 frog species and three bird species. The resulting ROIs from 

the PM analysis were manually inspected in a grid view and validated as true or false 

positives by experts. For validation, we filtered the results to only show the best-scored 

ROI per site and day to acquire detection and nondetection data to be used in the occu-

pancy models (Figure 1). The PM analysis of all species detected using all recordings to-

gether with the manual validation of the best-scored ROI per site and day took two orni-

thologists (GAL and TNM) approximately 15 days. Using these validations, we created a 

table of sampling sites by sampling days for each species (i.e., 1 if the species was detected, 

otherwise 0). Since our main objective here was not to investigate the daily activity of these 

species but to maximize detection in each sampling site, we chose the period with the 

greatest volume of soniferous data for the birds and frogs based on our experience work-

ing with the birds and frogs of Puerto Rico. Thus, we highlight that the polar plots for 

birds and mammals were biased for the diurnal period while those for frogs and nocturnal 

birds were biased for the nocturnal period. However, if the research goals involve inves-

tigating the daily activities of species, this approach can be easily adjusted to incorporate 

both periods of day for each species. 

In this paper, we used the standard biological sense adopted by Simberloff (2013) [2] 

that defines invasive species as “species that arrive with human assistance, establish pop-

ulations, and spread”, contrary to the usage adopted by policymakers who assume that 

IAS are only introduced species that cause some proven negative impact on diversity or 

an ecosystem, although there is evidence suggesting that most of these IAS may be threats 

to Puerto Rico’s biodiversity. 

2.3. Explanatory Variables 

We collected environmental data from multiple online repositories administered by 

the Multi-Resolution Land Characteristics Consortium, National Oceanic and Atmos-

pheric Administration, Open Street Map, USDA Caribbean Climate Hub, and USGS 

EarthExplorer. Data gathered included GIS layers of elevation, climate, forest age, land-

use type, protected area extent, and roads and trails. For each sampling location, a buffer 

was added with a radius of 200 m around the site (area = 12.57 ha). Data for inclusion as 

environmental covariates in the ecological analyses were extracted for the 200 m site buff-

ers using the Zonal Statistics and Tabulate Area tools in ESRI ArcMap (version 10.8; En-

vironmental Systems Research Institute, Inc., Redlands, CA, USA). 

We selected 13 explanatory variables that have been reported to have an effect on 

fauna from the GIS layers a priori [38,48,51,52]. We checked multicollinearity among the 

explanatory variables used in the occupancy models through the variance inflation factor 

(VIF) function of the “usdm” package [53] in R version 3.6 [54]. This function progres-

sively excludes collinear covariates through a stepwise procedure. VIFs were calculated 

using two methods: VIFcor (threshold = 0.7) and VIFstep (Threshold = 10). The following 

variables with low collinearity were used in occupancy models: elevation, mean annual 

precipitation, percent of forested area between 34-54 years old, percent of forested area 
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older than 54 years, percent of area within a protected area boundary, percent of canopy 

cover, distance from roads, and proportion of built-up area (Appendix B). 

We used the Generate Tessellation tool in ArcMap to create a hexagon grid covering 

the entire extension of Puerto Rico and major offshore islands. The hexagon grid had a 

cell area equal to that of the 200 m buffer applied to survey sites. We exported values for 

the explanatory covariates for each hexagon, which were used to make maps of predicted 

occupancy for each species using the top-ranked model. 

2.4. Single-Species Occupancy Model 

Since the IAS may have experienced different introduction histories on the islands 

and have different capabilities to colonize new islands, we chose to model species occu-

pancy only for the islands where the species was detected in at least five sampling sites. 

We investigated occupancy while accounting for imperfect detection of invasive species 

by fitting a hierarchical single-season occupancy model [55–57] in a Bayesian framework 

using the “ubms” package in R [58,59]. The occupancy model made use of repeated ob-

servations in the sites to disentangle the observational component (i.e., detection/nonde-

tection) from the state variable of interest (i.e., “true” occupancy [38,55]). The model had 

four central assumptions: (i) independence between sampling sites, (ii) independence be-

tween repeated observation occasions, (iii) absence of misidentification of the focal species 

(no false positive error), and (iv) no colonizations or extinctions during the study period; 

that is, the sampling sites were expected to be “closed” to the occupancy state of species 

during the study period [55,60,61]. Assumption of a closed occupancy state may be re-

laxed if the changes in the occupancy state are random, and therefore the occupancy pa-

rameter should be interpreted as the probability that the species “uses” the habitat [62]. 

We applied a sequential approach to identify the most parsimonious model for each 

species rather than run all possible model combinations [63]. Firstly, we held the occu-

pancy probability constant (ψ(.)) and fit four a priori candidate models for detection prob-

ability: null model, elevation only, linear and quadratic effect of Julian day, and full model 

(Table 1). Then, we held the top-ranked detection model (�(TM)) and modeled a set of a 

priori candidate models for the occupancy probability of species (Table 1). Since the avail-

ability of the spatial data containing the predictor variables varied across islands, the num-

ber of candidate models for the species also varied depending on the island on which the 

species was detected (Table 1). The parameters of both detection and occupancy were 

modeled as a logit function [55,59]. We normalized all continuous explanatory variables 

to have a mean of 0 and a standard deviation of 1 [61]. 

Even while expecting that 200 m was a sufficient distance to guarantee sampling-site 

independence, we made the decision to run a spatial occupancy model to account for spa-

tial autocorrelation in the occupancy probability, since including spatial autocorrelation 

in occupancy modeling can improve species prediction and distribution maps [56,59,64]. 

We modeled the spatial occupancy model using restricted spatial regression (RSR) that 

dealt with the random effect uncorrelated with the fixed covariates [64]. We considered 

that two sites were neighbors if the distance between them was equal to or below 1000 m 

(we set the threshold at 1000). RSR has been shown to be a good choice for modeling oc-

currences while accounting for imperfect detection and spatial autocorrelation [59,64]. 

Due to the long time required to run models with spatial autocorrelation, we chose only 

to fit RSR with the top-ranked nonspatial occupancy model to determine if incorporating 

spatial autocorrelation improved the model fit. 

  



Remote Sens. 2022, 14, 4565 8 of 42 
 

 

Table 1. A priori candidate models fitted in the occupancy analyses for the main island of Puerto 

Rico and Culebra, Mona, and Vieques. TM = top model; precip = precipitation (cm); PA = proportion 

of protected area; canopy = proportion of canopy cover; date = Julian date (we considered Julian day 

1 as the first day of a device starting to record in the field, which was 1 March 2021); date2 = square 

of Julian date; fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of 

forest cover older than 54 years; dist_road = distance from roads (m); built_up = built-up proportion; 

RSR = restricted spatial regression. We considered a distance threshold of 1000 m for two sites to be 

considered a neighborhood in the spatial occupancy model. 

Detection Models Occupancy Models 

Main Island of Puerto Rico 

�(. ); �(. ) �(��������� + ������); �(��) 
�(. ); �(���������) �(�� + ������); �(��) 
�(. ); �(���� + �����) �(��2 + ��3); �(��) 
�(. ); �(��������� +  ���� + �����) �(����_���� + �����_��); �(��) 

 �(����); �(��) 

 �(�� + ���– 1000); �(��) 

Mona Island 

�(. ); �(. ) �(���������); �(��) 
�(. ); �(���������) �(������); �(��) 
�(. ); �(���� + �����) �(��������� + ������); �(��) 
�(. ); �(��������� +  ���� + �����) �(�� + ���– 1000); �(��) 

Culebra and Vieques Islands 

�(. ); �(. ) �(��������� + ������); �(��) 
�(. ); �(���������) �(�� + ������); �(��) 
�(. ); �(���� + �����) �(����_����); �(��) 
�(. ); �(��������� +  ���� + �����) �(��������� + ������ + �� + ������ + ����_����); �(��) 

 �(�� + ���– 1000); �(��) 

We did not acquire precipitation, fa2, or fa3 layers for Mona Island; the entire island is protected. 

Therefore, the occupancy model for this island considered only elevation and canopy cover as pre-

dictor variables in the competing models. There was minimal built-up class variation on Culebra 

and Vieques and fa2 and fa3 layers were not available for these islands, so we were not able to 

include these variables as predictors of the occupancy model. 

We compared the models using Bayesian leave-one-out cross-validation (LOO) 

[59,65]. The log pointwise predictive density (elpd) was calculated for each model using 

the modSel function of the “ubms” package [59]; we ranked elpd from highest to lowest 

since the model with the largest elpd value corresponded to the model with the best ac-

curacy [65]. Additionally, we presented the difference between the elpd of models and the 

elpd of the top-ranked model (Δelpd) along with standard error of elpd (se of Δelpd). We 

checked the chains’ convergence of all parameters of the top-ranked model by assessing 

the effective sample size (n_eff) and R-hat statistic and by visually inspecting traceplots 

[59]. Furthermore, we assessed the model fit through residual plots for the state and ob-

servation variables. 

Based on previous studies, we assumed that the IAS would benefit from high levels 

of human disturbance and present higher occupancy probabilities in places characterized 

by more intense human activities [45,66]. Therefore, we expected that invasive species 

occupancy would be negatively related to elevation because human activities are more 

common and intense in low-elevation areas (e.g., human settlement and agriculture) in 

Puerto Rico. A higher proportion of protected areas and canopy cover would be inhibitors 

of invasive species occurrence by representing more preserved environments [66–68]. 

Since the anuran IAS considered in our study do not present striking adaptations to grow 

and reproduce in conditions with a low availability of water, we predicted a positive re-

lationship between these species’ occupancies and the mean annual precipitation. Addi-

tionally, we expect that a proximity to roads and a high proportion of built-up area in a 

location would positively influence the occupancy of IAS [66]. 
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3. Results 

We based our findings on 1,773,287 1-minute recordings from 8.9 TB of soundscape 

data. Our manual inspection of recordings together with PM analysis generated an overall 

list of 95 species detected throughout the Puerto Rican archipelago: 74 birds, 18 frogs, and 

3 mammals (Appendix C). We found 92 species on the main island of Puerto Rico, fol-

lowed by Vieques, Culebra, and Mona with 31, 25, and 19 species, respectively (Appendix 

C). Overall, 16 species were considered invasive species (Appendix C) and are potential 

threats to wildlife in the Puerto Rico: 10 birds (Icterus, Molothrus bonariensis, Gallus gallus 

domesticus, Brotogeris versicolurus, Passer domesticus, Amazona amazonica, Amazona viridige-

nalis, Bubulcus ibis, Myiopsitta monachus, and Streptopelia decaocto), 3 frogs (Lithobates 

catesbeianus, Osteopilus septentrionalis, and Rhinella marina), and 3 mammals (Canis lupus 

familiaris, Capra hircus, and Equus ferus caballus). 

None of the invasive species were detected on Desecheo Island; therefore, this island 

was not used in the occupancy model. The wild goat (C. hircus) was detected at 21 sites, 

all of which were on Mona Island. Feral horse (E. ferus caballus) was detected at 11 sites on 

Vieques and two sites on the mainland; therefore, the occupancy model was performed 

only for Vieques. Chickens (G. gallus domesticus), Venezuelan troupial (I. icterus), shiny 

cowbird (M. bonariensis), and domestic dog (C. lupus familiaris) were the most widespread 

species, detected at 165, 131, 78, and 76 sites, respectively. Chickens (the only IAS for 

which the occupancy model was fitted for more than one island) were detected at 134 sites 

on the main island, 27 sites on Culebra, 3 sites on Vieques, and 1 site on Mona. Five bird 

species (A. amazonica, A. viridigenalis, B. ibis, M. monachus, and S. decaocto) had low raw 

detections and were detected at few sites (less than 10 sites); thus, we did not run occu-

pancy models or a call activity pattern analysis for them. The other IAS detected were 

found at between 12 and 24 sites (American bullfrog (L. catesbeianus), house sparrow (P. 

domesticus), Cuban tree frog (O. septentrionalis), cane toad (R. marina), and white-winged 

parakeet (B. versicolurus)). 

The number of calls recorded and the peak of activity varied greatly between species 

(Figure 2). The group with the highest number of detections (i.e., best-scored ROI per site 

and day) was birds (e.g., chicken had more than 750 raw detections, Venezuelan troupial 

had 450 detections, and shiny cowbird had 194 detections), followed by mammals (rang-

ing from 23 to 148 detections) and frogs (ranging from 53 to 75 detections). The bird spe-

cies had a high activity peak early in the morning (between 5 a.m. and 7 a.m.). The peak 

activity of frog species varied between 1 a.m. and 5 a.m. depending on the species. The 

American bullfrog had a peak in calling activity at dawn (about 6 a.m.); the cane toad 

showed a peak at 2 a.m.; and the Cuban tree frog showed two peaks of activity, with the 

strongest at 3 a.m. and a second less-intense peak at dusk. Mammals did not show a clear 

calling activity peak. 

We fit occupancy models for 11 IAS (all 3 frog and mammal IAS and 5 species of 

birds). In general, the occupancy models presented good convergence and fit well for the 

species when checked through the inspection of traceplots (Appendix D) and using R-hat 

statistic values < 1.1 (Appendix E). However, the “top-ranked” spatial occupancy model 

of the Cuban tree frog did not show good convergence and efficiency diagnostics for Mar-

kov chains (ψ(fa2 + fa3 + RSR-1000); ρ(elevation + date + date2)) even after running the 

model with 200,000 interactions; thus, we used the second-best model for the species to 

show the parameter estimates (Table 2; Appendix E). In general, the probability of detect-

ing IAS throughout Puerto Rico was medium to low and varied widely, ranging from 

0.002 to 0.63 (Appendix E); most species were below 0.3. The best model that explained 

the detection probability of all species (except for feral horse, white-winged parakeet, and 

the two domesticated species) included the three predictor variables: elevation, Julian date 

linear, and Julian date quadratic (Appendix E). In general, the Julian date positively influ-

enced a species’ mean detection probability. The relationship between elevation and the 

detection probability varied depending on the species. 
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Figure 2. Polar plot representing the frequency of call activity of eleven invasive alien species across 

Puerto Rico from March to June 2021. The numbers around the polar plots are hours of day and the 

numbers to the left of the panel represent the gray rings in the plot, which are frequency of call 

activity. Top left: calling activity patterns of bird species (we used only the three birds with the 

highest number of detections because they represented 91% of bird detections). Top right: calling 

activity patterns of frog species. Bottom left: calling activity patterns of mammal species. Bottom 

right: Calling activity patterns by group. We used the three first letters of the genus and a specific 

epithet for species in the legends (e.g., Gallus gallus domesticus = GALGAL). We emphasize that the 

polar plots for birds and mammals were biased to the diurnal period while that for frogs was biased 

to the nocturnal period. 
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Table 2. Three top-ranked models for eleven alien invasive species in Puerto Rico. ELPD = expected 

log pointwise predictive density; ΔELPD = difference of ELPD relative to the top-ranked model; se 

of Δelpd = standard error of elpd; RSR = restricted spatial regression (threshold = 1000 m); PA = 

proportion of protected area; fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = 

proportion of forest cover aged older than 54 years; dist_road = distance from roads (m); built_up = 

built-up proportion; date = Julian date (we considered Julian day 1 as the first day of a device start-

ing to record in the field, which was 1 March 2021); date2 = square of Julian date. 

Species Model elpd 
Nº of Pa-

rameters 
Δelpd Se of Δelpd 

Brotogeris versicolurus 

ψ(elevation + precip); �(elevation) −199.17 8.07 0.00 0.00 

ψ(elevation + precip + RSR-1000); �(elevation) −199.65 9.73 −0.49 0.45  

ψ(dist_road + built_up); �(elevation) −199.93 8.07 −0.76 1.82 

Gallus gallus domesticus 

ψ(full + spatial1000); �(elevation) −1256.53 24.44 0.00 0.00 

ψ(full); �(elevation) −1259.28 18.40 −2.75 2.94 

ψ(PA + canopy); �(elevation) −1262.57 11.82 −6.04 5.09 

Icterus icterus 

ψ(elevation + precip + RSR-1000); �(elevation + 

date + date2) 
−981.56 27.85 0.00 0.00 

ψ(elevation + precip); �(elevation + date + date2) −993.23 17.99 −11.67 4.24 

ψ(full); �(elevation + date + date2) −993.72 25.31 −12.17 6.08 

Molothrus bonariensis 

ψ(.); �(elevation + date + date2) −634.59 7.55 0.00 0.00 

ψ(elevation + precip); �(elevation + date + date2) −635.00 9.67 −0.40 2.01 

ψ(fa2 + fa3); �(elevation + date + date2) −635.21 9.95 −0.62 1.84 

Passer domesticus 

ψ(.); �(elevation + date + date2) −105.15 8.34 0.00 0.00 

ψ(PA + canopy); �(elevation + date + date2) −105.92 10.42 −0.77 1.12 

ψ(dist_road + built_up); �(elevation + date + 

date2) 
−106.18 9.58 −1.03 0.91 

Lithobates catesbeianus 

ψ(full); �(elevation + date + date2) −115.90 14.02 0.00 0.00 

ψ(full + RSR-1000); �(elevation + date + date2) −116.16 14.40 −0.25 0.25 

ψ(fa2 + fa3); �(elevation + date + date2) −119.42 9.56 −3.52 2.95 

Osteopilus septentrionalis 

ψ(fa2 + fa3 + RSR-1000); �(elevation + date + 

date2) 
−211.25 17.82 0.00 0.00 

ψ(fa2 + fa3); �(elevation + date + date2) −213.20 15.63 −1.94 1.39 

ψ(dist_road + built-up); �(elevation + date + 

date2) 
−214.15 15.48 −2.89 3.21 

Rhinella marina 

ψ(.); �(elevation + date + date2) −214.99 6.43 0.00 0.00 

ψ(elevation + precip); �(elevation + date + date2) −216.09 9.30 −1.10 1.76 

ψ(PA + canopy); �(elevation + date + date2) −216.24 8.64 −1.25 1.51 

Canis lupus familiaris 

ψ(full); �(.) −556.65 11.26 0.00 0.00 

ψ(full + RSR-1000); �(.) −557.57 12.53 −0.92 0.37 

ψ(fa2 + fa3); �(.) −559.83 5.03 −3.17 4.08 

Capra hircus 

ψ(.); �(elevation + date + date2) −107.63 5.81 0.00 0.00 

ψ(canopy); �(elevation + date + date2) −108.32 6.78 −0.68 0.81 

ψ(canopy + spatial1000); �(elevation + date + 

date2) 
−108.46 7.00 −0.83 0.77 

Equus ferus caballus 

ψ(elevation + precip); �(.) −74.76 3.96 0.00 0.00 

ψ(.); �(.) −75.32 1.38 −0.56 2.64 

ψ(PA + canopy); �(.) −75.68 5.02 −0.92 2.67 

Occupancy probability ranged from 0.002 (American bullfrog) to 0.67 (wild goat on 

Mona). The three amphibian IAS showed a very low occupancy probability (lower than 
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0.08). The results showed that elevation and precipitation were the variables that best ex-

plained the occupancy probability of IAS in Puerto Rico and appeared in the top-model 

of six species, followed by proportion of forest cover aged between 32–54 years (fa2) and 

forest cover older than 54 years (fa3; Table 2). The best model selected for four of the spe-

cies (shiny cowbird, cane toad, wild goat, and house sparrow) was the null model con-

taining only the intercept. 

We created maps of model-predicted species occupancy probability across Puerto 

Rico and outlying islands for the 11 invasive species with occupancy models (Figure 3; 

Appendix F). Here, we exemplify the predicted occupancy of the Venezuelan troupial (see 

Appendix F for the occupancy prediction maps for the other species). We chose the Ven-

ezuelan troupial as an example because it was the species that showed the top-ranked 

model with the highest difference between the other a priori candidate models, which 

suggested more confidence in the top-ranked model (higher ΔELPD between the top-

ranked and second-best models). We limited the forecast map to the islands where the 

occupancy model was fitted for each species to diminish spurious predictions because the 

gradients between islands were different. The point-estimates occupancy probability map 

for the Venezuelan troupial in Puerto Rico in 2021 under the top-ranked occupancy model 

suggested a high probability of the species occurring in regions close to the coast, mainly 

in the south and southwest of the main island (Figure 3). 

 

Figure 3. Maps of model-forecasted (mean expected occupancy probability) and the model predic-

tion uncertainty (standard deviation) for Venezuelan troupial (Icterus icterus) across the main island 

of Puerto Rico (top-ranked model used in prediction was ψ(elevation + precip + spatial1000); �(ele-

vation + date + date2)). The black circles represent the sampling sites where the species was detected 

and the white circles represent sampling sites without detections. 

We developed a website (https://bio.rfcx.org/puerto-rico-island-wide (accessed on 14 

June 2022)) with the purpose of data sharing and summarizing the results of the study for 

the use of government agencies (e.g., Departamento de Recursos Naturales y Ambientales 

(DRNA), U.S. Fish and Wildlife Service) and the general public (e.g., educators and bird-

watchers). The website contains information on the vocalizations, distribution, and ecol-

ogy of the species detected at the 841 sampling sites in Puerto Rico during the project, 

including a searchable database with detection data, presence/absence maps, and occu-

pancy maps for all birds, mammals, and anurans recorded (Appendix G). All maps, plots, 

and data used to generate the figures can be freely downloaded. The data and figures on 

the website are continuously updated according to new acoustic data as they become 

available. 
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4. Discussion 

The acquisition of population baseline data for native and invasive species is a fun-

damental step in monitoring and managing wildlife in dynamic land cover and climate 

change scenarios. However, detecting and monitoring animal species at large spatiotem-

poral scales, especially in the tropics, remains a significant challenge. In this study, we 

presented an end-to-end acoustic monitoring pipeline that was able to detect several so-

niferous native, endemic, threatened, and invasive species; access their current population 

status; and summarize and display results in a user-friendly platform. 

Converging with our expectations, the occupancy probabilities of IAS were generally 

lower in environments with less human disturbance. For example, the occupancy proba-

bilities of some IAS were negatively associated with elevation (five species) and forest 

older than 54 years (four species). These findings suggested that IAS may be favored by 

human activities because species occupancies were higher in new forest areas that were 

expected to be more disturbed and human activities are more common and intense at low 

elevations in Puerto Rico. Our findings were in agreement with an overall correlation be-

tween anthropogenically disturbed habitats and invasive species of plants, invertebrates, 

fishes, birds, frogs, and mammals [45,66,67,69]. Our results revealed that elevation and 

precipitation were the most important variables for explaining the distribution of most 

soniferous IAS (the best model for 6 of 11 IAS contained elevation and precipitation as 

explanatory variables), followed by proportion of forest cover aged between 32–54 years 

(fa2) and forest cover older than 54 years (fa3). 

Free-range pets and domesticated species can also have a negative impact on native 

species, especially in island ecosystems [68,70]. Although the chicken, dog, wild goat, and 

feral horse are domesticated species, we decided to include them in the acoustic analysis 

because they can impact native wildlife directly (e.g., predation) and indirectly (e.g., 

spreading diseases and impacting on vegetation) [71]; moreover, some feral populations 

exist in the archipelago. Some studies have shown that domesticated species (such as 

dogs) can occur widely within protected areas and may represent a threat to native species 

[72,73]. In contrast, our occupancy models suggested a lower probability of dogs and 

chickens occupying the protected areas on the main island of Puerto Rico (Appendices E 

and F), indicating that protected areas can offer some level of protection against domesti-

cated species. 

Our knowledge about the main drivers of IAS distribution is still limited, which was 

reflected in the model-selection process. The null model was the top-ranked model of four 

species, indicating that the explanatory variables utilized in the models were not good 

predictors of spatial variation of these species. The anuran IAS showed a low probability 

of occupancy (<0.07) in the landscape of the main island of Puerto Rico, which may have 

reflected the low natural availability of aquatic environments in the landscape (i.e., natu-

ral low occupancy probability of species) or may have been a result of our sampling de-

sign, which was not focused on lentic systems. The three frog IAS had call activity associ-

ated with ponds; a new sampling process could easily be designed to include more lentic 

systems, which would increase the chance of finding frogs with an aquatic life stage. 

Estimating the probability of detection and occupancy of IAS can facilitate more effi-

cient management actions because the estimations of parameters related to species occur-

rence on the landscape will be unbiased and provide an uncertainty measure [74,75]. In 

our study, most IAS showed a higher probability of detection at the end of the sampling 

period (late May and early June 2021), suggesting that most species were more vocal and 

thus more easily detected by PAM at the end of the early high rainfall season. These find-

ings were congruent with breeding activity peaks recorded for terrestrial birds in Puerto 

Rico [52]. This positive relationship was restricted to the temporal range of the study 

(March–June) because a year-round sampling design can have more variability and alter 

the relationship between the Julian day and detection probability. 

Despite the large volume of data analyzed through PM, five birds were detected at 

only a few sites (<10), and we did not run occupancy models for them due to the small 
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number of detections (see Appendix H for detection locations). This low detection rate 

could correspond to a “real” low occurrence/density of the species in the study area or 

might have resulted from the species vocalizing sparingly. Even with a low number of 

detections, knowing where these species were found can present a valuable opportunity 

to prioritize surveying of locations closely similar in geographical and environmental 

space where the species were detected. Although working with few detection points (or 

even one detection point) is challenging and has several limitations, it can be useful in 

directing resources and field survey efforts to find undetected populations of a “rare” 

species in a region [76] and monitor possible early-stage expansions. 

The detection/nondetection of species is a baseline outcome of audio data analysis 

that can be used in various ecological analyses that make use of this type of data [28,36,38]. 

For example, the diel and annual activities of species are fundamental aspects of their life 

history, and the knowledge of it can be used along with artificial advertisement calls to 

trap and manage IAS [35,77,78]. We found that diel call activity of the species groups 

greatly varied, suggesting that monitoring and management programs should focus on 

specific periods of the day to increase their chance to detect and capture the IAS. 

Our end-to-end pipeline provided an effective method for detecting several native, 

endemic, threatened, and IAS (16 species) in Puerto Rico, including birds, frogs, and mam-

mals (95 species were detected overall). The manual validation of best ROI per site per 

day of PM analysis detected around 2000 call events of IAS. We took less than two days 

to validate the PM of the 16 IAS following our workflow. The fast analysis of this vast data 

set (1,773,287 1-minute recordings) was only possible through a user-friendly web-based 

platform with annotation functionality and the creation of user-defined playlists that al-

lowed us to combine manual annotations with PM analysis and validations by experts 

(see Figure 1). While users can take advantage of a variety of available software platforms 

or develop their own code to analyze PAM data, multifunctional tools that have user-

friendly interfaces are necessary to speed up and increase usage of PAM by a wider audi-

ence with varying skill sets [79]. Free user-friendly interfaces may be an effective way to 

implement early-stage detection and assist in the long-term monitoring of IAS popula-

tions by conservationists, wildlife managers, and decision makers. Cloud-based platforms 

such as those used in this project also can facilitate the inclusion of citizen scientists and 

other experts to improve and speed up the validation of data from the target groups. 

Detection and monitoring of IAS is of increasing importance for informing conserva-

tion management. Tools using an intuitive GUI can improve data exploration and narrow 

communication and knowledge gaps between the scientific community and other groups 

[80]. Here, we introduced a webpage as part of the last step of the Arbimon ecosystem, 

filling a critical need for a practical and intuitive way to summarize, display, and share 

ecological results from acoustic-monitoring processes so that the data generated can be 

easily used and shared by and with environmental agencies. This web-based tool was de-

signed to display biodiversity indicators such as number of detected species, activity pat-

terns, and species occupancy over maps and plots that can support species management. 

Previous studies have shown the benefit of combining acoustic monitoring with oc-

cupancy modeling to understand native species distribution [38,51,81–83]; in accordance 

with these findings, our study reinforced that this approach can be useful to understand 

the distribution of soniferous IAS as well. Additionally, our approach generated detec-

tion/nondetection data from species of greatest conservation need beyond IAS that can be 

used in more complex models (e.g., two-species or multispecies models) to assess rela-

tionships and interactions between IAS and SGCN, which can help researchers to under-

stand the potential effects of IAS on native species detection and occupancy probabilities 

[84–86]. PAM has been shown to be very useful for investigating IAS, and there remain a 

number of avenues for expansion. Other studies have demonstrated the usefulness of 

PAM as a consistent tool to examine sounds in nature, involving a range of topics [27] 

such as monitoring native wildlife species [49,82,87], disturbance from human noise 

[88,89], agricultural pests [90], ecosystem functions [91], disease-transmitting mosquitoes 
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[92], gunshots [93,94], and illegal timber harvests [95]. Although automated techniques 

are emerging to deal with the massive amount of acoustic data that are intrinsic to this 

monitoring tool, many of these methods still require manual examination of sounds for 

training and validating models [47,96–98]. Therefore, manually processing a large amount 

of recorded data continues to be one of the biggest challenges of PAM, and forthcoming 

studies may benefit from the pipeline we introduced. Furthermore, the usefulness of pas-

sive acoustic monitoring in combating invasive alien species should be boosted if used in 

actions organized and interconnected globally alongside other emerging tools such as en-

vironmental DNA, GIS analysis, camera traps, and citizen science [29,33,99]. We also em-

phasize the need to develop a long-term real-time alert system using artificial intelligence 

models to keep a vigilant eye on the early detection of alien invasive species, which can 

be easily driven through passive acoustic monitoring. 

5. Conclusions 

In summary, we showed that passive acoustic monitoring is a flexible, powerful, and 

practical tool for generating baseline population data for soniferous native and alien in-

vasive species. The end-to-end pipeline that we presented, which can quickly provide 

data on the presence/absence of species, was used to evaluate the spatial and temporal 

distribution of IAS. Our results led to the conclusion that the occupancy probabilities of 

the soniferous IAS were primarily related to areas with the highest human activities. Fi-

nally, we present the last step of the Arbimon ecosystem which contains webpages that 

provide decision makers and wildlife managers with results acquired through PAM in a 

user-friendly way. 
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Appendix A 

 

Figure A1. Map of the sampling sites across Puerto Rico from March to July 2021. For each sampling 

site, an AudioMoth device was deployed. The light-green polygons represent protected areas. 

  

Figure A2. The AudioMoth device, an open acoustic, lightweight, and affordable autonomous re-

cording unit used to monitor the soundscape in Puerto Rico during 2021. The device hardware, 

which included a lithium-ion rechargeable battery (blue packet in the photo), was placed in a pro-

tective waterproof plastic case with a silica packet and then deployed in a tree/vine/shrub at a 1.5 m 

height. 

Appendix B 

Distribution of the eight predictor variables for the occupancy models of invasive 

species in Puerto Rico. 
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Figure A3. Maps of environmental variables across the main island of Puerto Rico. Top left: eleva-

tion (range: 0 to 1325 m); top right: mean annual precipitation (range: 71 to 433 cm); bottom left: 

distance of nearest road (range: 0.1 to 1864 m); bottom right: built-up proportion (range: 0 to 84%). 

 

Figure A4. Maps of environmental variables across the main island of Puerto Rico. Top left: propor-

tion of protected area (range: 0 to 100%); top right: proportion of canopy cover (range: 14 to 96%); 

bottom left: proportion of forest age between 34–54 years (range: 0 to 94%); bottom right: map of 

proportion of forest cover older than 54 years (range: 0 to 100%). 
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Figure A5. Maps of environmental variables of Mona Island, Puerto Rico. Left: elevation; right: pro-

portion of canopy cover. 

 

Figure A6. Maps of environmental variables across Vieques and Culebra Islands, Puerto Rico. Top 

left: elevation; top center: mean annual precipitation; top right: distance of the nearest road; bottom 

left: proportion of protected area; bottom center: proportion of canopy cover. 
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Appendix C 

Table A1. Table of 95 species detected (74 birds, 18 frogs, and 3 mammals) through passive acoustic 

monitoring (combination of manual annotations and Arbimon Pattern Matching analysis) across 

the 841 sampling sites in Puerto Rico. PM = Pattern Matching, indicating the species with PM anal-

ysis; IUCN = International Union for Conservation of Nature; CR = critically endangered; EN = en-

dangered; VU = vulnerable; NT = near threatened; LC = least concern; PR = Puerto Rico main island; 

CU = Culebra; MO = Mona; VI = Vieques; National Red List = PRSWAP 2018; Occ = naive occupancy 

(proportion of sites where the species was detected); Det = detection frequency. 

Species Island Endemic Exotic PM IUCN 
National 

Red List  
Occ Det 

BIRDS         

Gallus gallus domesticus PR/MO/CU/VI  Yes Yes   0.048 0.006 

Patagioenas leucocephala PR/MO/VI Yes  Yes NT VU 0.071 0.025 

Patagioenas squamosa PR/VI   Yes LC  0.334 0.061 

Geotrygon montana PR   Yes LC DD 0.011 0.003 

Columbina passerina PR/MO/CU/VI    LC  0.054 0.005 

Streptopelia decaocto PR/MO/CU  Yes Yes LC  0.001 0.000 

Zenaida aurita PR/MO/CU/VI    LC  0.130 0.012 

Zenaida asiatica PR/MO/CU/VI    LC  0.162 0.021 

Crotophaga ani PR/MO/CU/VI   Yes LC  0.182 0.018 

Coccyzus vieilloti PR Yes  Yes LC LR 0.242 0.044 

Coccyzus minor PR/MO/VI    LC  0.070 0.004 

Chordeiles gundlachii PR/VI   Yes LC DD 0.095 0.029 

Antrostomus noctitherus PR Yes  Yes EN EN 0.083 0.038 

Bubulcus ibis PR  Yes Yes LC  0.001 0.000 

Butorides virescens PR/CU    LC  0.017 0.001 

Aramus guarauna PR   Yes LC DD 0.008 0.001 

Pluvialis squatarola PR/VI   Yes LC DD 0.038 0.005 

Actitis macularius PR/VI    LC  0.006 0.000 

Tringa melanoleuca PR    LC  0.001 0.000 

Tringa semipalmata PR    LC  0.001 0.000 

Charadrius vociferus PR/CU/VI    LC  0.013 0.001 

Himantopus mexicanus PR    LC  0.003 0.000 

Fulica caribaea PR    LC VU 0.001 0.000 

Gallinula galeata PR    LC  0.014 0.001 

Porphyrio martinica PR    LC  0.002 0.000 

Rallus crepitans PR/CU    LC  0.019 0.002 

Thalasseus maximus PR    LC  0.001 0.000 

Larus atricilla PR/MO    LC  0.006 0.000 

Sula sula MO    LC  0.001 0.000 

Buteo platypterus brunnescens PR/CU/VI Yes  Yes LC CR 0.018 0.004 

Buteo jamaicensis PR/CU/VI   Yes LC  0.138 0.008 

Accipiter striatus venator PR Yes  Yes LC CR 0.001 0.000 

Asio flammeus PR/CU    LC  0.002 0.000 

Gymnasio nudipes PR Yes  Yes LC  0.323 0.090 

Megaceryle alcyon PR/CU/VI    LC  0.010 0.001 

Falco sparverius PR/MO/CU    LC  0.030 0.001 

Todus mexicanus PR Yes  Yes LC  0.291 0.036 

Melanerpes portoricensis PR/VI Yes  Yes LC LR 0.520 0.108 

Brotogeris versicolurus PR/VI  Yes Yes LC  0.014 0.001 

Myiopsitta monachus PR  Yes Yes LC  0.013 0.001 
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Amazona amazonica PR  Yes Yes LC  0.001 0.000 

Amazona viridigenalis PR  Yes Yes EN  0.001 0.000 

Amazona vittata PR Yes  Yes CR CR 0.008 0.009 

Elaenia martinica PR/CU/VI    LC  0.058 0.006 

Contopus latirostris blancoi PR Yes  Yes LC  0.017 0.002 

Myiarchus antillarum PR/VI Yes  Yes LC  0.424 0.066 

Tyrannus caudifasciatus PR/VI    LC  0.087 0.005 

Tyrannus dominicensis PR/MO/CU/VI    LC  0.276 0.026 

Vireo altiloquus PR/MO/VI   Yes LC DD 0.392 0.127 

Vireo latimeri PR Yes  Yes LC VU 0.130 0.049 

Progne dominicensis PR   Yes LC DD 0.015 0.002 

Margarops fuscatus PR/MO/CU/VI   Yes LC  0.372 0.213 

Turdus plumbeus PR   Yes LC  0.181 0.027 

Mimus polyglottos PR/MO/CU    LC  0.059 0.008 

Nesospingus speculiferus PR Yes  Yes LC DD 0.060 0.017 

Spindalis portoricensis PR Yes  Yes LC LR 0.171 0.030 

Icterus portoricensis PR Yes  Yes LC DD 0.057 0.005 

Icterus icterus PR  Yes Yes LC  0.164 0.065 

Agelaius xanthomus PR/MO Yes  Yes EN EN 0.010 0.003 

Molothrus bonariensis PR/VI  Yes Yes LC  0.101 0.014 

Quiscalus niger PR/VI    LC  0.062 0.004 

Setophaga americana PR    LC  0.008 0.001 

Setophaga angelae PR Yes  Yes EN EN 0.040 0.029 

Setophaga petechia PR/CU/VI   Yes LC VU 0.037 0.083 

Setophaga discolor PR   Yes LC DD 0.024 0.003 

Setophaga caerulescens PR   Yes LC  0.005 0.001 

Setophaga adelaidae PR/VI Yes  Yes LC LR 0.437 0.140 

Parkesia noveboracensis PR    LC  0.002 0.000 

Coereba flaveola PR/CU/VI   Yes LC  0.802 0.229 

Melopyrrha portoricensis PR Yes  Yes LC LR 0.277 0.091 

Melanospiza bicolor PR    LC  0.050 0.004 

Tiaris olivaceus PR/MO    LC  0.009 0.000 

Passer domesticus PR/CU  Yes Yes LC  0.006 0.000 

Euphonia musica PR    LC  0.002 0.000 

FROGS         

Eleutherodactylus antillensis PR/CU/VI   Yes LC  0.366 0.107 

Eleutherodactylus brittoni PR   Yes LC DD 0.122 0.083 

Eleutherodactylus cochranae PR/CU/VI   Yes LC  0.132 0.083 

Eleutherodactylus cooki PR Yes  Yes EN VU 0.002 0.009 

Eleutherodactylus coqui PR   Yes LC  0.369 0.152 

Eleutherodactylus gryllus PR Yes  Yes CR  0.005 0.006 

Eleutherodactylus hedricki PR Yes  Yes EN  0.013 0.005 

Eleutherodactylus juanariveroi PR Yes  Yes CR CR 0.001 0.002 

Eleutherodactylus locustus PR Yes  Yes EN VU 0.005 0.004 

Eleutherodactylus monensis MO Yes  Yes VU  0.003 0.002 

Eleutherodactylus portoricensis PR Yes  Yes EN VU 0.017 0.059 

Eleutherodactylus richmondi PR   Yes EN  0.001 0.002 

Eleutherodactylus unicolor PR Yes  Yes CR  0.009 0.023 

Eleutherodactylus wightmanae PR Yes  Yes EN  0.047 0.039 

Rhinella marina PR/CU  Yes Yes LC  0.029 0.017 

Osteopilus septentrionalis PR  Yes Yes LC  0.026 0.007 
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Leptodactylus albilabris PR   Yes LC  0.101 0.031 

Lithobates catesbeianus PR  Yes Yes LC  0.019 0.017 

MAMMALS         

Canis lupus familiaris PR/CU  Yes Yes     

Capra hircus MO  Yes Yes   0.024 0.003 

Equus ferus caballus PR/VI  Yes Yes   0.015 0.002 

Appendix D 

We accessed convergence and mixing across Markov chains for each parameter 

through visual inspection of traceplots from the best occupancy model of 11 invasive spe-

cies in Puerto Rico. We used three Markov chains for all the models. When the Markov 

chains (characterized by different colors in the figures below) showed a random scatter 

around a mean value, this suggested a good mixing and convergence. The x-axis repre-

sents the number of iterations for each chain in the order in which they are drawn. The 

maximum number of interactions of the models varied (so the x-axis varied as well) be-

cause some models need more iterations in order for the Markov chains to achieve con-

vergence of the parameters. The y-axis represents the estimated values of the parameter. 

 

Figure A7. Traceplots from the best spatial occupancy model of Venezuelan troupial (Icterus icterus) 

in Puerto Rico: (ψ(intercept + elevation + precipitation + RSR-1000); �(intercept + elevation + date + 

date2)). Note: alt = elevation; precip = mean annual precipitation; date = Julian date (we considered 

Julian day 1 as the first day of a device starting to record in the field, which was 1 March 2021); date2 

= square of Julian date; RSR = restricted spatial regression (threshold = 1000 m). 
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Figure A8. Traceplots from the best occupancy model (ψ(intercept + elevation + precipitation); �(in-

tercept + elevation)) of white-winged parakeet (Brotogeris versicolurus) in Puerto Rico. Note: alt = 

elevation; precip = mean annual precipitation. 
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Figure A9. Traceplots from the best occupancy model of chicken (Gallus gallus domesticus) in Puerto 

Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 + fa3 + distance 

of road + built-up + RSR-1000); �(intercept + elevation)). Note: alt = elevation; precip = mean annual 

precipitation; protArea = proportion of protected area; canopy = proportion of canopy cover; fa2 = 

proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover aged 55 

years and older; dis_road = minimum distance from road; builtup = built-up proportion; RSR = re-

stricted spatial regression (threshold = 1000 m). 

 

Figure A10. Traceplots from the best occupancy model (ψ(intercept); �(intercept + elevation + date 

+ date2)) of shiny cowbird (Molothrus bonariensis) in Puerto Rico. Note: alt = elevation; date = Julian 
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date (we considered Julian day 1 as the first day of a device starting to record in the field, which was 

1 March 2021); date2 = square of Julian date. 

 

Figure A11. Traceplots from the best occupancy model (ψ(intercept); �(intercept + elevation + Julian 

day + Julian day2)) of house sparrow (Passer domesticus) in Puerto Rico. Note: alt = elevation; date = 

Julian date (we considered Julian day 1 as the first day of a device starting to record in the field, 

which was 1 March 2021); date2 = square of Julian date. 
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Figure A12. Traceplots from the best occupancy model of American bullfrog (Lithobates catesbeianus) 

in Puerto Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 + fa3 + 

distance of road + built up); �(intercept + elevation + date + date2)). Note: alt = elevation; precip = 

mean annual precipitation; protArea = proportion of protected area; canopy = proportion of canopy 

cover; fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover 

aged 55 years and older; dis_road = minimum distance from road; builtup = built-up proportion; 

date = Julian date (we considered Julian day 1 as the first day of a device starting to record in the 

field, which was 1 March 2021); date2 = square of Julian date. 
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Figure A13. Traceplots from the second-best occupancy model (the top-ranked model did not con-

verge well) of Cuban tree frog (Osteopilus septentrionalis) in Puerto Rico: (ψ(intercept + fa2 + fa3); 

�(intercept + elevation + date + date2)). Note: alt = elevation; fa2 = proportion of forest cover aged 

between 32 and 54 years; fa3 = proportion of forest cover aged 55 years and older; date = Julian date 

(we considered Julian day 1 as the first day of a device starting to record in the field, which was 1 

March 2021); date2 = square of Julian date. 
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Figure A14. Traceplots from the best occupancy model of cane toad (Rhinella marina) in Puerto Rico: 

(ψ(intercept); �(intercept + elevation + date + date2)). Note: alt = elevation; date = Julian date (we 

considered Julian day 1 as the first day of a device starting to record in the field, which was 1 March 

2021); date2 = square of Julian date. 
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Figure A15. Traceplots from the best occupancy model of domestic dog (Canis lupus familiaris) in 

Puerto Rico: (ψ(intercept + elevation + precipitation + protected area + canopy cover + fa2 + fa3 + 

distance of road + built up); �(intercept + elevation)). Note: alt = elevation; precip = mean annual 

precipitation; protArea = proportion of protected area; canopy = proportion of canopy cover; fa2 = 

proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover aged 55 

years and older; dis_road = minimum distance from road; builtup = built-up proportion. 
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Figure A16. Traceplots from the best occupancy model of wild goat (Capra hircus) in Puerto Rico: 

(ψ(intercept); �(intercept + elevation + date + date2)). Note: alt = elevation; date = Julian date (we 

considered Julian day 1 as the first day of a device starting to record in the field, which was 1 March 

2021); date2 = square of Julian date. 
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Figure A17. Traceplots from the best occupancy model of feral horse (Equus ferus caballus) in Puerto 

Rico: (ψ(intercept + elevation + precipitation); �(intercept)). Note: alt = elevation; precip = mean an-

nual precipitation. 

Appendix E 

Below is the output summary from the best occupancy model used for the prediction 

maps for 11 invasive alien species in Puerto Rico. 

Table A2. Output summary from the best model (ψ(intercept + elevation + precipitation + RSR-

1000); �(intercept + elevation + Julian day + Julian day2)) of Venezuelan troupial (Icterus icterus) in 

Puerto Rico. RSR = restricted spatial regression. Runtime: 2.722 h. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −2.034 0.284 −2.586 −1.463 3019 1.00 

Elevation −0.754 0.477 −1.686 0.190 2948 1.00 

Precipitation −1.287 0.261 −1.830 −0.796 2836 1.00 

RSR (tau)—1000 m 0.652 1.776 0.076 3.070 374 1.01 

Detection (logit-scale):       

Intercept −1.14 0.285 −1.691 −0.579 2475 1.00 

Elevation −1.08 0.450 −1.937 −0.209 2561 1.00 

Julian date (linear) 0.58 0.127 0.333 0.822 2427 1.00 

Julian date (quadratic) −0.13 0.153 −0.423 0.172 2882 1.00 
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Table A3. Output summary from the best spatial occupancy model (ψ(intercept + elevation + pre-

cipitation); �(intercept + elevation)) of white-winged parakeet (Brotogeris versicolurus) in Puerto 

Rico. Runtime: 13.692 min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −3.133 0.461 4.025 −2.170 1021 1.002 

Elevation −0.925 0.777 −2.391 0.671 1042 1.002 

Precipitation 0.637 0.322 0.019 1.272 1808 0.999 

Detection (logit-scale):       

Intercept −1.28 0.461 −2.24 −0.422 956 1.01 

Elevation −1.37 0.780 −2.96 0.0642 1019 1.00 

Table A4. Output summary from the best spatial occupancy model (ψ(intercept + elevation + pre-

cipitation + protected area + canopy cover + fa2 + fa3 + distance of road + built up + RSR-1000); 

�(intercept + elevation)) of chicken (Gallus gallus domesticus) in Puerto Rico. Note: fa2 = proportion 

of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover aged 55 years and 

older. RSR = restricted spatial regression (threshold = 1000 m). Runtime: 2.788 h. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −1.513 0.122 −1.764 −1.284 2546 0.999 

Elevation 0.189 0.150 −0.111 0.480 2714 1.00 

Precipitation −0.456 0.160 −0.781 −0.156 2635 1.00 

Protected area −0.758 0.151 −1.070 −0.479 2136 1.00 

Canopy cover 0.268 0.159 −0.046 0.582 2799 1.00 

fa2 −0.176 0.123 −0.427 0.047 2955 1.00 

fa3 −0.284 0.172 −0.630 0.045 2385 1.00 

Distance of road −0.450 0.185 −0.840 −0.114 2816 1.00 

Built up 0.117 0.094 −0.064 0.307 2565 1.00 

RSR (tau)—1000 m 23.256 41.832 0.891 138.545 403 1.02 

Detection (logit-scale):       

Intercept 0.306 0.056 0.197 0.414 3118 1.00 

Elevation 0.226 0.072 0.087 0.370 3110 1.00 

Table A5. Output summary from the best occupancy model (ψ(intercept); �(intercept + elevation + 

Julian day + Julian day2)) of shiny cowbird (Molothrus bonariensis) in Puerto Rico. Runtime: 13.118 h. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −1.8 0.131 −2.05 −1.53 2244 1.00 

Detection (logit-scale):       

Intercept −1.179 0.160 −1.492 −0.868 1856 1.00 

Elevation −0.431 0.170 −0.745 −0.083 2051 1.00 

Julian date (linear) 0.353 0.117 0.126 0.594 2011 1.00 

Julian date (quadratic) −0.031 0.125 −0.284 0.203 1866 1.00 
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Table A6. Output summary from the best occupancy model (ψ(intercept); �(intercept + elevation + 

Julian day + Julian day2)) of house sparrow (Passer domesticus) in Puerto Rico. Runtime: 11.022 min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −3.81 0.318 −4.47 −3.22 2046 1 

Detection (logit-scale):       

Intercept −2.225 0.533 −3.258 −1.210 1537 1.004 

Elevation −1.392 0.584 −2.560 −0.286 1704 1.001 

Julian date (linear) 0.126 0.236 −0.330 0.595 2262 0.999 

Julian date (quadratic) 0.667 0.270 0.142 1.203 1927 1.002 

Table A7. Output summary from the best spatial occupancy model (ψ(intercept + elevation + pre-

cipitation + protected area + canopy cover + fa2 + fa3 + distance of road + built up); �(intercept + 

elevation + Julian day + Julian day2)) of American bullfrog (Lithobates catesbeianus) in Puerto Rico. 

Note: fa2 = proportion of forest cover aged between 32 and 54 years; fa3 = proportion of forest cover 

aged 55 years and older. Runtime: 40.292 min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −6.454 0.936 −8.477 −4.889 1343 1.001 

Elevation −1.846 0.953 −4.113 −0.334 2155 1.001 

Precipitation 1.332 0.490 0.413 2.281 2809 1.000 

Protected area −0.098 0.366 −0.852 0.582 3376 0.999 

Canopy cover 0.015 0.478 −0.931 0.968 3071 1.000 

fa2 0.017 0.317 −0.61 0.626 3110 0.999 

fa3 −2.267 0.888 −4.267 −0.799 1835 1.001 

Distance of road 0.349 0.262 −0.197 0.841 3109 1.000 

Built up −0.695 0.546 −1.946 0.176 2402 0.999 

Detection (logit-scale):       

Intercept 0.572 0.903 −1.115 2.45 2426 0.999 

Elevation 1.755 1.345 −0.764 4.56 2503 1.000 

Julian date (linear) 0.979 0.475 0.225 2.09 1766 0.999 

Julian date (quadratic) 1.170 0.428 0.416 2.11 1738 1.000 

Table A8. Output summary from the second-best occupancy model (ψ(fa2 + fa3); �(intercept + ele-

vation + Julian day + Julian day2)) of Cuban tree frog (Osteopilus septentrionalis) in Puerto Rico (the 

top-ranked model did not converge well). Note: fa2 = proportion of forest cover aged between 32 

and 54 years; fa3 = proportion of forest cover aged 55 years and older. Runtime: 29.712 min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −2.458 0.400 −3.268 −1.720 1783 1 

fa2 −0.144 0.254 −0.674 0.340 2761 1 

fa3 −0.831 0.408 −1.672 −0.085 2085 1 

Detection (logit-scale):       

Intercept −4.364 0.804 −5.946 −2.751 1715 1 

Elevation −2.784 0.915 −4.817 −1.181 1833 1 
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Julian date (linear) 1.919 0.466 1.106 2.960 1862 1 

Julian date (quadratic) −0.202 0.337 −0.891 0.422 2118 1 

Table A9. Output summary from the best occupancy model (ψ(intercept); �(intercept + elevation + 

Julian day + Julian day2)) of cane toad (Rhinella marina) in Puerto Rico. Runtime: 9.981 min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −3.17 0.217 −3.6 −2.77 2530 1.00 

Detection (logit-scale):       

Intercept −0.983 0.300 −1.609 −0.417 1448 1.00 

Elevation −1.109 0.311 −1.712 −0.491 2561 1.00 

Julian date (linear) −0.395 0.160 −0.711 −0.085 2538 1.00 

Julian date (quadratic) 0.113 0.201 −0.274 0.506 1626 1.00 

Table A10. Output summary from the best spatial occupancy model (ψ(intercept + elevation + pre-

cipitation + protected area + canopy cover + fa2 + fa3 + distance of road + built up); �(intercept)) of 

domestic dog (Canis lupus familiaris) in Puerto Rico. Note: fa2 = proportion of forest cover aged be-

tween 32 and 54 years; fa3 = proportion of forest cover aged 55 years and older. Runtime: 11.735 

min. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −2.106 0.175 −2.472 −1.775 2092  1.00 

Elevation −0.018 0.197 −0.411 0.357 2975 1.00 

Precipitation 0.132 0.199 −0.257 0.515 2869 1.00 

Protected area −0.372 0.192 −0.757 −0.006 2948 1.00 

Canopy cover −0.050 0.233 −0.514 0.406 2264 1.00 

fa2 0.356 0.162 0.047 0.671 2538 1.00 

fa3 −0.154 0.246 −0.643 0.336 2320 1.00 

Distance of road −0.499 0.304 −1.138 0.015 2141 1.00 

Built up 0.326 0.137 0.068 0.605 2834 1.00 

Detection (logit-scale):       

Intercept −1.43 0.12 −1.67 −1.2 3159 0.999 

Table A11. Output summary from the best occupancy model (ψ(intercept); �(intercept + Julian day 

+ Julian day2)) of wild goat (Capra hircus) in Puerto Rico. Runtime: 49.586 s. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept 0.688 0.504 −0.182 1.73 1775 1.00 

Detection (logit-scale):       

Intercept −1.147 0.315 −1.794 −0.539 1659 1.002 

Elevation 1.100 0.296 0.545 1.666 2083 1.001 

Julian date (linear) −0.087 0.264 −0.601 0.435 2925 0.999 

Julian date (quadratic) −1.197 0.307 −1.826 −0.646 2233 1.00 
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Table A12. Output summary from the best spatial occupancy model (ψ(intercept + elevation + pre-

cipitation); �(intercept)) of feral horse (Equus ferus caballus) in Puerto Rico. Runtime: 41.425 s. 

Covariates Estimated SD 2.5% 97.5% n_eff Rhat 

Occupancy (logit-scale):       

Intercept −1.068 0.551 −2.08 0.115 1192 1.00 

Elevation −0.163 0.794 −1.64 1.461 1293 1.00 

Precipitation 1.730 1.070 0.16 4.354 848 1.00 

Detection (logit-scale):       

Intercept −1.28 0.338 −1.99 −0.649 1247 1.00 

Appendix F 
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Figure A18. Prediction maps using the top-ranked model (mean expected occupancy probability) 

with the model prediction uncertainty (standard deviation) for the invasive alien species found dur-

ing passive acoustic monitoring across Puerto Rico. When the top-ranked model of the species was 

the null model for occupancy or did not converge well, we used the model that ranked second-best 

to draw the prediction maps (i.e., for Molothrus bonariensis, Osteopilus septentrionalis, Rhinella marina, 

and Capra hircus), and as such, we highlight that these predictions should be interpreted with cau-

tion because there was a high uncertainty associated with them. The circles represent the sampling 

sites where the species were detected by the AudioMoth devices. The prediction for wild goat was 

made for Mona Island, the prediction for feral horse was made for Vieques island, and the predic-

tions for the other species were made for the main island of Puerto Rico. 

Appendix G 

We created a biodiversity insight page as a new feature of Arbimon web-based plat-

form for use by government agencies (e.g., Departamento de Recursos Naturales y Ambi-

entales (DRNA), U.S. Fish and Wildlife Service), and the general public (e.g., educators 

and birdwatchers). The platform provides access to the main results of this study and in-

formation on the calls, behavior, and biology of the species detected in the ARU 

(https://bio.rfcx.org/puerto-rico-island-wide (accessed on 14 June 2022)). The main fea-

tures of this page include information on the vocalizations, distributions, and ecologies of 

most bird and anuran species in Puerto Rico. The page also includes a searchable database 

that contains the detection data, presence/absence maps, and occupancy maps for the 

birds and anurans detected at the 841 sampling sites. All maps, plots, and data used to 

generate the figures can be downloaded. Since the project is still in progress, the data on 

the page are constantly being updated as more data are validated. 

 

Figure A19. Dashboard: This page presents an overview of the project, including background infor-

mation, objectives, funding, and stakeholders. General results are also presented, such as the total 
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number of detections, sampling sites, species detected, and the number of species in each threat 

category according to the International Union for Conservation of Nature (IUCN). This page also 

features a map with all sampling sites and the number of species detected at each site. 

 

Figure A20. Species Richness: This page presents the results of the number of species detected and 

allows for exploration of those data in greater detail. The data are presented as a bar graph with 

aggregated results that can be filtered by region/site, date, and taxonomic group. Below the bar 

graph is an accompanying map depicting species richness in the selected sites; the point size reflects 

the number of species detected at each location. Below the map is a graph displaying the number of 

species according to time of day, day of the week, month, or date. 

 

Figure A21. Activity Overview: This page offers an overview of temporal and spatial vocal activity 

patterns. It can be used to summarize detection frequency, number of raw detections, or naive oc-

cupancy results (i.e., proportion of occupied sites), with a focus given to general patterns at the 

community level. As with the Richness page, the user can use the filters to select results from taxo-

nomic groups, sampling sites, or specific periods and visualize the results in a map or graphs that 

present the results according to the hour, day of the week, or month. 



Remote Sens. 2022, 14, 4565 38 of 42 
 

 

 

Figure A22. Spotlight: This page offers an in-depth look at the raw detection and occupancy of in-

dividual species. On this page, the user can select the species that were detected in the project data 

using either the scientific or common name. Basic information about the species, photo, call exam-

ple, population status according to IUCN, detection frequency, and naive occupancy values are pre-

sented. The first map shows the detection results by site and allows for filtering by detection fre-

quency, the number of detections (raw), and naive occupancy (i.e., proportion of occupied sites). A 

second map, when available for the species, shows the predicted occupancy (i.e., probability of oc-

cupancy) in Puerto Rico. In addition, a graph displays either detection frequency or the number of 

detections results according to the hour, day of the week, or month. Like the Richness and Activity 

pages, the data set can be subset by selecting one or more sampling sites or sampling periods. 

Appendix H 

 

Figure A23. Map of sites where the species with low raw detections were found (<10 sites detected). 

The light-green polygons represent protected areas. 
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