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Abstract: The Sentinel-1A/B satellite launched by European Space Agency (ESA) in 2014 provides
a huge amount of free Terrain Observation by Progressive Scans (TOPS) data with global coverage
to the public. The TOPS data have a frame width of 250 km and have been widely used in surface
deformation monitoring. However, traditional Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) methods require large computer memory and time when processing full resolution
data with large width and long strips. In addition, they hardly correct atmospheric delays and orbital
errors accurately over a large area. In order to solve these problems, this study proposes a data
partition strategy based on MT-InSAR methods. We first process the partitioned images over a
large area by traditional MT-InSAR method, then stitch the deformation results into a complete
deformation result by correcting the offsets of adjacent partitioned images. This strategy is validated
in a flat urban area (Changzhou City in Jiangsu province, China), and a mountainous region (Qijiang
in Chongqing City, China). Compared with traditional MT-InSAR methods, the precision of the
results obtained by the new strategy is improved by about 5% for Changzhou city and about 15%
for Qijiang because of its advantage in atmospheric delay correction. Furthermore, the proposed
strategy needs much less memory and time than traditional methods. The total time needed by the
traditional method is about 20 h, and by the proposed method, is about 8.7 h, when the number
of parallel processing is 5 in the Changzhou city case. The time will be further reduced when the
number of parallel processes increases.

Keywords: MT-InSAR; ground deformation monitoring; Sentinel-1A/B; image partition; block
adjustment

1. Introduction

Due to large coverage and high-precision, Interferometric Synthetic Aperture Radar
(InSAR) has been widely used for mapping surface deformation, such as urban surface
deformation [1,2], seismic deformation [3,4], landslide displacement [5–9], and mining
subsidence [10]. With the fast development of SAR satellite technology [11], the observation
range and frequency are both improved [12–14], providing cycle monitoring for a large-scale
or national wide area. However, the traditional processing strategies for Multi-Temporal
Interferometric Synthetic Aperture Radar (MT-InSAR) cannot efficiently process the huge
number of images with large spatial and temporal coverage. Furthermore, the possible
atmospheric phase screen and orbital errors exist in the SAR images with wide spatial
coverage are difficult to be corrected. Therefore, optimizing the InSAR processing strategy
and parameters is crucial for the application of wide-area InSAR data.

Using supercomputers or distributed computing systems, such as CASearth Cloud
Infrastructure Platform [15], and ESA’s G-POD environment [16], is a way to improve the
data processing efficiency, but it is too expensive to be popularized. Another way is to
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segment a large image into small blocks, which can significantly reduce the computation
burden and complexity in one block and improve the efficiency of data processing. Cur-
rently, data partition strategies are applied in some steps of SAR data processing, such
as phase unwrapping [17–20], orbital error correction [21], atmospheric correction [22,23],
and PS point decomposition [24,25], but not the whole data process. GAMMA software
provides a well-known patch-based point target analysis method, Interferometric Point
Target Analysis (IPTA) [26]. However, the method of using local reference points between
neighboring patches to extend the results to adjacent blocks is highly affected by unstable
connections, resulting in errors propagating in the result easily [27]. StaMPS method and
software [28] also provide a block strategy to select permanent scatterers, but it is time-
consuming for large-scale areas [29]. Data block processing often introduces systematic
errors, such as reference basis errors [29–31]. To remove these errors, external data (GNSS
and leveling) and modeling [32,33] are needed. Furthermore, the correction efficacy and
precision strongly depend on the precision and spatial distribution of external data.

To address the above problems, we propose a strategy to divide the original data
into small blocks by GAMMA software and process these blocks independently by the
traditional MT-InSAR method. Then, we use the least square method to estimate the basis
between each block and mosaic the corrected block results to obtain the overall results. To
validate our strategy, we selected the Sentinel-1 Terrain Observation by Progressive Scans
(TOPS) data of a city in the plain area (Changzhou City, Jiangsu Province) and a city in
the mountainous area (Qijiang, Chongqing City) in China for the experiment. The results
obtained by the traditional and the proposed methods are compared in terms of precision,
memory consumption, and time consumption. We also discuss the optimal overlap ratio of
blocks and the application of the proposed method.

This study is organized as follows: Section 2 describes the proposed method in detail.
The study area and the datasets are introduced in Section 3. In Section 4, we compare the
precision and time consumption of the proposed method and traditional method. The
block approach and the applicability scenarios of our method is also discussed in Section 5.
Finally, some conclusions are drawn in Section 6.

2. The Block MT-InSAR Data Processing Strategy

In order to solve the great calculation burden caused by Sentinel-1A/B TOPS data of
large spatial and temporal coverage, this paper proposes a data partition strategy based on
the MT-InSAR data method, referred to as the block MT-InSAR algorithm. First, the TOPS
data are co-registered in the study area to obtain registered single look complex (RSLC), and
then the RSLC data are partitioned and processed separately by the traditional MT-InSAR
algorithm. Then, the results are corrected by the adjustment model based on the spatial
consistency of homonymy points (the same ground deformation points located in different
blocks within the overlap areas.). Finally, the results are spliced to obtain the continuous
overall deformation results. The general flow of the method is shown in Figures 1 and A1.
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2.1. Data Partition and Block Processing

Even partition [29], quadtree partition [22], and clustering algorithm partition [19,34]
have been used in some parts of data processing, such as atmospheric delay removal, PS
network construction, and phase unwrapping. In order to facilitate the splicing process,
this paper uses even partition to divide the original data into small blocks, in which the
block size and the overlap ratio should be considered.

Block size affects the precision and the processing efficiency of the phase unwrapping,
atmospheric delay, and orbit error partition. If the block interferograms are highly coherent
and easy to unwrap, the block size has little effect on phase unwrapping precision, but a
small block size would lead to high unwrapping efficiency [17]. Additionally, the atmo-
spheric delay in the MT-InSAR consists of a short-scale (few kilometers) and a long-scale
(tens of kilometers) component [35], so the block size smaller than these scales is conducive
to removing atmospheric delay. However, the too-small block size may remove the long-
wavelength deformation signal. The block width and height should be larger than 1/3
ALOS-2 data in range and azimuth for ALOS-2 (70 km) datasets [21]. Therefore, we set the
initial block size as ~30 km in length and width for S1A/B TOPS data.

The overlap ratio between blocks also affects the reliability of results and data pro-
cessing efficiency. The larger the overlap ratio the higher the reliability. For example, if a
block area is overlapped with the surrounding blocks in four directions by 10%, 36% of the
small block is overlapped with the surrounding blocks, and the overlap area will become
96% when the overlap ratio is 40% in width and height directions. (Figure 2a) However,
increasing the overlap ratio will lead to a lot of repeated calculations and reduce the data
processing efficiency. In order to improve the result reliability (>50% overlap area), we take
off the balance between the reliability of results and choose the overlap ratio of 20~40% for
further experiments.
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Figure 2. (a) Diagram of overlap ratio and overlap area. w and h are the width and height of the
overlap region, respectively, and W and H are the width and height of the image, respectively. So,
the overlap ratio is w/W or h/H. The shadow area is the overlap area in the block (red line) with the
surrounding blocks, and the overlap area is 1 − (1 − 2 × w/W) × (1 − 2 × h/H). (b) Diagram of the
coordinates acquirement of corner points in the overlap region. (c) Diagram of the adjustment model.
The circles represent the deformation points. The thicker the circles, the more times the regions are
overlapped. v represents the deformation rate of each point.

2.2. Results Correction Based on Least Square Estimation

After data partition, we process each block of data to obtain the deformation results
using the improved IPTA-InSAR method [36,37]. The obtained deformation results of all
the blocks are preprocessed through three steps. (1) Co-registration. Due to the location
errors caused by orbital errors and low resolution of DEM; the location of deformation
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results may have a systematic deviation of about 1–2 pixels after geocoding. Such deviation
can be solved by an overall offset correction using some feature points on the ground.
(2) Automatic extraction of overlapping regions. The deformation rates of the homonymy
points in the overlapping region determine the correction precision, so it is necessary
to identify the overlapping regions between the deformation results first. We use the
topological relationship between image overlays (quadrangles) to find the coordinates
of corner points in the overlap region (Figure 2b). (3) High-quality homonymy point
selection. We select homonymy points with high coherence and small uncertainty. After
these operations, the deformation results can be corrected by adjustment.

Errors can be removed during data processing. However, data partition makes each
block have a local reference point, and the benchmarks of these reference points may be
different, resulting in discrepancies between the results of adjacent blocks and affecting the
precision of the overall results. The difference in the deformation rates of the homonymy
points in the overlapping area is described as

veli,k − velj,k = δi,k − δj,k (1)

where veli,k and velj,k denote the deformation rate at deformation point k in image i and j,
respectively, and δi,k, and δj,k denote the error of the corresponding points. Since the error
contains mainly the difference in benchmarks, this value can be assumed as a constant.

The matrix form of Equation (1) is:

V = BX̂− L (2)

where V =
[
δv1 δv2 · · · δvi · · · δvM

]T is the residual of the calculated values and

the observations, X̂ = [x̂1 x̂2 · · · x̂M ]
T is the difference between the reference points

of adjacent images estimated by the least square method. B is the coefficient matrix.
L = [vel1,k − vel2,k veli,k − velj,k · · ·]T .

To solve Equation (2), we have to determine the weights of the blocks according to the
quality of the data involved in the adjustment.

D(L) = σ2
0 P−1 (3)

σ2
0 denotes the variance of unit weight and P is the weight matrix. Assume that the

uncertainty of point i is given by δ. Then, the weight of the point is

pi =
C
δi

(4)

In this study, the data are partitioned into small blocks, which are processed indepen-
dently. The Helmert variance component estimation for multiple data classes is applied to
optimize the solution weights of each data set.

Sθ̂ = Wθ (5)

where θ̂ =
[
σ̂2

01 σ̂2
02 · · · σ̂2

0M
]T is the estimated variance of unit weight. Wθ is the

square sum of the corrected values, Wθ =
[
VT

1 PV1 VT
2 PV2 · · · VT

MPVM
]T . S is the

coefficient matrix. After obtaining θ̂, X̂ is solved using the least square method. Repeat the
above process until θ̂ satisfies the given threshold T = 3δ0, and the corresponding solution
is the optimal X̂ for each SAR image block. The corrected deformation rate is obtained by
Equation (6).

ˆveli,k = veli,k − x̂i (6)
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The posteriori variance of unit weight and the covariance array are used to evaluate
the adjustment observation. They can be obtained by

σ̂2
0 =

VT PV
r

(7)

Qx̂i = BT
i PBi (8)

In Equation (7), r is the number of redundant observations, and it can be referred to as
the number of degrees of freedom, r = N−M, with N denoting the number of observations,
and M denoting the row number of X̂. According to the error propagation, the covariance of
the estimate of the homonymy points in the overlap region can be obtained by Equation (9).

QL̂L̂ =
(

BQ−1
x̂ BT P

)
Q(BQ−1

x̂ BT P)
T
= BQ−1

x̂ BT (9)

To verify the precision of the adjustment results, the deformation difference of the
homonymy points before and after correction are compared. The block processing results
are verified by comparing with that of the traditional processing method (the result without
partitioning processing).

2.3. Result Mosaicking

The final step is to mosaic the corrected deformation results of all blocks. After geocod-
ing, the block results are horizontally mosaicked. After correction, the deformation of the
homonymy points in the overlapping area may still have differences, due to the different
errors distribution. We adopt the weighted average method to merge the deformation of
the homonymy points.

After correcting the deformation rate, we correct the deformation sequence. Assuming
that the deformation is linear, T(T1, T2 · · · Ta · · · Tt) is a deformation sequence, and the
corrected deformation sequence at time Ta can be obtained by

Ŝa =
∫ Ta

T1

(va + x̂a)dT = Sa + x̂a(Ta − T1) (10)

where Ŝa is the accumulated deformation after correction, va is the deformation rate. x̂a
is the correction of deformation rate, but cannot be calculated, Sa is the accumulated
deformation before correction. If the deformation is linear, x̂a is equal to the correction of
average deformation rate in the deformation sequences T. Variant x̂ can be calculated by
Equation (2), so the equation can be instead of Equation (11). Figure 3 is the diagram of
deformation sequence correction.

Ŝa = Sa + x̂(Ta − T1) (11)
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3. Experiment and Data Processing
3.1. Study Area and Datasets

Two study areas are selected to validate the proposed method. One is in Changzhou
City (31◦09′–32◦04′N, 119◦08′–120◦12′E), a coastal city in eastern China. This area is a
plain with an elevation of about 10 m [38]. It has a highly developed economy and urban
industry. The continuous expansion of urban and engineering projects has changed the
geological environment and led to frequent geological hazards. So, surface subsidence
monitoring in the area is necessary.

The other study area is Qijiang (28◦27′–29◦11′N, 106◦23′–107◦03′E), in western China.
It is in the transition zone from the southeastern edge of the Sichuan basin to the Yunnan-
Guizhou plateau. The topography is undulating. The mountainous area accounts for
67.6% of the total area and the hills account for 32.4%. The average elevation of this area is
254.8 m [39].

These two regions are used to test the applicability of the proposed method under
different error conditions.

We collected 110 Sentinel-1A/B TOPS images covering Changzhou City from path T69
and frame 99, between 5 January 2018 and 31 December 2020, and acquired 115 Sentinel-1
images over Qijiang from path T55 and frame 92, between 9 January 2018 and 31 December
2021. Specific image parameters and image acquisition time are shown in Tables 1 and A1
in Appendix A.

Table 1. The image parameters of the study areas.

Study Area Direction Path Heading Incidence Pixel Spacing
(Rg × Az)

Num of
Images

Changzhou Ascending T69 −12.79◦ 36.65◦ 2.33 × 13.98 m 110
Qijiang T55 −12.65◦ 43.64◦ 2.33 × 13.96 m 115

3.2. Data Processing

Using the method described in Section 2, we partitioned the acquired single look
complex (SLC) images after co-registration and obtained 30 small blocks with overlapping
regions (Figure 4). The block size in Changzhou City is about 7000 × 1400 (pixels), and the
overlap rate is about 30%; the block size in Qijiang is about 6400 × 1600 (pixels), and the
overlap rate is about 25%.

The spatial baselines of Sentinel-1 images are short, so we connected each image
with two (temporally) adjacent images to form a network, only considering the tempo-
ral baselines. A multi-look operation (range: azimuth = 5:1) was applied to reduce the
noise. After the multi-look operation, the image size of Changzhou city was reduced to
1600 × 1400 (pixels) and that of Qijiang was reduced to 1500× 1600 (pixels). The data were
processed by minimum cost flow (MCF) for phase unwrapping, and Goldstein filtering for
noise mitigation. The PS points were selected considering the phase coherence threshold
and the amplitude dispersion threshold of the amplitude map. Orbital error phases were
removed by polynomial fitting. Most atmospheric phases were removed by differenc-
ing between neighboring PS points, and the remaining was removed by spatial-temporal
filtering. The topographic residual phases were then removed using linear regression.
Finally, the deformation sequence was solved from the remaining phases using Singular
Value Decomposition (SVD). The obtained time series of deformation was corrected by the
method introduced in Section 2.2. The average deformation of the high-quality homonymy
points in the overlapping areas was used for correction. Finally, the result of traditional
processing and block processing were obtained. Figure 5 shows the deformation results of
Changzhou and Qijiang.
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Figure 5. Deformation results of the study areas. The results of Changzhou found by (a) partition
method and (b) traditional method. The results of Qijiang found by (c) partition method and (d)
traditional method. (e–j) Are time series results of the selected points. The red “+” is the reference
point. The reference points in (a,c) are virtual reference points after free net adjustment because of
there are reference points in each small block before adjustment, and they are the center of gravity of
the image coverage. The reference points of (b,d) are the real reference points in data processing.

4. Result Analysis

When dealing with the deformation time series of a large area, most conventional al-
gorithms use one reference point for phase unwrapping and solve for PS point deformation
rates. If the distance between the PS point and the reference point is large, the precision
of the results is low. Reducing the size of image coverage by partition can improve the
precision of PS points. However, partition leads to different reference points for different



Remote Sens. 2022, 14, 4562 8 of 18

blocks, so the deformation results should be corrected to follow one benchmark. In this
section, the partition and the traditional methods are compared in terms of precision and
time consumption.

4.1. Precision of the Deformation Rate

We compare the deformation results in Changzhou found by the partition method
and the traditional method in Figure 5. The two results show a similar distribution of
deformation, but a slight difference in details. We manually selected three regions A, B,
and C for analysis. The size of these regions is 1000 × 1000 (pixels) These three regions
are stable and outside the deformation region, so we assumed the deformation as 0. The
statistical analysis shows that the standard deviation (STD) of the partition results and
the traditional results in region A is 3.4 mm/yr and 3.7 mm/yr, respectively, in region B
is 4.1 mm/yr and 4.2 mm/yr, respectively, and in region C is 4.6 mm/yr and 4.6 mm/yr,
respectively. On the whole, the precision of the results obtained by the partition strategy is
slightly higher than that of the traditional processing results.

Figure 5c,d show the deformation results of Qijiang found by the two methods, which
generally agreed with each other but some local areas have some slight differences, espe-
cially in the circled areas D, E, F (the selection criteria is the same as A, B, C). The traditional
results contain a large number of uplift signals, which are not deformation signals but
residual errors. These errors are significantly less in the partition results. The STD of
the partition results in regions D, E, and F are 3.2 mm/yr, 3.1 mm/yr, and 3.6 mm/yr,
respectively, and the correspondence of the traditional results are 3.8 mm/yr, 3.9 mm/yr,
and 4.0 mm/yr, respectively. Therefore, the partition method outperforms the traditional
method in error removal.

The comparison results in Table 2 show that the partition method has higher precision
than the traditional method. In the Changzhou experiment, the former obtained a precision
of about 5% higher than the traditional method, and in the Qijiang experiment, the precision
improvement is about 15%.

Table 2. Precision of the deformation velocity in Changzhou and Qijiang found by the two methods.

Study Area Strategy Area Number of
Points

Std
/(mm/yr)

Mean
/(mm/yr)

Difference
/(mm/yr)

Precision
Improvement

Changzhou

Partition

A 564,867 3.4

4.0

0.2 5%

B 589,430 4.1

C 593,479 4.6

Traditional

A 561,071 3.7

4.2B 582,648 4.2

C 591,199 4.6

Qijiang

Partition
D 992,679 3.2

3.3

0.6 15%

E 916,098 3.1

F 922,811 3.6

Traditional

D 986,163 3.8

3.9E 897,871 3.9

F 923,017 4.0

4.2. Precision of the Deformation Sequence

After correcting the deformation rates, we corrected the corresponding deformation
sequences. We selected the deformation time series of 3 points in each of Changzhou city
(P1, P2, P3) and Qijiang (P4, P5, P6) to test the result precision. These points are in the
overlapping regions, and they have different deformation magnitudes. P1 and P4 have
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large deformation rate, P2 and P5 have medium deformation rate, and P3 and P6 have small
deformation rate. The results are shown in Figure 5. In Changzhou City, the difference
between the deformation sequences obtained by our method and that obtained by the
traditional method is not significant. At P2, the deformation sequences obtained by the
two methods almost coincide (Figure 5f), and the deformation rate difference at the three
selected points is less than 1 mm/yr. The RMSE between the two results is 5.3 mm for P1,
3.2 mm for P2, and 4.0 mm for P3. We also selected the time series deformation of the three
points in Qijiang. The overall deformation trend and deformation magnitude obtained by
the two methods are basically the same. The RMSEs between the two results at P4, P5, and
P6 are 6.2 mm, 5.0 mm, and 3.0 mm, respectively.

In Figure 5e,h, the annual average deformation rates of these two points are more than
30 mm/yr, the difference between the deformation rates of these two points was about
1.5 mm/yr, and the deformation monitoring precision of InSAR was also basically in this
range. A simple proportional function model is used for correcting the time series. If the
deformation is nonlinear, the correction of this model might not be appropriate.

4.3. Time and Memory Consumption

The partition and parallel processing strategy can reduce the memory consumption of
every single process. Additionally, increasing the number of parallel processing can reduce
the time consumed by the whole data processing. The partition strategy can be roughly
divided into three stages: image partition, MT-InSAR processing, and correction. The total
time consumed by partition depends mainly on the processing times of image blocks, that
is, the total number of blocks divided by the number of blocks processed in a single parallel
session. The traditional processing spends all its time on MT-InSAR processing.

The program running time and memory consumption of the two strategies are listed
in Table 3. The traditional method costs about 20 h. The total time required for block
processing is 46.6 h when the number of parallel processing is 1. However, when the
number of parallel processing is greater than 2, the block processing needs less time than
the traditional processing. Additionally, it only needs 8.7 h when the number of parallel
processing is 5. In addition, the computer memory occupied by block processing is much
lower than that of traditional processing. In this experiment, the single memory occupied
by partitioning is only 1/20 of that occupied by the traditional processing. When the image
coverage is large or the computer memory is small, the traditional processing may cause
memory overflows and the data cannot be processed successfully, but this problem will not
happen to our data partition processing.

Table 3. Time and memory consumption of traditional processing and block processing with the
number of parallel processing 5.

Changzhou Qijiang
Traditional Partition Traditional Partition

Original size (pixels) 29,739 × 6892 29,739 × 6892 28,104 × 7648 28,104 × 7648

Partition strategy \ 6 × 5
~30% overlap \ 6 × 5

~25% overlap
Size of block (pixels) \ 7147 × 1373 \ 6374 × 1574

Platform CPU: AMD Ryzen 9 5900X 12-Core/RAM:64 G
Multi-look 5:1

Average number of points in a block \ 2,941,200 \ 2,493,200
Total number of points 50,941,512 51,178,814 51,620,120 51,883,633

Memory Usage 27.2 G 1.3 G 27.9 G 1.3 G
Time of partition \ ~1 h \ ~1 h

Time of InSAR processing ~20 h ~1.2 h ~20 h ~1.2 h
Time of correction \ ~0.1 h \ ~0.1 h

Total time ~20 h ~8.7 h ~20 h ~8.7 h
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5. Discussion
5.1. Space Consistency Correction

The precision of the deformation in each block can be calculated by Formula (9). In
the results of Changzhou, the unit weight mean error after adjustment is 0.13 mm/yr,
the precision of the block with the highest adjustment precision is 0.27 mm/yr, and the
precision of the block with the lowest adjustment precision is 0.59 mm/yr. In the results of
Qijiang, the unit weight mean error after adjustment is 0.28 mm/yr, the precision of the
block with the highest adjustment precision is 0.40 mm/yr, and the precision of the block
with the lowest adjustment precision is 0.81 mm/yr. The adjustment precision is plotted in
Figures 6 and 7, which show that the precision of the center blocks is higher than that of
the edge blocks.
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In theory, after adjustment, the deformation rates of the homonymy points in the
overlapping region should be the same. As Figure 6c shows, before the adjustment, the
difference between homonymy points in Changzhou is more than 5 mm/yr, with an STD
of 5.1 mm/yr, and after the adjustment, the difference almost converges to 0, with an STD
of 0.5 mm/yr. In Qijiang, the difference between homonymy points is more than 7 mm
before adjustment, with an STD of 3.9 mm/yr, and it is reduced to 0.6 mm/yr after the
adjustment. The precision of the block processing results in the two study areas was greatly
improved by adjustment, indicating that adjustment can improve the consistency of the
block deformation results.
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We selected 4 deformation areas (A, B, C, D) in the overlapping area in Changzhou
(Figure A2), and compared their deformation results before and after adjustment in Figure 8.
The results of the two image blocks in region A have little difference, so the improvement
of the result is not significant after the adjustment (Figure 8b,f). However, the results of
regions B, C and D are improved obviously after adjustment. The mean values of the
differences of deformation in these three regions change from 4.1 mm/yr, −5.6 mm/yr,
and 5.6 mm/yr to 0.3 mm/yr, 0.1 mm/yr, and 0.2 mm/yr after correction, and the spatial
consistency of the results improves more significantly.
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Figure 8. The difference in the homonymy points before and after adjustment in regions A, B, C,
and D of Changzhou. (a) shows the location of the four regions. (b–e) Are the difference of the
overlapping areas before adjustment in regions A, B, C, and D, and (f–i) are the difference after
adjustment. (j–m) Shows the statistical histograms of the four regions.

5.2. Effects of Overlap Rate on Result Precision and Time Consumption

In the proposed partition strategy, partitioning the image is the first and most critical
step. Different partition strategies provide different precision results, and different data
processing efficiency. Because we adopt the even partition strategy, the size and overlap
ratio of the blocks have a great impact on the results. To analyze the effects of the overlap
ratio on the partition results, we set one block size and obtained the temporal deformation
results of Changzhou using the overlap ratios of 10%, 20%, 30%, and 40%, separately. The
results are shown in Figure A2. We evaluated the result precision (Table 4).

The precision of the deformation rates obtained by different overlap ratios is similar
because the mean values of the high-quality homonymy points in the overlap region are
used in adjustment, which is slightly influenced by the overlap region. As long as the block
size is the same, the precision of the results obtained by different overlap ratios are similar.
However, the time consumed by different overlap ratios is different. The larger the overlap
ratio, the larger the number of blocks and the longer the processing. When the number of
parallel processing is 5, the total time consumed by the four overlap ratios are 6.6 h, 7.6 h,
9.5 h, and 10.7 h, indicating that the consuming time increases with the increase of overlap
ratio. The increase in the overlapping area brings larger double-counted areas and raises
the reliability of the results. Considering the precision, reliability, and time consumption,
we choose 20% as the best overlap ratio. The experiments show that overlap ratio 20% has
similar result precision and time consumption with that of overlap ratio 10%, but it leads to
more than 64% overlap area, which contributes to a significantly higher reliability.
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Table 4. Results of using different block overlap ratios.

Overlap Ratio Total Overlap Block Size (Amount) Precision /(mm/yr) Time of Each Block Total Time

Traditional 0% 29,739 × 6892 (1)
A 3.7

20 h 20 hB 4.2
C 4.6

10% 36%
7000 × 1500 (20)
4539 × 1500 (5)

A1 3.5
1.2 h
0.8 h

6.7 hB1 4.2
C1 4.6

20% 64%
7000 × 1500 (25)

7000 × 892 (5)

A2 3.5
1.2 h
0.7 h

7.8 hB2 4.1
C2 4.6

30% 84%
7000 × 1500 (30)
5239 × 1500 (6)

A3 3.4
1.2 h
0.9 h

10.1 hB3 4.1
C3 4.6

40% 96%
7000 × 1500 (42)
4539 × 1500 (7)

A4 3.3
1.2 h
0.8 h 12.7 hB4 4.0

C4 4.5

5.3. Implications of Data Partition Strategy for MT-InSAR

The administrative boundary of a city is usually an irregular polygon, but the image
coverage is a regular quadrangle. Thus, the image coverage contains many data unrelated to
the study area. The traditional method will also process these data. If such data accounts for
a large proportion of the image, the data processing will waste a lot of time. The proposed
method only processes the block data inside the study area, which can improve the data
processing efficiency. In Figure 4, the gray blocks do not need processing. Furthermore,
the proposed method can refine the data processing for only the blocks with deformation,
which further improves the efficiency of data processing.

The difference in the image coverage will definitely lead to the difference in the results.
In this paper, we divide data into blocks, and process, correct, and splice the results of
all blocks. The atmospheric delay in small range data is easier to remove than that in
the data with large range. Studies have shown that the atmospheric phase in InSAR
data measurements has a close correlation with spatial scale [35]. The atmospheric phase
difference between two PS points with a distance less than 1 km is less than 0.1 rad2 [40],
so the smaller the area, the better the atmospheric error removal according to the error
propagation law. However, for large deformation areas, long-wavelength deformation
may be removed as orbital errors, due to the polynomial fitting [21]. Thus, the proposed
method is not fully applicable to the study area with long-wavelength deformation, such
as interseismic deformation.

The correction of the partition results is based on the assumption that the deformation
rates of the homonymy points are the same. However, the deformation acquired by InSAR
is the line-of-sight (LOS) deformation, and the deformation direction at each point is related
to the incidence angle. When the deformation of the homonymy point is obtained from
the same orbit and has the same incidence angles, the deformation rates should be the
same. If the partitioned data are acquired under different imaging geometries, there will be
inconsistency in the incidence angles, resulting in different LOS deformation. Therefore,
the incidence angle variation of the results should be considered when the partition data
are acquired from different orbits.

Finally, the method does not use control points for the adjustment. Although the
benchmarks between image blocks are unified, there may be a deviation between the unified
benchmark and the real deformation result datum. We only make a simple correction to
the result but using external data as control points may improve the correction.

6. Conclusions

In this paper, we propose to partition the data into blocks before obtaining the defor-
mation, to save memory and time for large-scale data processing. To validate this method,
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we used the Sentinel-1 TOPS data covering Changzhou, a plain area, and Qijiang, a moun-
tainous area in China. The time series deformation results were obtained in these two
regions using the traditional processing method (the improved IPTA) and the partition
processing method. The latter outperforms the former in precision, time consumption, and
memory occupation. Taking Changzhou City as an example, the memory occupation of the
traditional processing method is about 27.2 G, and the total time consumed by processing
is about 20 h. During partition processing, the memory occupation of each block is only
1.3 G, and the consumed time is 8.7 h when the parallel number is 5. We also compared the
precision of the results obtained by the two methods. The results obtained by the partition
processing in Changzhou is as about 4.0 mm/yr, while the precision of the traditional
processing is about 4.2 mm/yr. The correspondence in Qijiang is about 3.3 mm/yr and
3.9 mm/yr, respectively. The precision of the results obtained by the proposed method is
higher than that obtained by traditional processing.

In general, the proposed method can significantly reduce the memory occupation
and time consumption of data processing under the condition of sufficient parallelism,
and the precision of the results is higher than that obtained by traditional processing.
This method is suitable for monitoring the short-wavelength deformation in a large area,
such as large-scale urban deformation monitoring and large-scale landslide deformation
detection. However, further research is needed for the result splicing and its application to
long-wavelength deformation.
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Appendix A

Table A1. Parameters of the images used in this study.

Study Area Parameters Acquisition Date (YYYY/MM/DD)

Changzhou

Direction Ascending 2018/01/10 2018/01/22 2018/02/03 2018/02/15
Path T69 2018/02/27 2018/03/11 2018/03/23 2018/04/04

Heading −12.79◦ 2018/04/16 2018/04/28 2018/05/10 2018/05/22
Incidence 36.65◦ 2018/06/03 2018/06/15 2018/06/27 2018/07/09

Pixel Spacing
(Rg × Az) 2.33 × 13.98

2018/07/21 2018/08/02 2018/08/14 2018/09/07
2018/09/19 2018/10/01 2018/10/13 2018/10/25

Number of
images 110

2018/11/06 2018/11/18 2018/12/12 2018/12/24
2019/01/05 2019/01/17 2019/02/10 2019/02/16
2019/02/22 2019/03/06 2019/03/18 2019/03/30
2019/04/05 2019/04/11 2019/04/23 2019/04/29
2019/05/05 2019/05/11 2019/05/17 2019/05/23
2019/05/29 2019/06/04 2019/06/10 2019/06/16
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Table A1. Cont.

Study Area Parameters Acquisition Date (YYYY/MM/DD)

2019/06/22 2019/06/28 2019/07/04 2019/07/10
2019/07/16 2019/07/22 2019/07/28 2019/08/03
2019/08/09 2019/08/15 2019/08/21 2019/08/27
2019/09/02 2019/09/08 2019/09/20 2019/09/26
2019/10/02 2019/10/08 2019/10/14 2019/10/20
2019/10/26 2019/11/01 2019/11/07 2019/11/19
2019/11/25 2019/12/01 2019/12/07 2019/12/13
2019/12/19 2019/12/25 2019/12/31 2020/01/12
2020/01/24 2020/02/05 2020/02/17 2020/02/29
2020/03/12 2020/03/24 2020/04/05 2020/04/17
2020/04/29 2020/05/11 2020/05/23 2020/06/04
2020/06/16 2020/06/28 2020/07/10 2020/07/22
2020/07/28 2020/08/03 2020/08/15 2020/08/27
2020/09/08 2020/09/20 2020/10/02 2020/10/14
2020/10/26 2020/11/07 2020/11/19 2020/12/01
2020/12/13 2020/12/25

Qijiang

Direction Ascending 2018/01/09 2018/01/21 2018/02/02 2018/02/14
Path T55 2018/02/26 2018/03/10 2018/03/22 2018/04/03

Heading −12.65◦ 2018/04/15 2018/04/27 2018/05/09 2018/05/21
Incidence 43.64◦ 2018/06/02 2018/06/14 2018/06/26 2018/07/08

Pixel Spacing
(Rg × Az) 2.33 × 13.96

2018/07/20 2018/08/01 2018/08/25 2018/09/06
2018/09/18 2018/09/30 2018/10/12 2018/10/24

Number of
images 114

2018/11/05 2018/11/29 2018/12/11 2018/12/23
2019/01/04 2019/01/16 2019/01/28 2019/02/09
2019/02/21 2019/03/05 2019/03/17 2019/03/29
2019/04/10 2019/04/22 2019/05/04 2019/05/16
2019/05/28 2019/06/09 2019/07/03 2019/07/15
2019/07/27 2019/08/08 2019/08/20 2019/09/01
2019/09/13 2019/09/25 2019/10/07 2019/10/19
2019/10/31 2019/11/12 2019/11/24 2019/12/06
2019/12/18 2019/12/30 2020/01/11 2020/01/23
2020/02/04 2020/02/16 2020/02/28 2020/03/11
2020/03/23 2020/04/04 2020/04/16 2020/04/28
2020/05/22 2020/06/03 2020/06/15 2020/06/27
2020/07/09 2020/07/21 2020/08/02 2020/08/14
2020/09/07 2020/09/19 2020/10/01 2020/10/13
2020/10/25 2020/11/06 2020/11/18 2020/11/30
2020/12/12 2020/12/24 2021/01/05 2021/01/17
2021/01/29 2021/02/10 2021/02/22 2021/03/06
2021/03/18 2021/03/30 2021/04/11 2021/04/23
2021/05/29 2021/06/10 2021/06/22 2021/07/16
2021/07/28 2021/08/09 2021/08/21 2021/09/02
2021/09/14 2021/09/26 2021/10/08 2021/10/20
2021/11/01 2021/11/13 2021/11/25 2021/12/07
2021/12/19 2021/12/31
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