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Abstract: Conventional calibration methods used in hydrological modelling are based on runoff
observations at the basin outlet. However, calibration with only runoff often produces reasonable
runoff but poor results for other hydrological variables. Multi-variable calibration with both runoff
and remote sensing-based evapotranspiration (ET) is developed naturally, due to the importance
of ET and its data availability. This study compares two main calibration schemes: (1) calibration
with only runoff (Scheme I) and (2) multi-variable calibration with both runoff and remote sensing-
based ET (Scheme II). ET data are obtained from three remote sensing-based ET datasets, namely
Penman–Monteith–Leuning (PML), FLUXCOM, and the Global Land Evaporation Amsterdam Model
(GLEAM). The aforementioned calibration schemes are applied to calibrate the parameters of the
Distributed Hydrology Soil Vegetation Model (DHSVM) through ε-dominance non-dominated sorted
genetic algorithm II (ε-NSGAII). The results show that all three ET datasets have good performance
for areal ET in the study area. The DHSVM model calibrated based on Scheme I produces acceptable
performance in runoff simulation (Kling–Gupta Efficiency, KGE = 0.87), but not for ET simulation
(KGE < 0.7). However, reasonable simulations can be achieved for both variables based on Scheme II.
The KGE value of runoff simulation can reach 0.87(0.91), 0.72(0.85), and 0.75(0.86) in the calibration
(validation) period based on Scheme II (PML), Scheme II (FLUXCOM), and Scheme II (GLEAM),
respectively. Simultaneously, ET simulations are greatly improved both in the calibration and
validation periods. Furthermore, incorporating ET data into all three Scheme II variants is able to
improve the performance of extreme flow simulations (including extreme low flow and high flow).
Based on the improvement of the three datasets in extreme flow simulations, PML can be utilized for
multi-variable calibration in drought forecasting, and FLUXCOM and GLEAM are good choices for
flood forecasting.

Keywords: hydrological model; multi-variable calibration; evapotranspiration; PML; FLUXCOM;
GLEAM

1. Introduction

Hydrological models are a critical tool for hydrological processes’ simulation and
their behavior prediction, which are very important for water resource planning and
management. Hydrological models, especially physically-based ones, contain dozens and
even hundreds of parameters [1]. However, it is difficult to determine some parameters
in hydrological models, owing to the complex actual environment and limited data [2,3].
Thus, parameter calibration is a necessary step in hydrological model implementation [4,5].

Hydrological models are usually calibrated against runoff observations at a few loca-
tions or only at the basin outlet. Calibration with only runoff does not guarantee acceptable
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simulation for other hydrological components, such as evapotranspiration and soil mois-
ture [6–8]. Moreover, calibration with only runoff often results in parameter equifinality [9].
One way to address the aforementioned issues is to calibrate the model with multiple
variables, such as runoff, evapotranspiration, soil moisture, and land surface temperature
within the basin [10,11].

Among the abovementioned variables, evapotranspiration is a good choice to cali-
brate the hydrological models together with runoff, due to its importance in the water
cycle, carbon cycle, and energy cycle [12,13]. However, the accurate observation of evap-
otranspiration remains lacking, owing to the complex terrain environment. Fortunately,
remote sensing technology has greatly promoted the estimation of evapotranspiration
in the past few decades [14–16]. The emergence of various regional or global evapotran-
spiration datasets is critical for ungauged and poorly gauged regions [17]. For example,
the spatial–temporal characteristics of evapotranspiration over the Amazon River Basin
remain largely uncertain, due to the sparse observation network and relatively short obser-
vational period of eddy covariance data. Thus, Wu et al. [18] assessed the reliability of five
global remote sensing ET datasets (JUN10, ZEN14, ZHA15, ZHA16, and GLEAM) (besides
GLEAM, the names of the datasets are composed of the name of the first author and the
publication year of the references) over the Amazon River Basin, and the results revealed
that JUN10 has the best performance for the magnitude at both site level and basin scale.
Moreover, Paca et al. [19] merged six global ET datasets (Atmosphere–Land Exchange In-
verse Model (MOD16), CSIRO Moderate-Resolution Imaging Spectroradiometer (MODIS)
Reflectance-Based Evapotranspiration (CMRSET), Operational Simplified Surface Energy
Balance (SSEBop), Surface Energy Balance System (SEBS), Atmosphere–Land Exchange
Inverse (ALEXI), and GLEAM) to obtain an ensemble prediction of evapotranspiration
rates for the complex and inaccessible environment of the Amazon River Basin.

With the rapid development of remote sensing-based ET datasets, it is worthwhile to
investigate whether hydrological model performance can be improved when evapotranspi-
ration is incorporated with runoff in multi-variable calibration. Recently, some studies have
assessed the utility of remote sensing-based ET datasets in improving hydrological model
performance [20]. Sirisena et al. [8] used the GLEAM ET dataset and measured the stream-
flow at four stations to calibrate the Soil and Water Assessment Tool (SWAT) for Chindwin
Basin, Myanmar. The result shows that reasonable simulations for both streamflow and
evapotranspiration were obtained in multi-variable calibration, but good performance
could only be found in the corresponding variable (streamflow/ET) in single-variable
calibration, and not for the other variable (ET/streamflow). Herman et al. [7] adopted two
remote sensing-based ET datasets (SSEBop and ALEXI) into multi-variable calibration
together with runoff, and the result revealed that the performance of ET simulation was im-
proved, and runoff simulation was maintained in multi-variable calibration. Rajib et al. [21]
compared several parameter calibration techniques, including calibration with only runoff,
calibration with runoff and remote sensing-based ET data, and calibration with runoff
and spatially distributed remote sensing-based ET data, and the results demonstrated that
incorporating ET datasets into multi-variable calibration was indeed able to improve ET
simulation and maintain runoff simulation.

As there are various remote sensing-based ET datasets, it is difficult to select a suitable
ET dataset incorporated into multi-variable calibration for a specific region, which seriously
affects hydrological model performance. Different ET datasets have different characteristics,
even within a specific study area, owing to the diverse remote sensing input datasets and
diverse ET estimate models emphasizing different physical and physiological controlling
factors [22–24]. Therefore, it is still meaningful to evaluate the effect of incorporating
various remote sensing-based ET datasets into the multi-variable calibration of hydrolog-
ical models. In this study, three datasets are selected, namely FLUXCOM, GLEAM, and
PML. These datasets have been widely used, and their accuracy has been evaluated in
many regions. As for FLUXCOM, this dataset was obtained via machine learning to merge
energy flux measurements from FLUXNET eddy covariance towers with remote sensing
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and meteorological data [22]. The use of FLUXNET lays the foundation for the accuracy
of the FLUXCOM dataset. Furthermore, Tramontana et al. [25] evaluated the accuracy of
FLUXCOM with observation-based data around the world and they revealed that the per-
formance of FLUXCOM is very good. As for GLEAM, Yang et al. [26] evaluated its accuracy
via eight sites from the Chinese Flux Observation and Research Network (ChinaFlux), and
it achieved reasonable performance. The PML dataset has high accuracy when compared
with ground observations from 95 global flux stations located across the globe [27–29]. In
several studies, the GLEAM dataset has been applied in parameter calibration, and they
obtained acceptable performance for both runoff and ET simulations [8]. Nevertheless,
fewer studies have investigated the utility of PML and FLUXCOM in the multi-variable
calibration of hydrological models. Furthermore, ET simulation has a greater impact on
runoff simulation in humid regions than dry regions [24]. Additionally, the performance
of low flow, intermediate flow, and high flow simulations based on multi-variable calibra-
tion with both runoff and ET is also worth exploring, and it is substantial for flood and
drought forecasting.

This study aims to (1) evaluate the accuracy of three selected remote sensing-based
ET datasets (namely PML, GLEAM, and FLUXCOM) against in situ observations of pan
evaporation; (2) investigate the utility of remote sensing-based ET datasets for improving
hydrological model performance (runoff and ET simulations) in multi-variable calibration
(Scheme II) by comparing them to those from calibration with only runoff (Scheme I);
(3) explore the performance of low flow, intermediate flow, and high flow simulations
based on Scheme II. To this end, this paper is structured as follows: Section 2 describes
the study area and data sources. The description of the methodology for this study is
presented in Section 3. Section 4 provides the results and discussion, and the conclusions
are summarized in Section 5.

2. Study Area and Data
2.1. Study Area

The Jinhua River is a tributary of the Qiantang River and is located in the midwestern
region of Zhejiang Province, East China (Figure 1). The length of this river is 195 km and
its catchment area above the Jinhua discharge station (control station) is 5996 km2 [30].
The Jinhua River Basin is subject to an Asian monsoon climate, which is characterized
by abundant precipitation and high temperatures in summer and a rainless, cold winter.
The annual mean temperature is 17 ◦C. Based on fifty years (1962–2011) of precipitation
data, the annual mean precipitation is 1404.9 mm and is unevenly distributed, with more
than 50% of annual rainfall falling from May to July [31]. The uneven distribution of
precipitation has led to frequent floods and droughts. Solid hydrological simulation can
provide support to disaster prediction and prevention, and water resource management.

2.2. Data Sources
2.2.1. In Situ Observations

The daily in situ observations used in this study are collected from six hydrological
stations provided by the Zhejiang Provincial Hydrology Administration Center, and five
meteorological stations obtained from the Zhejiang Provincial Meteorological Adminis-
tration. The data period is 2004–2010. Six hydrological stations have records of daily pan
evaporation, measured by E601 pan. Five meteorological stations have complete records
of maximum and minimum air temperature, relative humidity, wind speed, sunshine
duration, and precipitation. Since actual evaporation data are not available, the in situ
observations of pan evaporation are used as the reference to evaluate the accuracy of remote
sensing-based ET datasets. The in situ observations of meteorological data are used for
hydrological model meteorological inputs.
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Figure 1. The Jinhua River Basin and location of meteorological and hydrological stations used in
this study.

2.2.2. PML

The PML-V2 dataset is provided for the period from July 2002 to December 2017,
using the Google Earth Engine [27–29]. The dataset was derived from the MODIS dataset
(leaf area index, albedo, and emissivity) together with Global Land Data Assimilation
System (GLDAS) meteorological forcing data. The dataset includes gross primary product
(GPP), soil evaporation (Es), vegetation transpiration (Et), and vaporization of intercepted
rainfall (Ei). The ET from PML-V2 is the sum of Es, Et, and Ei. The PML-V2 dataset is
provided on a 500-m spatial resolution with 8-day temporal resolution. The GPP and ET
estimates obtained from PML-V2 have proven to be satisfactory when they are compared
with measurements across 95 globally distributed flux sites [27–29]. In this study, the
500-m and 8-day PML-V2 dataset from 2004 to 2010 is used and can be freely downloaded
(https://data.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-4973-abab-972e9449627c/, accessed
on 11 December 2020).

2.2.3. FLUXCOM

The FLUXCOM dataset is acquired via machine learning to merge energy flux mea-
surements from FLUXNET eddy covariance towers with remote sensing and meteorological
data to estimate global gridded net radiation, latent and sensible heat, and their uncer-
tainties [22,32,33]. The FLUXCOM dataset includes two types of forcing data, i.e., 0.0833◦

resolution using a MODIS remote sensing dataset (RS), and 0.5◦ resolution using remote
sensing and meteorological data (RS + METEO). Nine machine learning methods and three
energy balance correction methods were utilized for RS forcing data. Three machine learning
methods, three energy balance correction methods, and four global climate datasets were
adopted for RS + METEO forcing data [22,32]. In this study, daily RS + METEO-based ensem-
ble latent heat energy with 0.5◦ resolution from 2004 to 2010 that includes all fluxes produced
by all energy balance correction methods, all machine learning methods, and all global cli-
mate datasets is used and can be freely downloaded (http://www.fluxcom.org, accessed on
21 December 2020). Latent heat flux divided by latent heat of vaporization is ET.

2.2.4. GLEAM

Central to the methodology of the GLEAM dataset is the use of the Priestley and Taylor
evaporation model [34]. The dataset consists of four modules, namely the evaporation
of intercepted rainfall from forest canopies, the water budget distributing the incoming

https://data.tpdc.ac.cn/zh-hans/data/48c16a8d-d307-4973-abab-972e9449627c/
http://www.fluxcom.org
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precipitation (rain and snow) over the root zone, the stress conditions parameterized as
a function of the root-zone available water and dynamic vegetation information, and
the evaporation from each of the three surface components [23,34]. The GLEAM_v3.3b
dataset is utilized in this study, which is provided on a 0.25◦ × 0.25◦ latitude–longitude
grid with a daily temporal resolution. Actual ET in GLEAM is estimated as the sum of
different ET components, including transpiration, interception loss, bare soil evaporation,
snow sublimation, and open water evaporation. In this study, the daily GLEAM_v3.3b
dataset with 0.25◦ resolution from 2004 to 2010 is used and can be freely downloaded
(https://www.gleam.eu/, accessed on 30 November 2020).

3. Methodology
3.1. Model Setup

The DHSVM model is a fully distributed, physically based hydrological model that
can provide an integrated representation of hydrology–vegetation dynamics at the spatial
resolution represented by a digital elevation model (DEM) [35–37]. In this study, the spatial
resolution is 200 m and the temporal resolution is daily. Version 3.1.1 of this model is
adopted in this study.

The DEM is used to separate the river basin into computational grid cells. The model
offers simultaneous solutions to water and energy balance equations in each grid cell
and represents physical processes, including evapotranspiration, snowpack accumulation
and snowmelt, canopy snow interception and release, unsaturated moisture movement,
saturated subsurface flow, surface flow, and channel flow. Evapotranspiration is simulated
by a two-layer canopy model and estimated by the Penman–Monteith equation. Because
snow is very rare in the Jinhua River Basin, modules concerning snow, such as canopy snow
interception and release, and snowpack accumulation and snowmelt, are not considered
in this study. DHSVM uses Darcy’s law to control unsaturated moisture movement with
multiple root-zone soil layers. A cell-by-cell method is adopted in DHSVM to route
saturated subsurface flow using a kinematic or diffusion approximation. In this study, the
explicit cell-by-cell approach is used for surface flow, i.e., surface runoff from each grid
cell is first accumulated to the streams, and then routed downstream based on the stream
network using the linear reservoir method (channel flow). DHSVM has been successfully
applied in many research fields, including urbanization [38], climate change [30,39], and
stream temperature simulations [40].

The input data for the hydrological model include meteorological and hydrological
data (mentioned in Section 2.1), DEMs, masks (watershed boundary), vegetation and soil
data, soil depth, and stream networks. The DEM data (90 m) are downloaded from the
Shuttle Radar Topography Mission (SRTM) website (http://srtm.csi.cgiar.org/, accessed
on 25 April 2016). The resolution of DEM is redefined to 200 m to reduce the computational
burden. The mask is generated based on DEM. The vegetation data are obtained from
WESTDC Land Cover Datasets 2.0 (2006) (http://westdc.westgis.ac.cn, accessed on 20 April
2016). The soil data are obtained from the Nanjing Institute of Soil Research, China. Because
DHSVM uses the US Department of Agriculture (USDA) soil texture classification system,
the soil classes are then reclassified. The soil depth and stream network are generated based
on the mask and DEM by using Arc Workstation software.

3.2. Model Calibration

Model calibration is carried out through ε-NSGAII, which has been coupled with
DHSVM by developing an automatic calibration model (εP-DHSVM) in the authors’ previ-
ous study [41]. Daily time series of runoff from the Jinhua hydrological station and three
remote sensing-based ET datasets including PML, FLUXCOM, and GLEAM are used for
parameter calibration and validation. Based on the data availability, all observed time
series data are divided into calibration (2004–2008) and validation (2009–2010) periods.

Four different model calibration schemes are used to realize the aims (mentioned in
the last paragraph of Section 1) of this study: (1) Scheme I—parameter calibration with

https://www.gleam.eu/
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only runoff; (2) Scheme II (PML)—parameter calibration using both runoff and ET based on
PML dataset (ETPML); (3) Scheme II (FLUXCOM)—parameter calibration using both runoff
and ET based on FLUXCOM dataset (ETFLUXCOM); (4) Scheme II (GLEAM)—parameter
calibration using both runoff and ET based on GLEAM dataset (ETGLEAM).

In Scheme I, the KGE and percentage of relative bias (PBIAS) of runoff are used as
objective functions. In all three variants of Scheme II, both KGE and PBIAS of runoff and
ET are used as objective functions. Moreover, the performance of calibrated and validated
results is also assessed with other evaluation indices, such as mean bias (ME), root mean
square error (RMSE), and Pearson’s correlation coefficient (R).

The parameters used for model calibration are based on the two-step global sensitivity
analysis results of DHSVM at the Jinhua River Basin [30]. Eight highly sensitive parameters,
shown in Table 1, are used for model calibration in this study. Detailed procedures of the
two-step global sensitivity analysis are omitted here, and interested readers can refer to [30].

Table 1. Range, meaning, unit, and abbreviation of eight highly sensitive parameters for
parameter calibration.

Parameter Meaning Unit Abbreviation Range

Rain LAI multiplier Multiplier for LAI to determine
interception capacity for rain m Rj 0.00001–0.001

Lateral conductivity (CL)
Lateral conductivity for clay loam,

used to calculate movement of
lateral runoff

m/s K (CL) 0.00001–0.09

Porosity (CL)
Porosity for clay loam, soil
moisture content when soil

is saturated
m3/m3 ϕ (CL) 0.35–0.6

Field capacity (CL)
Field capacity for clay loam, used

to estimate available water for
subsurface layers

m3/m3 θfc (CL) 0.16–0.4

Wilting point (CL) Wilting point for clay loam, used
to calculate evapotranspiration m3/m3 θwp (CL) 0.05–0.25

Understory monthly
LAI (CrL)

Understory leaf area index
for cropland m2/m2 ULAI (CrL) 0.3–3

Understory minimum
resistance (CrL)

Understory minimum stomatal
resistance for cropland s/m URsmin (CrL) 50–300

Soil moisture
threshold (CrL)

Soil moisture threshold above
which soil moisture does not

restrict transpiration for cropland
m3/m3 θ* (CrL) 0.1–0.35

Root zone depth (CrL) These are in effect the depths of
the various soil layers for cropland m D (CrL) 0.1–0.8

The abbreviations CL and CrL in Table 1 represent clay loam (this soil type has the largest percentage of basin)
and cropland (this vegetation type has the largest percentage of basin), respectively.

3.3. Evaluation Indices

Multiple statistical indices are used to evaluate the accuracy of the three remote
sensing-based ET datasets and their performance in improving hydrological model perfor-
mance. These indices include R, PBIAS, ME, RMSE, and KGE [42,43]. The five indices are
defined as follows:

R =

n
∑

i=1
(Oi − O)(Si − S)√

n
∑

i=1
(Oi − O)

2 ·
√

n
∑

i=1
(Si − S)2

(1)
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PBIAS = abs


n
∑

i=1
(Si − Oi)

n
∑

i=1
Oi

× 100%

 (2)

RMSE =

√
1
n

n

∑
i=1

(Si − Oi)
2 (3)

ME =
1
n

n

∑
i=1

(Si − Oi) (4)

KGE = 1 −
√
(r − 1)2 + (a − 1)2 + (b − 1)2 (5)

For assessing the accuracy of the three sensing-based ET datasets, Oi and Si in the
above equations denote in situ observations and remote sensing-based ET datasets, respec-
tively. O and S are the mean values of these two datasets, respectively. For KGE, r is the
linear correlation coefficient between in situ observations and remote sensing-based ET
datasets, a is the ratio of the standard deviation of remote sensing-based ET datasets to
the standard deviation of in situ observations, and b is the ratio of the mean of remote
sensing-based ET datasets to the mean of in situ observations.

For evaluating these remote sensing-based ET datasets’ performance in improving
hydrological model performance (runoff and ET simulations), Oi and Si in the above
equations denote observed runoff (remote sensing-based ET datasets) and simulated runoff
(simulated ET), respectively. O and S are the mean values of observed runoff (remote
sensing-based ET datasets) and simulated runoff (simulated ET), respectively. For KGE,
r is the linear correlation coefficient between observed runoff (remote sensing-based ET
datasets) and simulated runoff (simulated ET), a is the ratio of the standard deviation
of simulated runoff (simulated ET) to the standard deviation of observed runoff (remote
sensing-based ET datasets), and b is the ratio of the mean of simulated runoff (simulated
ET) to the mean of observed runoff (remote sensing-based ET datasets).

3.4. Experimental Design

The flow chart of this study is shown in Figure 2. First, the accuracy of the three remote
sensing-based ET datasets (FLUXCOM, GLEAM, and PML) is evaluated based on in situ
observations of pan evaporation. Second, two calibration schemes, i.e., calibration with only
runoff (Scheme I) and multi-variable calibration with both runoff and remote sensing-based
ET datasets (Scheme II), are used to calibrate the parameters of the DHSVM model. Third,
we compare the hydrological model performance based on Scheme I and Scheme II through
the runoff and ET simulation at different temporal resolutions and hydrological signature
analysis. Finally, we can draw a conclusion regarding whether incorporating remote
sensing-based ET datasets into multi-variable calibration can improve the hydrological
model performance in humid regions of East China.
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4. Results and Discussion
4.1. Evaluation of Remote Sensing-Based ET Datasets

To evaluate the utility of the selected three remote sensing-based ET datasets (namely,
PML, FLUXCOM, and GLEAM) in hydrological model performance, the accuracy of these
datasets firstly needs to be assessed. In situ observations of pan evaporation are used to
evaluate the accuracy of areal ET estimates based on these datasets in 2004–2008, using the
five evaluation indices shown in Section 3.3.

As shown in Figure 3, the areal daily remote sensing-based ET estimates are compared
with those calculated by in situ observations of pan evaporation from six hydrological
stations. Because the temporal resolution of PML is 8 days, the temporal resolution of
pan evaporation is redefined to 8 days. Thus, the plot dots in Figure 3 for PML are much
fewer than the others. From Figure 3, it can be observed that the areal daily ET from
PML, FLUXCOM, and GLEAM is rather consistent with the in situ observations, with high
R and KGE values (R > 0.83, and KGE > 0.72), and low PBIAS, RMSE, and ME values
(PBIAS < 24.16%, RMSE < 0.86, and abs (ME) < 0.6). This confirms the conclusions found in
previous studies, which reveal that the three remote sensing-based ET datasets have high
accuracy [26,44,45]. The comparison results reveal that GLEAM has the best performance
at the Jinhua River Basin, followed by FLUXCOM and PML. All remote sensing-based ET
datasets slightly underestimate the areal daily ET, especially low and high ET values. This
is due to the fact that in situ observations of pan evaporation are more similar to PET in
humid regions [46]. Figure 4 shows time series of areal monthly ET from the three datasets
and in situ observations of pan evaporation. It can be seen that high ET values mainly
occur from May to September. As for temporal variation, FLUXCOM and GLEAM present
better performance in capturing the dynamics of monthly ET than PML, as PML shows
wide underestimation.
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The differences in the performance of the three remote sensing-based ET datasets
are mainly owing to the differences in the forcing data and the algorithms used in the
three datasets. As is well known, the three components of ET are vegetation transpiration,
soil evaporation, and vaporization of intercepted rainfall. Soil moisture plays a dominant
role in soil evaporation. The estimation algorithm of PML lacks the soil moisture as
input [28,29]. For FLUXCOM, the index of water availability is calculated for each forcing
dataset based on daily precipitation and potential evapotranspiration, which is different
from soil moisture [22]. For GLEAM, its separate soil module utilizes precipitation to
drive the multi-layer soil model and simultaneously assimilates a remote sensing-based
soil moisture dataset, which can increase the accuracy of ET estimates [23,34]. Moreover,
because the depth of the soil column affecting the evaporation rate depends on the rooting
depth of vegetation, the soil water balance in GLEAM is calculated for each land cover type
individually, which is able to improve the ET estimates for different land cover types [26].
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4.2. Calibration with Only Runoff (Scheme I)

Scheme I is applied in this section, which only uses the runoff observations for pa-
rameter calibration. The KGE and PBIAS of runoff are utilized as objective functions.
Besides KGE and PBIAS, the RMSE, R, and ME are used to assess the performance of runoff
simulation, which are summarized in Table 2. As shown in Table 2, the KGE values in
the calibration and validation periods are 0.87 and 0.89, respectively. The PBIAS values
are 3.45% and 4.28% in the calibration and validation periods, respectively. Furthermore,
all other evaluation indices are within satisfactory ranges [47]. This illustrates that the
model parameters are well calibrated. The good performance of runoff simulation based
on Scheme I also can be observed in other studies [7,8].

Table 2. Evaluation indices of runoff simulation based on Scheme I.

Periods KGE PBIAS (%) RMSE R ME

Calibration (2004–2008) 0.87 3.45 68.51 0.89 −3.69
Validation (2009–2010) 0.89 4.28 99.03 0.92 −7.60

Figure 5 displays the comparison of simulated and observed daily runoff for 2004
and 2009, which is used to represent the calibration and validation periods, respectively.
The reason for selecting 2004 and 2009 as the representative years is that the hydrological
characteristics of these two years are similar to the calibration and validation periods,
respectively. Furthermore, using only one representative year in the figures is beneficial
to compare the runoff observations and simulations clearly. As shown in Figure 5, the
simulated runoff is very close to the observed runoff in the calibration period, of which
almost all peak flows can be captured well. Meanwhile, in the validation period, the
value of PBIAS is higher than that in the calibration period, which is mainly due to the
underestimation of peak flows. For the peak flows that occurred in June 2009, the model
generates a simulated peak flow with 468 m3/s, which is far less than the observation, with
823 m3/s. Furthermore, the observed peak flow is 965 m3/s in August 2009, while the
model-simulated peak flow is only 643 m3/s.

Table 3 presents the evaluation indices of ET simulation with the three remote sensing-
based ET datasets. From this table, it is obvious that the ET simulation is unsatisfactory.
Among these datasets, the simulated ET can replicate the PML-based ET more accurately
than the FLUXCOM-based and GLEAM-based ET in the calibration period, with higher
KGE and R, and lower PBIAS, RMSE, and ME. However, the performance of ET simulations
in the validation period is similar for all three datasets. Overall, it can be concluded that the
model based on Scheme I has a better capability to replicate the PML-based ET compared
to the FLUXCOM-based and GLEAM-based ET.

Table 3. Evaluation indices of ET simulation based on Scheme I.

Periods ET Datasets KGE PBIAS (%) RMSE R ME

Calibration
(2004–2008)

PML-V2 0.68 0.48 0.79 0.72 −0.01
FLUXCOM 0.59 22.55 1.17 0.66 −0.55

GLEAM 0.58 20.18 1.22 0.63 −0.48

Validation
(2009–2010)

PML-V2 0.61 14.93 0.81 0.73 0.27
FLUXCOM 0.65 14.03 1.07 0.68 −0.34

GLEAM 0.62 11.92 1.12 0.66 −0.28
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4.3. Multi-Variable Calibration (Scheme II)
4.3.1. Performance Analysis at Different Temporal Resolutions

All three multi-variable calibrations (namely Scheme II (PML), Scheme II (FLUXCOM),
and Scheme II (GLEAM)) are applied in this section for parameter calibration. Both the
KGE and PBIAS of runoff and ET are utilized as objective functions. To investigate the
utility of the three remote sensing-based ET datasets in improving hydrological model
simulation (runoff and ET simulations), the hydrological model performance at different
temporal resolutions is analyzed.

Regarding the daily temporal resolution, Table 4 presents the evaluation indices of
runoff and ET simulations. As shown in Table 4, the performance of runoff simulations
based on all three variants of Scheme II is comparable with that based on Scheme I. The KGE
values of the runoff simulations based on all three variants of Scheme II are above 0.72 in
the calibration period and above 0.85 in the validation period. Furthermore, the value of
KGE reaches up to 0.91 in the validation period under Scheme II, and the value is higher
than that under Scheme I. In addition, compared to Scheme I, the PBIAS in the validation
period for all three Scheme II variants is slightly reduced, but not for the calibration period.
A similar situation occurs for ME. The R values under Scheme II are almost the same as
that under Scheme I. For RMSE, the values based on Scheme II are slightly increased, but



Remote Sens. 2022, 14, 4546 12 of 21

they are still acceptable. For the three ET datasets, the runoff simulation based on Scheme II
(PML) has the highest KGE and lowest PBIAS in the calibration period, which are 0.87 and
1.46%, followed by those based on Scheme II (GLEAM) (KGE = 0.75, PBIAS = 9.34%) and
Scheme II (FLUXCOM) (KGE = 0.72, PBIAS = 11.82%). Moreover, the RMSE and ME values
of the runoff simulation based on Scheme II (PML) are the lowest in the calibration period
(RMSE = 74.72, ME = 1.56), followed by those based on Scheme II (GLEAM) (RMSE = 76.10,
ME = −9.98) and Scheme II (FLUXCOM) (RMSE = 75.16, ME = −12.62).

Table 4. Evaluation indices of runoff and ET simulations based on Scheme II.

Periods
ET Datasets KGE PBIAS (%) RMSE R ME

ET Runoff ET Runoff ET Runoff ET Runoff ET Runoff

Calibration
(2004–2008)

PML-V2 0.77 0.87 0.84 1.46 0.60 74.72 0.85 0.89 0.02 1.56
FLUXCOM 0.79 0.72 3.32 11.82 0.87 75.16 0.79 0.89 −0.08 −12.62

GLEAM 0.84 0.75 5.24 9.34 0.77 76.10 0.85 0.89 −0.12 −9.98

Validation
(2009–2010)

PML-V2 0.71 0.91 12.50 3.38 0.54 104.05 0.89 0.92 0.23 6.00
FLUXCOM 0.80 0.85 3.37 2.58 0.82 108.42 0.81 0.92 0.08 −4.58

GLEAM 0.86 0.86 0.79 0.33 0.74 110.36 0.86 0.92 −0.02 −0.58

The relative performance of runoff and ET simulations from all three variants of
Scheme II to those from Scheme I are also calculated. The evaluation indices of the ET
simulation from Scheme I are based on GLEAM, because of its better accuracy, as stated
in Section 4.1. ET simulations from all three variants of Scheme II are greatly improved.
The KGE and R values of the ET simulations based on all three variants of Scheme II are
increased by up to 45.55% and 35.47% in the calibration period, respectively. The values of
PBIAS, RMSE, and ME are decreased by up to 95.85%, 50.97%, and 96.72% in the calibration
period, respectively. ET simulations in the validation period show similar performance to
those in the calibration period.

Figure 6 shows a temporal comparison of the simulated and observed daily runoff
for the calibration (2004) and validation (2009) periods. The figure shows that the DHSVM
model calibrated by all three variants of Scheme II can generate reliable runoff simulations.
Compared to Scheme I, peak flow simulation based on all three Scheme II variants is greatly
improved in the calibration and validation periods. For instance, the observed peak flow
is 823 m3/s in June 2009, and the model-generated simulated peak flows are 570 m3/s,
585 m3/s, and 595 m3/s under Scheme II (PML), Scheme II (FLUXCOM), and Scheme II
(GLEAM), respectively, while the model under Scheme I generates a simulated peak flow
of 468 m3/s. Furthermore, for the peak flow in August 2009, the observation is 965 m3/s;
for the model under Scheme I, the simulated peak flow is 643 m3/s, while, for the model
under Scheme II, the simulated peak flows are 779 m3/s, 821 m3/s, and 849 m3/s for PML,
FLUXCOM, and GLEAM, respectively. The improvement shown in Figure 6 is consistent
with the reduction in PBIAS in the validation period presented in Table 4. Overall, the three
remote sensing-based ET datasets have the ability to successfully improve the hydrological
model simulations at the daily temporal resolution, and PML shows the best improvement
in hydrological model performance, followed by GLEAM and FLUXCOM.

Regarding the monthly temporal resolution, KGE and PBIAS values for runoff simu-
lation at different months from all three Scheme II variants are shown in Figure 7. From
this figure, it can be observed that the majority of months show good performance, with
high KGE and low PBIAS. In terms of KGE, around 58.3%, 58.3%, and 83.3% of months
in the calibration period are higher than 0.5 based on Scheme II (FLUXCOM), Scheme II
(GLEAM), and Scheme II (PML), respectively. In the validation period, the percentages
of months with KGE higher than 0.5 are 83.3% for PML, followed by FLUXCOM (66.7%)
and GLEAM (66.7%). As for PBIAS, the percentages of months with PBIAS lower than
25% are 75%, 75%, and 100% for FLUXCOM, GLEAM, and PML in the calibration period,
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respectively. For the validation period, the percentages are increased to 100%, 91.7%, and
100% for FLUXCOM, GLEAM, and PML, respectively.
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Figure 8 shows a temporal comparison of the simulated and observed monthly runoff
for the calibration and validation periods based on Scheme I and the three variants of
Scheme II. Overall, the DHSVM model calibrated based on Scheme I and all three variants
of Scheme II can produce acceptable runoff simulations. Compared to Scheme I, the peak
flow simulations based on Scheme II are much closer to the observation than those based
on Scheme I in the calibration and validation periods. For example, the observed peak flow
is 403 m3/s in June 2008, and the simulated peak flow based on Scheme I is 379 m3/s, while
the multi-variable calibrated models generate simulated peak flows of 407 m3/s, 407 m3/s,
and 412 m3/s based on Scheme II (PML), Scheme II (FLUXCOM), and Scheme II (GLEAM),
respectively. Similar situations can be found in June 2006, March 2010, and July 2010, etc.
Moreover, the KGE value is 0.96 in the validation period based on Scheme II (PML), which
is higher than that based on Scheme I (KGE = 0.95). The values of PBIAS based on Scheme
II are 3.57%, 2.39%, and 0.11% for PML, FLUXCOM, and GLEAM, respectively, which
are lower than that based on Scheme I (PBIAS = 4.17%). Among the three datasets, PML
slightly outperforms GLEAM and FLUXCOM at the monthly temporal resolution.
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At the seasonal scale, KGE and PBIAS values for runoff simulations based on Scheme
II are compared in Figure 9. In the figure, it is obvious that all three variants of Scheme
II present good performance in the four seasons, with high KGE (>0.5) and low PBIAS
(<20%). As for KGE, the three ET datasets perform comparably well in spring, summer,
and winter, next to autumn, in the calibration and validation periods. Similar conclusions
can be derived for PBIAS. Among the three ET datasets, PML performs better than GLEAM
and FLUXCOM. The runoff simulation based on Scheme II (PML) has the highest KGE for
the four seasons (KGE_Spr = 0.88, KGE_Sum = 0.89, KGE_Aut = 0.77, KGE_Win = 0.81) in
the calibration period, followed by Scheme II (GLEAM) (KGE_Spr = 0.75, KGE_Sum = 0.71,
KGE_Aut = 0.59, KGE_Win = 0.77) and Scheme II (FLUXCOM) (KGE_Spr = 0.73,
KGE_Sum = 0.69, KGE_Aut = 0.58, KGE_Win = 0.78). Similar conclusions can be drawn for
the validation period. Furthermore, the runoff simulation under Scheme II (PML) has the
lowest value of PBIAS in the calibration period, which is 5.9% for the average value of the
four seasons, followed by Scheme II (GLEAM) (14.3%) and Scheme II (FLUXCOM) (14.5%).
Meanwhile, the average PBIAS values of the four seasons in the validation period are 7.1%,
5.2%, and 4.6%, respectively.
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Above all, applying these three ET datasets in model calibration is proven to be
capable to improve hydrological model simulations, with enhanced ET simulation and
good runoff simulation at different temporal resolutions. The result is consistent with
the conclusions obtained in previous studies, which indicate that incorporating ET data
into model calibration can maintain runoff simulation and improve ET simulation [7,8].
However, our study reveals more information related to the effect of remote sensing-
based ET datasets in improving model performance and the differences among the three
ET datasets. The findings in this study can provide a reference for related studies and
users under the advancement of remote sensing-based ET datasets. Among the three
datasets, PML performs the best in improving model performance, followed by GLEAM
and FLUXCOM. The reason for the best performance of PML is because the algorithm used
in PML is similar to the ET calculation method adopted in the DHSVM model. The ET
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calculation in the DHSVM model is based on the Penman–Monteith approach [37]. The
method used to estimate ET for the PML dataset is the Penman–Monteith–Leuning energy
balance model, which is based on the Penman–Monteith equation, gridded meteorology,
and a simple biophysical model for surface conductance (i.e., used with remotely sensed
leaf area index to calculate surface conductance) [48,49].
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4.3.2. Hydrological Signature Analysis

Hydrological signatures refer to specific characteristics of the hydrograph [50]. The
application of hydrological signatures can aid in interpreting the links between models
and the underlying hydrological processes, and it provides more information about hy-
drological model performance [51,52]. Hydrological signatures mainly include rising limb
density, peak distribution, runoff ratio, different quantile flows, and flow duration curves
(FDCs), etc. Among various hydrological signatures, the FDC is widely used to assess hy-
drological model performance [21,30]. Therefore, besides regular performance evaluation
indices, shown in Section 3.3, the FDC is partitioned into three segments, including low
flow (0.7–1.0 flow exceedance probabilities), intermediate flow (0.2–0.7 flow exceedance
probabilities), and high flow (0–0.2 flow exceedance probabilities), which are used in
this study.

Figure 10 compares the three segments of observed and simulated runoff based on
Scheme I and Scheme II. In this figure, it is obvious that the simulated intermediate flow
and high flow based on Scheme I and the three variants of Scheme II are much closer
to the observation than the low flow. In the calibration period, the simulated low flow
and intermediate flow under all calibration schemes tend to be underestimated, and a
similar conclusion can be obtained for the validation period. Thus, it is essential to improve
the performance of low flow simulations under Scheme I and Scheme II. Compared to
Scheme I, the simulated low flow located in the range of exceedance probability 0.97–1.0
(namely, extremely low flows) based on the three variants of Scheme II performs better in
the calibration period, and the better performance in the validation period occurs in the
range of exceedance probability 0.99–1.0. Furthermore, the simulated intermediate flow
located in the range of exceedance probability 0.23–0.26 under Scheme II (PML) is more
consistent with the observations in the calibration period. A similar conclusion can be
obtained for the validation period when the exceedance probability is within 0.30–0.39.
Moreover, the better performance of intermediation flow simulations based on Scheme II
(FLUXCOM) and Scheme II (GLEAM) also can be found in the validation period, when the
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ranges of exceedance probability are 0.22–0.24 and 0.25–0.27 for Scheme II (FLUXCOM) and
Scheme II (GLEAM), respectively. The improvement in hydrological model performance
based on the three variants of Scheme II is indeed confirmed by their high flow simulations.
When the exceedance probability is within 0–0.012—namely, extremely high flows—the
runoff simulations based on the three variants of Scheme II outperform that based on
Scheme I in the calibration period. In the validation period, a similar improvement can be
observed clearly in Figure 10.
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Above all, we can conclude that all three variants of Scheme II improve the perfor-
mance of extreme flow simulations (including extremely low flow and high flow) compared
to Scheme I. Low flow and intermediate flow simulations under Scheme II (PML) are more
consistent with the observations than those under Scheme II (FLUXCOM) and Scheme II
(GLEAM). For high flow, the three variants of Scheme II have comparably good perfor-
mance in the calibration and validation periods. However, the improvements in extremely
high flow simulations based on Scheme II (FLUXCOM) and Scheme II (GLEAM) are almost
similar, and it is better than those based on Scheme II (PML). Furthermore, these conclusions
are also confirmed by other two hydrological signatures, as presented in Table 5, namely
L1 (mean of lowest annual daily flow divided by mean annual daily flow averaged across
all years) and H1 (mean of highest annual daily flow divided by mean annual daily flow
averaged across all years) [30,53,54]. Based on the result of hydrological signature analysis,
PML can be applied to multi-variable calibration in drought forecasting. FLUXCOM and
GLEAM are better choices for multi-variable calibration in flood forecasting.

Table 5. The other two hydrological signatures (L1 and H1) in the calibration and validation periods
based on Scheme I and Scheme II.

Periods Calibration Scheme
Hydrological Signature

L1 H1

Calibration
(2004–2008)

Observed runoff 0.020 13.6
Scheme I 0.088 9.6

Scheme II (PML) 0.057 10.2
Scheme II (FLUXCOM) 0.056 12.3

Scheme II (GLEAM) 0.056 12.0

Validation
(2009–2010)

Observed runoff 0.034 8.2
Scheme I 0.070 6.5

Scheme II (PML-V2) 0.049 6.8
Scheme II (FLUXCOM) 0.039 7.6

Scheme II (GLEAM) 0.040 7.5

This study was only conducted in a humid region. Whether similar conclusions
can be obtained in other regions, including semi-humid regions, semi-dry regions, and
dry regions, is not certain. However, Rajib et al. [21] applied a remote sensing-based ET
dataset to multi-variable calibration in a semi-humid region in North Dakota, United States,
and the results revealed that the integration of the ET dataset noticeably increased the
accuracy in both ET and runoff simulations. Moreover, Becker et al. [2] only used remote
sensing-based ET to calibrate model parameters in a semi-humid study area and their
results showed that the KGE for individual land use types increased from −0.6 to 0.6.
Furthermore, Dembélé et al. [55] applied several multi-variable calibration scenarios with
remote sensing-based ET datasets in the Volta River Basin, shared among six countries of
West Africa, and the multi-variable calibration scenarios led to higher model performance
in all climatic zones of the study area, including humid, semi-humid, semi-arid, and arid
zones. In addition, their results demonstrated that the model performance was better in the
intermediate climatic regions than in the driest and wettest regions, which is not consistent
with Zhang et al. [24]. Zhang et al. [24] used remote sensing-based ET to calibrate two
lumped conceptual hydrological models in 222 catchments across Australia and their results
revealed that the model performed better in wetter catchments than in drier catchments.
Therefore, we can conclude that the integration of remote sensing-based ET datasets into
multi-variable calibration is able to improve model performance in semi-humid regions,
semi-dry regions, and dry regions, but whether better performance occurs in wetter or
in drier regions requires further study. This is subject to many factors, including the
selection of hydrological models, study areas, remote sensing-based ET datasets, calibration
strategies, etc.
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5. Conclusions

This study evaluated the accuracy of three remote sensing-based ET datasets, namely
PML, FLUXCOM, and GLEAM, and further investigated the utility of these three datasets
in improving the hydrological model performance of DHSVM in the Jinhua River Basin,
East China. Firstly, the accuracy of these three ET datasets was assessed against in situ
observations of pan evaporation. Afterwards, these ET datasets, together with runoff
observations, were utilized for the multi-variable calibration of the DHSVM model. The
DHSVM model results calibrated with only runoff were used as a reference. The key
findings of this study are summarized below.

(1) All three ET datasets have good performance compared with pan evaporation at the Jinhua
River Basin. Among them, FLUXCOM and GLEAM have higher accuracy than PML.

(2) Runoff simulation based on Scheme I shows good performance, with a KGE value
of 0.87 in the calibration period and a KGE value of 0.89 in the validation period.
The PBIAS values in the calibration and validation period are 3.45% and 4.28%,
respectively. However, similar good performance cannot be found in ET simulation.

(3) Scheme II is able to enhance ET simulation and maintain good runoff simulation.
Among the three ET datasets, PML performs the best in simulating runoff, with a
KGE of 0.87 and a PBIAS of 1.46% in the calibration period and a KEG of 0.91 and a
PBIAS of 3.38% in the validation period, and ET simulation is improved with a great
reduction in PBIAS (95.85%) and ME (96.72%) in the calibration period. FLUXCOM
and GLEAM also show comparable performance in the calibration period.

(4) The DHSVM model calibrated with Scheme II is able to generate reasonable low flow,
intermediate flow, and high flow. Compared to Scheme I, Scheme II enhances the
performance of extreme flow simulations (including extremely low flow and extremely
high flow). PML can be applied to multi-variable calibration in drought forecasting
based on the better improvement in extremely low flow simulation. FLUXCOM and
GLEAM are good choices for multi-variable calibration in flood forecasting on the
basis of the better improvement in extremely high flow simulation.
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