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Abstract: Remote sensing images with high temporal and spatial resolutions play a crucial role in land
surface-change monitoring, vegetation monitoring, and natural disaster mapping. However, existing
technical conditions and cost constraints make it very difficult to directly obtain remote sensing
images with high temporal and spatial resolution. Consequently, spatiotemporal fusion technology
for remote sensing images has attracted considerable attention. In recent years, deep learning-based
fusion methods have been developed. In this study, to improve the accuracy and robustness of deep
learning models and better extract the spatiotemporal information of remote sensing images, the
existing multi-stream remote sensing spatiotemporal fusion network MSNet is improved using dilated
convolution and an improved transformer encoder to develop an enhanced version called EMSNet.
Dilated convolution is used to extract time information and reduce parameters. The improved
transformer encoder is improved to further adapt to image-fusion technology and effectively extract
spatiotemporal information. A new weight strategy is used for fusion that substantially improves the
prediction accuracy of the model, image quality, and fusion effect. The superiority of the proposed
approach is confirmed by comparing it with six representative spatiotemporal fusion algorithms
on three disparate datasets. Compared with MSNet, EMSNet improved SSIM by 15.3% on the CIA
dataset, ERGAS by 92.1% on the LGC dataset, and RMSE by 92.9% on the AHB dataset.

Keywords: spatiotemporal fusion; dilated convolution; improved transformer encoder; global
correlation information

1. Introduction

Remote sensing images are generated by various types of satellite sensors, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-equipped sensors,
and Sentinel. MODIS sensors are usually installed on Terra and Aqua satellites, which
can circle the earth in half a day or one day, and the data obtained by them have superior
time resolution. However, the spatial resolution of MODIS data (i.e., rough image) is
very low, and accuracy can reach only 250–1000 m [1]. By contrast, data (fine image)
acquired by Landsat have higher spatial resolution (15–30 m) and capture sufficient surface-
detail information, but temporal resolution is very low because it takes 16 days to circle the
earth [1]. In practical applications, we often need remote sensing images with high temporal
and spatial resolution. For example, images with high temporal and spatial resolutions can
be used for research in the fields of heterogeneous regional surface change [2,3], vegetation
seasonal monitoring [4], real-time natural disaster mapping [5], and land-cover changes [6].
Unfortunately, current technical and cost constraints, coupled with the existence of such
noise as cloud cover in some areas, make it challenging to directly obtain remote sensing
products with high temporal and spatial resolution, and a single high-resolution image
cannot meet practical needs. In order to meet these lacunae, spatiotemporal fusion has
attracted considerable attention. In spatiotemporal fusion, two types of images are fused
together, with the aim of obtaining images with high spatiotemporal resolution [7,8].
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Existing spatiotemporal fusion methods can generally be subdivided into four categories:
unmixing-based, reconstruction-based, dictionary pair learning-based, and deep learning-based.

Unmixing-based methods unmix the spectral information at the predicted moment, and
then use the unmixed result to predict the unknown high spatial and temporal resolution
image. Multi-sensor multi-resolution image fusion (MMFN) [9] was the first fusion method to
apply the idea of unmixing. MMFN reconstructs the MODIS and Landsat images separately:
first, the MODIS image is spectrally unmixed, and then the mixed result is spectrally reset on
the Landsat image to obtain the final reconstruction result. Wu et al. considered the issue of
nonlinear time-varying similarity and spatial variation in spectral unmixing, improved MMFN,
and obtained a new spatiotemporal fusion method, STDFA [10], which also achieved good
fusion results. A variable spatiotemporal data-fusion algorithm, FSDAF [11], has also been
proposed, which combines the unmixing method, spatial interpolation, and spatiotemporal
adaptive fusion algorithm (STARFM) to create a new algorithm that is computationally
inexpensive, fast, and accurate, and performs well in heterogeneous regions.

The core idea of the reconstruction-based algorithm is to calculate the weights of
similar adjacent pixels in the spectral information in the input and then add them. STARFM
was the first method to be used for reconstruction for fusion [8]. In STARFM, the reflection
changes of pixels between the rough image and the fine image should be continuous, and
the weights of adjacent pixels can be calculated to reconstruct a surface-reflection image
with high spatial resolution. In light of STARFM’s large number of computations and
the need to improve the reconstruction effect for heterogeneous regions, Zhu et al. made
improvements and proposed an enhanced version of STARFM called ESTARFM [12]. They
use two different coefficients to deal with the weights of adjacent pixels in homogeneous
and heterogeneous regions, achieving a better effect. Inspired by STARFM, the spatiotem-
poral adaptive algorithm for mapping reflection changes (STAARCH) [13] also achieves
good results. Overall, the difference between these algorithms lies in how the weights of
adjacent pixels are calculated. Although these algorithms generally have good results, they
are unsuitable for data that change too much too quickly.

Dictionary learning-based methods mainly learn the correspondence between two
types of remote sensing images to perform prediction. The sparse representation-based
spatiotemporal reflection fusion method (SPSTFM) [14] may be the first fusion method to
successfully apply dictionary learning. In SPSTFM, the coefficients of low-resolution im-
ages and high-resolution images should be the same, and the super-resolution ideas in the
field of natural images are introduced into spatiotemporal fusion. Images are reconstructed
by establishing correspondences between low-resolution images. However, in practical
situations, the same coefficients may not be applicable to some of the data obtained under
the existing conditions [15]. Wei et al. studied the explicit mapping between low-resolution
images and proposed a new fusion method based on dictionary learning and utilizing
compressive sensing theory, called compressive sensing spatiotemporal fusion (CSSF) [16],
which improves the accuracy of the prediction results noticeably, but the training time
also increases considerably, while the efficiency decreases. In this regard, Liu et al. pro-
posed an extreme learning machine called ELM-FM for spatiotemporal fusion [17], which
considerably reduces time and improves efficiency.

As deep learning has gradually been applied in various fields in recent years, deep
learning-based spatiotemporal fusion methods of remote sensing have also advanced. For
example, Song et al. proposed STFDCNN [18] for spatiotemporal fusion using a convo-
lutional neural network. In STFDCNN, the image-reconstruction process is considered
a super-resolution and nonlinear mapping problem. A super-resolution network and a
nonlinear mapping network are constructed through an intermediate resolution image,
and the final fusion result is obtained through high-pass modulation. STFDCNN achieved
good results. Liu et al. proposed a two-stream CNN, StfNet [19], for spatiotemporal fusion.
They effectively extracted and fused spatial details and temporal information using spatial
consistency and temporal dependence, and achieved good results. On the basis of spatial
consistency and time dependence, Chen et al. introduced a multiscale mechanism for
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feature extraction and proposed a spatiotemporal remote sensing image-fusion method
based on multiscale two-stream CNN (STFMCNN) [20]. Jia et al. proposed a new deep
learning-based two-stream convolutional neural network [21], which fuses the temporal
variation information with the spatial detail information by weight, which enhances its
robustness. Furthermore, Jia et al. adopted various prediction methods for phenological
change and land-cover change, and proposed a spatiotemporal fusion method based on
hybrid deep learning to combine satellite images with differing resolutions [22]. Tan et al.
proposed DCSTFN [23] to derive high spatiotemporal remote sensing images using CNNs
based on the methods of convolution and deconvolution combined with the fusion method
of STARFM. However, in light of the loss of information in the reconstruction process of
the deconvolution fusion method, Tan et al. increased the input of the a priori moment and
added a residual coding block, using a composite loss function to improve the learning
ability of the network, and an enhanced convolutional neural network EDCSTFN [24] was
proposed for spatiotemporal fusion. In addition, CycleGAN-STF [25] introduces other
ideas in the visual field into spatiotemporal fusion. It achieves spatiotemporal fusion
through image generation of CycleGAN. CycleGAN is used to generate a fine image at the
predicted time, the real image is used at the predicted time to select the closest generated
image, and finally FSDAF is used for fusion. Other fusion methods are applied in specific
scenarios. For example, STTFN [26], a CNN-based model for spatiotemporal fusion of
surface-temperature changes, uses a multiscale CNN to establish a nonlinear mapping
relationship and a spatiotemporal continuity weight strategy for fusion, achieving good
results. DenseSTF [27], a deep learning-based spatiotemporal data-fusion algorithm, uses
a block-to-point modeling strategy and model comparison to provide rich texture details
for each target pixel to deal with heterogeneous regions, and achieves very good results.
Furthermore, with the development of transformer models [28] in the natural language
field, many researchers have introduced the concept into the vision field as well, e.g., vision
transformer (ViT) [29], data-efficient image transformer (DeiT) [30], conditional position
encoding visual transformer (CPVT) [31], transformer-in-transformer (TNT) [32], and con-
volutional vision transformer (CvT) [33] can be used for image classification. In addition,
there are the Swin transformer [34] for image classification, image segmentation, and object
detection, and texture transformer [35] for general image superclassification. These variants
have been gradually introduced into the spatiotemporal fusion of remote sensing. For
example, MSNet [36] is a new method obtained by introducing the original transformer
and ViT into spatiotemporal fusion, learning the global temporal correlation information
of the image through the transformer structure, using the convolutional neural network
to establish the relationship between input and output, and finally obtain a good effect.
SwinSTFM [37] is a new method that introduces the Swin transformer and combines linear
spectral mixing theory, which finally improves the quality of generated images. There
is also MSFusion [38], which introduces texture transformer into spatiotemporal fusion,
which has also achieved quite good results on multiple datasets.

Existing spatiotemporal fusion algorithms perform a certain amount of information
extraction and noise processing during the fusion process, but there remain certain lacunae.
First, the acquisition and processing of suitable datasets is not easy. Owing to the existence
of noise, the data that can be directly used for research are insufficient. In deep learning,
the size of the dataset affects the learning ability during reconstruction: achieving good
reconstruction with small datasets is a major challenge. Second, the same fusion model can
have different prediction performance on different datasets, and the model is not robust.
Furthermore, the features extracted only by the CNN are not sufficient, and an increase of
the network depth will also result in potential feature loss.

In order to address the aforementioned challenges, this study improves MSNet and
proposes an enhanced version of the spatiotemporal fusion method of multi-stream remote
sensing images called EMSNet. In EMSNet, the input image adopts the original scale size,
and the rough image is no longer scaled to fully extract the temporal information and
reduce the loss. The main contributions of this paper are summarized as follows.
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(1) The number of prior input images required by the model is reduced from five to
three, which achieves better results with less input, so that even a dataset with a small
amount of data can reconstruct images with better effects.

(2) The transformer encoder structure is introduced and its projection method improved to
obtain the improved transformer encoder (ITE), which adapts the remote sensing spa-
tiotemporal fusion, effectively learns the relationship between local and global informa-
tion in rough and fine images, and effectively extracts temporal and spatial information.

(3) Dilated convolution is used to extract temporal information, which expands the
receptive field while keeping the parameter quantity unchanged and fully extracts a
large amount of temporal feature information contained in the rough image.

(4) A new feature-fusion strategy is used to fuse the features extracted by the ITE and
dilated convolution based on their differences from real predicted images in order to
avoid introducing noise.

The rest of the article has the following structure. The overall structure of EMSNet and
its internal specific modules and weight strategies are introduced in Section 2. Experimental
results are described in Section 3, along with the datasets used. Section 4 dis-cusses the
performance of EMSNet. Finally, conclusions are provided.

2. Methods
2.1. EMSNet Architecture

Figure 1 shows the overall structure of EMSNet, where Mi(i = 1, 2) represents the
MODIS image at time ti, Li represents the Landsat image at time ti, and Pre_L2 represents
the prediction result of the fused image at time t2 based on time t1. Rectangles of different
colors represent different operations, including convolution, dilated convolution, activation
function ReLU, and various operations inside the improved transformer encoder (ITE).
EMSNet is an end-to-end structure, which can be divided into three parts:

a. ITE-related modules, used to extract temporal change information and spatial texture
detail features and learn local and global correlation information;

b. an extraction network composed of convolution and dilated convolution, used to
establish a nonlinear relationship between input and output, while fully extracting
the features of time information;

c. a weight strategy, used to calculate the corresponding weight according to the differ-
ence between the features obtained in the above two parts and the real prediction
map for final fusion.

A detailed description of each module can be found in Sections 2.2–2.4.
In this study, three images of the same size are used as input, a pair of MODIS-Landsat

images at a priori time t1 and a MODIS image at prediction time t2. The overall procedure
of EMSNet is as follows:

(1) First, we subtract M1 from M2 to get M12, which represents the change area within
two times and provides time-change information. We input into the feature-extraction
network composed of convolution and dilated convolution, and then fully extract the
time information contained in it.

(2) Second, we add M12 and L1 to the ITE to extract the rich temporal information and
spatial texture detail information, and simultaneously learn the connection between
the local and the global information.

(3) Inspired by ResNet [39], in DenseNet [40], as the network depth increases, the temporal
and spatial information in the input image may be lost during transmission. Therefore,
we add L1 as the residual to the temporal variation information obtained in the first step
to supplement the spatial details that may be lost in the subsequent fusion process.

(4) Finally, the results obtained in the second and third steps are calculated by calculating
the difference with L2 to obtain their respective weights, so as to fuse and reconstruct
the final prediction map Pre_L2.
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The structure of EMSNet can be represented by Equation (1) below:

Pre_L2 = W(T(M12 + L1), E(M12) + L1) (1)

Here, T represents the ITE module, E represents the time information-extraction
network composed of convolution and dilated convolution, and W represents the weight
strategy adopted in this study.

2.2. Improved Transformer Encoder

Transformer [28], as a kind of attention mechanism, is well suited not only to the
field of natural language but also to the field of vision. Inspired by the application of the
transformer in MSNet [36] and the cancellation of position encoding in CPVT [31] and
CvT [33], in this study, the transformer encoder applied to remote sensing spatiotempo-
ral fusion is further improved, the MLP part for classification is canceled, and position
encoding is canceled. In addition, the convolutional projection method is used to replace
the original linear projection method in the transformer, and a new structure, as shown
in Figure 2 below, is obtained, called the improved transformer encoder (ITE), which is
mainly used to learn temporal variation information and spatial texture details. Through
the above operations, it is ensured that the input and output are of the same dimension,
which facilitates subsequent fusion and reconstruction.

Figure 2 is the ITE structure diagram, in which the yellow part represents the convolu-
tion projection operation and the blue box and its interior represent the specific operation
part of ITE. As can be seen from the figure, this study projects the input information di-
rectly through the convolution operation, and the overlap between the convolution blocks
and the convolution blocks effectively strengthens the connection between the blocks.
Consequently, the ITE strengthens the correlation between local information and global
information, removing the need for the position encoding required by the linear projection
method, thus making it more suitable for the spatiotemporal fusion method. The ITE is also
composed of alternate multi-head attention mechanisms and feedforward parts. It will be
normalized before each input to the submodule, and there will be residual connections after
each block. The multi-head self-attention mechanism is a series of SoftMax and linear opera-
tions, and the input data will gradually change the dimensions during the propagation and
training process to adapt to match these operations. The feedforward portion is composed
of linear, Gaussian error linear unit (GELU), and random deactivation dropout, where
GELU is used as the activation function. In practical applications, for different amounts
of data, when learning global time-varying information, ICTE with different depths are
required to learn more accurately. Nx in the figure represents the depth value.
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In this study, the ITE is used as a module for learning time-varying information and
spatial texture detail. Compared with the previous MSNet, it further expands the learning
range of the transformer encoder for remote sensing.

2.3. Dilated Convolution

In order to extract the time information contained in M12 and establish the mapping
relationship between input and output, this study proposes a seven-layer neural network
mainly composed of dilated convolution as a feature extraction network. The key feature
of dilated convolution is that different sizes of receptive fields can be obtained after setting
different dilation rates, so as to extract effective information at multiple scales. Compared
with ordinary convolution operations, dilated convolution will not increase the number
of redundant parameters. Figure 3 shows the proposed dilated convolution-based neural
network and the receptive fields under different dilation rates.
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The right side of the dotted line in Figure 3 shows the architecture of the seven-
layer neural network, which consists of one layer of convolution, three layers of dilated
convolution, and three layers of ReLU. The convolution operation is used to convert the
original M12 into a multidimensional nonlinear tensor, and the convolution kernel adopts
the size of 3 × 3; the dilated convolution is used to effectively extract the temporal features
in the M12, the basic convolution kernel is of the same size i.e., 3 × 3, and an expansion rate
of 2, 3, and 4 is set in turn for three consecutive layers of dilated convolution. The left side of
the dotted line is the schematic diagram of the receptive field under various expansion rates.
When the dilation rate is 1, dilated convolution is no different from ordinary convolution.
When the dilation rate increases, the receptive field also gradually increases, which enables
it to better learn the feature information at various scales, and simultaneously guarantee
the number of parameters taken during its operation will not increase [41].
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Each dilated convolution operation can be defined as:

Φ(x) = wi ∗ x + bi (2)

Here, x represents the input, “∗“ represents the dilated convolution operation, wi
represents the weight of the current convolutional layer, and bi represents the current offset.
The output channels of the three convolution operations are 32, 16, and 1 in sequence. After
the convolution, the ReLU operation is used to make the features non-linear and avoid
network overfitting [42]. The ReLU operation can be defined as:

ReLU(x) = max(0, x) (3)

2.4. Weight Strategy

After feature extraction by the ITE and dilated convolutional neural network, plus
residual L2 for supplementary information, two distinct features are obtained. The differ-
ence between the prediction graphs is calculated by weight for final fusion, and the specific
weight strategy can be defined as:

Pre_L2 = W(T(M12 + L1), E(M12) + L1) = αT(M12 + L1) + β(E(M12) + L1) (4)
α =

1
|T(M12+L1)−L2|

1
|T(M12+L1)−L2|

+ 1
|(E(M12)+L1)−L2|

β =
1

|(E(M12)+L1)−L2|
1

|T(M12+L1)−L2|
+ 1
|(E(M12)+L1)−L2|

(5)

Here, T represents the ITE module, and E represents the temporal information extrac-
tion network composed of convolution and dilated convolution.

2.5. Network Training

During the entire training process of the model, the loss calculation is performed
on the prediction results of the entire model, so as to continuously adjust the learning
parameters during the backpropagation process to obtain better convergence results. When
calculating the difference between the predicted result and the real value, the smooth L1
loss function, namely Huber loss [43], is chosen, which can be defined as L:

S(Li) =
H

∑
m=1

W

∑
n=1

Li(m, n) (6)

L = loss(Pre_L2, L2) =
1
N


1
2 (S(Pre_L2)− S(L2))

2, i f |S(Pre_L2)− S(L2)| < 1

|S(Pre_L2)− S(L2)| − 1
2 , otherwise

(7)

where H represents the height of the image, W represents the width of the image, Li
represents the input image, and S represents for the pixel sum formula.

3. Experiments and Results
3.1. Datasets

Three separate datasets were employed to test the robustness of EMSNet.
The first study area was the Coleambally Irrigation Area (CIA) in southern New

South Wales (NSW, Australia, 34.0034◦E, 145.0675◦S) [44]. The dataset was acquired from
October 2001 to May 2002 and comprises 17 pairs of MODIS–Landsat images. The Landsat
images are all from Landsat-7 ETM+, and the MODIS images are MODIS Terra MOD09GA
Collection 5 data. The CIA dataset includes six bands and an image size of 1720 × 2040.

The second study area is the Lower Gwydir Watershed (LGC) in northern New
South Wales (NSW, 149.2815◦E, 29.0855◦S), Australia [44]. The dataset was acquired from
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April 2004 to April 2005 and comprises 14 pairs of MODIS–Landsat images. All Landsat im-
agery is from Landsat-5TM, and the MODIS imagery is MODIS Terra MOD09GA Collection
5 data. The LGC dataset contains six bands and the image size is 3200 × 2720.

The third study area is the Alu Horqin Banner (AHB) region (43.3619◦N, 119.0375◦E)
in the central Inner Mongolia Autonomous Region of northeastern China, which has many
circular pastures and farmland [45,46]. Li Jun et al., collected 27 cloud-free MODIS–Landsat
image pairs from 30 May 2013 to 6 December 2018, a time span of more than 5 years. The area
has experienced substantial phenological changes owing to the growth of crops and other
types of vegetation. The AHB dataset contains six bands and the image size is 2480 × 2800.

In this study, all images of the three datasets are combined according to a prior time
and a prediction time. Each set of training data has four images, including two pairs of
MODIS–Landsat images. The image size of each pair of MODIS-Landsat is the same, and
the spatial resolution is 16:1. When combining the data, the data with the same time span
between the prior moment and the predicted moment are given priority as the experimental
data. In addition, for the training of the network, the images of the three datasets are all
adjusted to a size of 1200 × 1200. Figures 4–6 show the MODIS–Landsat image pairs
obtained on two different dates for the three datasets. During the experiment process,
the three datasets were input into EMSNet for training, 70% of the dataset was used for
training, 15% was used for validation, and 15% was used as the final test set for evaluating
the fusion and reconstruction ability of the model.
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7 July (b,d) 2015 from the AHB [45,46] dataset. The AHB focuses on noteworthy phenological changes
in the pasture.

3.2. Evaluation

We evaluated the proposed spatiotemporal fusion method by comparing it with FSDAF,
STARFM, DCSTFN, STFDCNN, StfNet, and the previous MSNet under the same criteria.

As in the case of MSNet, six evaluation metrics are used. The first indicator is the
spectral angle mapper (SAM) [47], which can measure the spectral distortion of the fusion
result. It can be defined as follows:

SAM =
1
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where N represents the total number of pixels in the predicted image, K represents the total
number of bands, Pre_Li represents the prediction result, Pre_Lk

i represents the prediction
result of the kth band, and Lk

i represents the true value of the Lk
i band. A small SAM

indicates a better result.
The second metric was the root mean square error (RMSE), which is the square root

of the MSE and is used to measure the deviation between the predicted image and the
observed image. It reflects a global depiction of the radiometric differences between the
fusion result and the real observation image, which is defined as follows:

RMSE =

√√√√√ H
∑

m=1

W
∑

n=1
(Li(m, n)− Pre_Li(m, n))2

H ×W
(9)

where H represents the height of the image, W represents the width of the image, L
represents the observed image, and Pre_Li represents the predicted image. The smaller the
value of RMSE, the closer the predicted image is to the observed image.

The third indicator was erreur relative global adimensionnelle de synthèse (ER-
GAS) [48], which measures the overall integration result. It can be defined as:

ERGAS = 100
h
l

√√√√ 1
K

K

∑
i=1

[RMSE(Lk
i )

2/(µk)
2] (10)

where h and l represent the spatial resolution of Landsat and MODIS images respectively;
Lk

i represents the real image of the kth band; and µk represents the average value of the kth
band image. When ERGAS is small, the fusion effect is better.

The fourth index was the structural similarity (SSIM) index [49], which is used to
measure the similarity of two images. It can be defined as:

SSIM =
(2µPre_Li µLi + c1)(2σPre_Li Li + c2)

(µ2
Pre_Li

+ µ2
Li
+ c1)(σ

2
Pre_Li

+ σ2
Li
+ c2)

(11)

where µPre_Li represents the mean value of the predicted image, µLi represents the mean
value of the real observation image, σPre_Li Li represents the covariance of the predicted
image Pre_Li and the real observation image Li, σ2

Pre_Li
represents the variance of the

predicted image Pre_Li, σ2
Li

represents the variance of the real observation image Li, and
c1 and c2 are constants used to maintain stability. The value range of SSIM is [−1, 1]. The
closer the value is to 1, the more similar are the predicted image and the observed image.

The fifth index is the correlation coefficient (CC), which is used to indicate the correla-
tion between two images. It can be defined as:

CC =

N
∑

n=1
(Pre_Ln

i − µL̂i
)(Ln

i − µLi )√
N
∑

n=1
(Pre_Ln

i − µL̂i
)2

√
N
∑

n=1
(Ln

i − µLi )
2

(12)

The closer the CC is to 1, the greater the correlation between the predicted image and
the real observation image.

The sixth indicator is the peak signal-to-noise ratio (PSNR) [50]. It is defined indirectly
by the MSE, which can be defined as:

MSE =
1

HW

H

∑
m=1

W

∑
n=1

(Li(m, n)− Pre_Li(m, n))2 (13)
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Then PSNR can be defined as:

PSNR = 10· log10(
MAX2

Li

MSE
) (14)

where MAX2
Li

is the maximum possible pixel value of the real observation image Li. If each
pixel is represented by an 8-bit binary value, then MAXLi

is 255. Generally, if the pixel
value is represented by B-bit binary, then MAXLi

= 2B − 1. PSNR can evaluate the quality
of the image after reconstruction. A higher PSNR means that the predicted image quality
is better.

3.3. Parameter Settings

For the improved transformer encoder, the number of heads is set to 9, and the depth
is set according to the data volume and characteristics of the three datasets: CIA is 20,
LGC is 5, and AHB is 20. The size of the patch input into it is 240 × 240. The ordinary
convolution as well as the three-layer dilated convolution in the dilated convolutional
neural network each use a 3 × 3 convolution kernel. The dilation rates are 2, 3, and 4,
and the number of channels is 32, 16, and 1. The initial learning rate is set to 0.0008, the
optimizer adopts Adam, and the weight decay is set to 1 × 10−6. EMSNet was trained on
two Windows 10 Professional editions, each with 64 GB memory, an Intel Core i9-9900K @
3.60 GHz×16 CPU, and an NVIDIA Geforce RTX 2080 Ti.

3.3.1. Subjective Evaluation

In order to visualize the experimental results, Figures 7–13 show the experimental
results of FSDAF, STARFM, DCSTFN, STFDCNN, StfNet, MSNet, and the proposed im-
proved EMSNet on each of three datasets. GT in the figure represents the real observed
image, while Proposed is the proposed EMSNet method.
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Figure 7. Entire prediction results for the target Landsat image (16 October 2001) in the CIA dataset.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.
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Figure 8. Specific prediction results for the target Landsat image (16 October 2001) in CIA dataset.
Among them, the white framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 9. Comprehensive prediction results for the target Landsat image (14 February 2005) in LGC 
dataset. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], 
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents 
the ground truth (GT), and (h) represents the proposed method. 

 
Figure 10. Specific prediction results for the target Landsat image (14 February 2005) in LGC dataset. 
Among them, the grey framework is the prominent difference of the results obtained by each 
method. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], 
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents 
the ground truth (GT), and (h) represents the proposed method. 

Figure 9. Comprehensive prediction results for the target Landsat image (14 February 2005) in LGC
dataset. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18],
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents
the ground truth (GT), and (h) represents the proposed method.
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Figure 10. Specific prediction results for the target Landsat image (14 February 2005) in LGC dataset.
Among them, the grey framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.
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Figure 11. Complete prediction results for the target Landsat image (7 July 2015) in AHB dataset.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.



Remote Sens. 2022, 14, 4544 15 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

 
Figure 11. Complete prediction results for the target Landsat image (7 July 2015) in AHB dataset. 
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19], 
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground 
truth (GT), and (h) represents the proposed method. 

 
Figure 12. First specific prediction results for the target Landsat image (7 July 2015) in AHB dataset. 
Among them, the white framework is the prominent difference of the results obtained by each 
method. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], 
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents 
the ground truth (GT), and (h) represents the proposed method. 

Figure 12. First specific prediction results for the target Landsat image (7 July 2015) in AHB dataset.
Among them, the white framework is the prominent difference of the results obtained by each method.
Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18], StfNet [19],
and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents the ground
truth (GT), and (h) represents the proposed method.
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Figure 13. Second specific prediction results for the target Landsat image (7 July 2015) in AHB
dataset. Among them, the white framework is the prominent difference of the results obtained by
each method. Comparison methods include FSDAF [11], STARFM [8], DCSTFN [23], STFDCNN [18],
StfNet [19], and MSNet [36], which are represented by (b–g) in the figure respectively. (a) represents
the ground truth (GT), and (h) represents the proposed method.
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Figure 7 shows the overall prediction result on the CIA data set, while Figure 8 shows
a cropped part of the prediction result enlarged. Visually, FSDAF, STARFM, and DCSTFN
are less accurate than other methods in predicting phenological changes. For example, in
the overall results in Figure 7, the black areas of these methods are noticeably less than
those contained in GT. The prediction effects in the box in Figure 8 are also quite different.
Relatively speaking, the prediction results obtained by the method based on deep learning
are better, but the prediction map of StfNet is a bit blurry and the effect is not good. The
results of STFDCNN and MSNet are relatively good, but those of our proposed method are
better. Thus, Figure 8 shows that the results obtained by the proposed method are closer to
the ground truth in terms of clarity and accuracy.

Figure 9 illustrates the overall prediction result on the LGC dataset, while Figure 10
illustrates the cropped and enlarged result of a portion of the prediction. In general, the
performance of each algorithm is relatively stable, but there are differences in the specific
spectral information and the processing of heterogeneous regions. It can be seen from the
black box in the enlarged area in the lower right corner of Figure 10 that the prediction
accuracy of the spectral information in DCSTFN and StfNet is lower than other methods,
and the other methods have achieved good results, but the effect obtained by the proposed
method is closer to the actual value. In addition, the proposed method also predicts the
information of curved river channels with high heterogeneity under the black box, which
no other method except for FSDAF can. Compared with the proposed method, FSDAF is
closer to the real value. The method has achieved good results in spectral information and
the processing of heterogeneous regions.

Figure 11 shows the overall prediction result on the AHB data set, while Figures 12 and 13
show some cropped and enlarged results. On the whole, the prediction results of STARFM
are not accurate enough in the processing of spectral information, and there is considerable
ambiguous spectral information. DCSTFN fails to accurately predict the results, and fails to
effectively extract information for datasets with a large number of heterogeneous regions
and time information. The results obtained by StfNet are relatively good, such as in the
spatial details between rivers, but there is still a large gap between the overall and the real
value. In addition, although the prediction results of FSDAF are much better than STARFM
in the processing of spectral information, there are still shortcomings compared with the real
values. While STFDCNN and MSNet achieve better results, the spatial details and spectral
time information are relatively adequate, but the proposed method achieves better results,
with the spatial details and spectral information being closer to the real values. Locally,
in Figure 12, in a large number of continuous phenological change areas, the proposed
method has a noticeable improvement compared with the previous MSNet. Furthermore,
compared with other methods, the processing of boundary information is also better, and
is closest to the true value. In Figure 13, for the prediction of a large number of circular
pasture areas, FSDAF, STARFM, DCSTFN, and StfNet failed at accurate prediction, which
must be due to the complex spatial distribution and too much time-varying information
on the AHB dataset, which led to the limited learning ability of the model, and the results
obtained were not ideal. STFDCNN has achieved good results with the previous MSNet,
but there is still insufficient boundary information. The proposed method thus achieves
the best prediction effect, in the prediction of phenological change information as well as
the boundary processing between circular pastures.

3.3.2. Objective Evaluation

Six evaluation indicators are used to objectively evaluate various algorithms and the
proposed method. Tables 1–3 present the quantitative evaluation of the prediction results
obtained by various methods on three datasets, including global indicators SAM and
ERGAS as well as local indicators RMSE, SSIM, PSNR, and CC. Furthermore, the optimal
value of each indicator is marked in bold.
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Table 1. Quantitative assessment of various spatiotemporal fusion methods for CIA dataset.

Evaluation Band
Method on CIA

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.23875 0.21556 0.23556 0.21402 0.21614 0.19209 0.00114
ERGAS all 3.35044 3.07221 3.31676 3.14461 3.00404 2.94471 0.45234

RMSE

band1 0.01365 0.01059 0.01306 0.01076 0.00956 0.01009 0.00051
band2 0.01415 0.01256 0.01366 0.01236 0.01271 0.01132 0.00044
band3 0.02075 0.01922 0.02055 0.01792 0.02121 0.01724 0.00032
band4 0.04619 0.04377 0.04899 0.04100 0.05001 0.03669 0.00079
band5 0.06031 0.05655 0.06153 0.05900 0.05302 0.04898 0.00026
band6 0.05322 0.04690 0.05278 0.05389 0.04500 0.04325 0.00067

avg 0.03471 0.03160 0.03509 0.03249 0.03192 0.02793 0.00050

SSIM

band1 0.90147 0.94678 0.91699 0.95517 0.94190 0.95050 0.99996
band2 0.91899 0.93652 0.92325 0.93812 0.94340 0.95149 0.99998
band3 0.85786 0.88428 0.86290 0.87329 0.89950 0.91156 0.99999
band4 0.76070 0.79776 0.74636 0.78318 0.84868 0.86248 0.99995
band5 0.66598 0.70744 0.66011 0.72789 0.74118 0.76460 0.99999
band6 0.66168 0.72121 0.66323 0.73555 0.74068 0.76257 0.99997

avg 0.79445 0.83233 0.79548 0.83553 0.85256 0.86720 0.99997

PSNR

band1 37.29537 39.50404 37.68327 39.36680 40.38939 39.92510 65.81463
band2 36.98507 38.01703 37.29114 38.16128 37.91972 38.92643 67.09016
band3 33.65821 34.32276 33.74247 34.93560 33.46842 35.27141 69.83863
band4 26.70854 27.17708 26.19858 27.74355 26.01829 28.70879 62.06650
band5 24.39249 24.95152 24.21822 24.58366 25.51175 26.19920 71.78578
band6 25.47784 26.57641 25.55050 25.37055 26.93525 27.28095 63.47700

avg 30.75292 31.75814 30.78070 31.69357 31.70714 32.71865 66.67879

CC

band1 0.80138 0.79672 0.79845 0.84521 0.83428 0.84448 0.99951
band2 0.79873 0.81009 0.79319 0.83720 0.83156 0.84929 0.99978
band3 0.83290 0.84688 0.82554 0.87373 0.87264 0.87787 0.99996
band4 0.88511 0.89683 0.86697 0.91181 0.90546 0.92743 0.99997
band5 0.76395 0.79363 0.74894 0.78783 0.84732 0.84784 0.99999
band6 0.76036 0.80739 0.75144 0.76502 0.84588 0.83826 0.99996

avg 0.80707 0.82526 0.79742 0.83680 0.85619 0.86420 0.99986

Table 2. Quantitative assessment of various spatiotemporal fusion methods for LGC dataset.

Evaluation Band
Method on LGC

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.08411 0.08354 0.08601 0.06792 0.09284 0.06335 0.00035
ERGAS all 1.93861 1.91167 1.92273 1.80392 2.03970 1.68639 0.13248

RMSE

band1 0.00763 0.00763 0.00729 0.00719 0.00824 0.00585 0.00006
band2 0.00913 0.00870 0.00907 0.00843 0.01167 0.00712 0.00006
band3 0.01279 0.01258 0.01256 0.01151 0.01353 0.00969 0.00006
band4 0.02383 0.02332 0.02295 0.02102 0.02971 0.01864 0.00006
band5 0.02830 0.02679 0.02607 0.02251 0.02284 0.02159 0.00006
band6 0.02197 0.02072 0.02181 0.01673 0.02054 0.01425 0.00006

avg 0.01727 0.01662 0.01662 0.01457 0.01775 0.01286 0.00006

SSIM

band1 0.97422 0.97455 0.97355 0.98460 0.97464 0.98558 0.99999
band2 0.96698 0.96918 0.96495 0.98209 0.96062 0.98031 0.99999
band3 0.94456 0.94632 0.94152 0.97475 0.94162 0.96954 0.99999
band4 0.92411 0.93283 0.91759 0.96417 0.91455 0.96393 0.99999
band5 0.89418 0.90416 0.88558 0.95539 0.91215 0.95239 0.99999
band6 0.88485 0.90337 0.87789 0.95259 0.90154 0.95087 0.99999

avg 0.93148 0.93840 0.92684 0.96893 0.93419 0.96710 0.99999
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Table 2. Cont.

Evaluation Band
Method on LGC

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

PSNR

band1 42.35483 42.34734 42.73997 42.86245 41.68016 44.65345 84.25491
band2 40.79034 41.20550 40.85222 41.48586 38.65611 42.95050 85.06363
band3 37.86428 38.00486 38.02099 38.77733 37.37629 40.27059 83.84853
band4 32.45760 32.64622 32.78532 33.54859 30.54336 34.59058 84.47622
band5 30.96416 31.44212 31.67671 32.95179 32.82613 33.31671 84.01371
band6 33.16535 33.67016 33.22812 35.52920 33.74927 36.92082 84.00084

avg 36.26610 36.55270 36.55056 37.52587 35.80522 38.78378 84.27631

CC

band1 0.93627 0.92666 0.92935 0.94611 0.94664 0.96138 0.99999
band2 0.93186 0.93379 0.92880 0.94530 0.93566 0.95800 0.99999
band3 0.93549 0.93512 0.93516 0.95262 0.95539 0.96499 0.99999
band4 0.96360 0.96585 0.96287 0.97181 0.96125 0.97591 0.99999
band5 0.95527 0.95492 0.95222 0.97545 0.97048 0.97890 0.99999
band6 0.95313 0.95738 0.95214 0.97285 0.97164 0.97924 0.99999

avg 0.94594 0.94562 0.94342 0.96069 0.95684 0.96974 0.99999

Table 3. Quantitative assessment of various spatiotemporal fusion methods for AHB dataset.

Evaluation Band
Method on AHB

FSDAF DCSTFN STARFM STFDCNN StfNet MSNet Proposed

SAM all 0.16991 0.23877 0.29277 0.18583 0.25117 0.14677 0.01297
ERGAS all 2.80156 4.03380 4.46147 4.25224 3.86535 2.90661 0.81967

RMSE

band1 0.00039 0.00081 0.00251 0.00096 0.00112 0.00047 0.00007
band2 0.00044 0.00215 0.00235 0.00092 0.00081 0.00051 0.00007
band3 0.00067 0.00363 0.00358 0.00117 0.00118 0.00064 0.00007
band4 0.00109 0.00187 0.00590 0.00124 0.00201 0.00103 0.00006
band5 0.00126 0.00208 0.00408 0.00183 0.00177 0.00122 0.00006
band6 0.00136 0.00225 0.00263 0.00200 0.00198 0.00126 0.00007

avg 0.00087 0.00213 0.00351 0.00135 0.00148 0.00085 0.00006

SSIM

band1 0.99895 0.99459 0.96538 0.99205 0.98927 0.99822 0.99998
band2 0.99877 0.96845 0.96977 0.99293 0.99500 0.99805 0.99998
band3 0.99741 0.91914 0.93438 0.98947 0.98965 0.99740 0.99998
band4 0.99616 0.98506 0.92038 0.99419 0.98248 0.99631 0.99999
band5 0.99382 0.98085 0.94190 0.98371 0.98464 0.99388 0.99999
band6 0.99129 0.97145 0.96825 0.97625 0.97636 0.99226 0.99998

avg 0.99607 0.96992 0.95001 0.98810 0.98623 0.99602 0.99998

PSNR

band1 68.18177 61.87013 52.01008 60.34502 59.00582 66.48249 83.62824
band2 67.04371 53.35105 52.56484 60.68929 61.8316 65.80339 83.61930
band3 63.49068 48.79810 48.93197 58.63694 58.55977 63.88021 83.56309
band4 59.22553 54.57435 44.58211 58.13169 53.95486 59.77506 84.23956
band5 58.02282 53.65469 47.79106 54.74701 55.05539 58.28599 83.87554
band6 57.35352 52.93719 51.60634 53.96601 54.06602 58.02322 83.56037

avg 62.21967 54.19759 49.58107 57.75266 57.07891 62.04173 83.74768

CC

band1 0.84000 0.78227 0.71181 0.80368 0.49726 0.86845 0.99570
band2 0.85657 0.76351 0.74545 0.86845 0.38062 0.89114 0.99795
band3 0.84979 0.79147 0.81230 0.83576 0.27147 0.88345 0.99918
band4 0.53986 0.40161 0.34009 0.58944 0.37556 0.60303 0.99893
band5 0.79576 0.52206 0.76553 0.83580 0.62926 0.85320 0.99972
band6 0.80288 0.47565 0.76492 0.80338 0.61085 0.85154 0.99975

avg 0.78081 0.62276 0.69002 0.78942 0.46083 0.82514 0.99854

Tables 1–3 present the quantitative evaluation results of several existing fusion meth-
ods and the proposed method on the CIA, LGC, and AHB datasets, respectively. In each
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table, it can be seen that the proposed method achieves the optimal value on the global
indicators and all local indicators.

4. Discussion

Through the experiments, it can be seen that whether it is on the CIA dataset with
phenological changes in regular areas or on the AHB dataset with phenological changes
with a large number of irregular areas and a large number of heterogeneous areas, our
proposed method is better at prediction. Similarly, for LGC datasets, which are mainly
land cover-type changes, the proposed method is better at prediction than traditional
methods and other deep learning-based methods in the processing of temporal information
and high-frequency spatial details. The time information and high-frequency file texture
information are processed more appropriately because of the combination of ITE and
dilated convolution in EMSNet. More importantly, the refined ITE can further expand
the range of learning in the remote sensing field, and can fully extract the spatiotemporal
information contained in the input image.

It is worth noting that for datasets with different amounts of data and different
characteristics, the depth of the improved transformer encoder (ITE) should also be different
to better fit the datasets. Table 4 lists the average evaluation values of the prediction results
obtained without the ITE and with the ITE with different depths, where the optimal value
is shown in bold. The depth being 0 indicates that the ITE has not been introduced. It can
be seen that when the depth is not introduced, the experimental results are relatively poor.
As the depth changes, the results obtained vary. The best experimental results are obtained
when the depth of the CIA dataset is 20, the depth of the LGC dataset is 5, and the depth of
the AHB dataset is 20.

Table 4. Average evaluation values of ITEs of various depths on the three datasets.

Database Depth SAM ERGAS RMSE SSIM PSNR CC

CIA

0 0.223768 3.144353 0.032796 0.844214 31.477961 0.819219

5 0.001597 0.530676 0.000550 0.999948 67.018571 0.999620

10 0.001182 0.473233 0.000473 0.999971 68.362024 0.999807

15 0.001394 0.509978 0.000639 0.999960 64.859474 0.999776

20 0.001142 0.452341 0.000499 0.999974 66.678786 0.999863

LGC

0 0.082166 1.939385 0.016704 0.943749 36.315476 0.948030

5 0.000352 0.132476 0.000061 0.9999982 84.276309 0.9999989

10 0.000367 0.139728 0.000069 0.9999979 83.319692 0.9999987

15 0.000378 0.153687 0.000092 0.9999976 81.181723 0.999998

20 0.000638 0.287639 0.000476 0.999885 77.511986 0.999900

AHB

0 0.082166 1.939385 0.016704 0.943749 36.315476 0.748201

5 0.013112 0.826490 0.000066 0.999982 83.686718 0.998556

10 0.013106 0.825792 0.000066 0.999982 83.680289 0.998557

15 0.013102 0.828641 0.000066 0.999982 83.625675 0.998539

20 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

The bold in the table indicates the optimal value at different ITE depths.

In addition, the difference between the original linear projection method of the trans-
former encoder and the improved convolution projection method was also determined.
Table 5 lists the global indicators and average evaluation values of the prediction results
obtained under various projection methods, where the optimal value is shown in bold. It
can be seen that on the three datasets, the convolutional projection method is selected, and
the ITE after position encoding is removed achieves better results.



Remote Sens. 2022, 14, 4544 20 of 23

Table 5. Average evaluation values of ICTEs of various project methods on the three datasets.

Database Project Method SAM ERGAS RMSE SSIM PSNR CC

CIA
line 0.001142 0.452660 0.000500 0.999966 65.565960 0.999462

conv 0.001141 0.452341 0.000499 0.999974 66.678786 0.999863

LGC
line 0.000352 0.133565 0.000070 0.999990 82.659593 0.999984

conv 0.000351 0.132476 0.000061 0.999998 84.276309 0.999999

AHB
line 0.013024 0.823650 0.000066 0.999896 81.265960 0.990570

conv 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

Furthermore, the last six layers of the network for extracting time information in
Figure 3 include three layers of dilated convolution and three layers of ReLU. This paper
also conducts a comparative experiment on the three layers of dilated convolution op-
erations. Table 6 lists the different result evaluations obtained when using convolution
and dilated convolution. Among them, “conv” in the difference column means to replace
the above-mentioned three layers of dilated convolution with three layers of convolution;
“conv_dia” means that the above-mentioned three layers of dilated convolution remain
unchanged, and “conv&conv_dia” means that the abovementioned three layers of dilated
convolution are replaced by a three-layer alternating operation of convolution, dilated con-
volution and convolution. It can be seen that when the subsequent operations of extracting
time information are all dilated convolutions, the implementation effect is better.

Table 6. Average evaluation values of various convolution operations on the three datasets.

Database Difference SAM ERGAS RMSE SSIM PSNR CC

CIA

conv 0.001491 0.549008 0.000593 0.999953 66.089266 0.999672

conv_dia 0.001142 0.452341 0.000499 0.999974 66.678786 0.999863

conv&conv_dia 0.101984 2.197340 0.015059 0.943943 37.726046 0.963180

LGC

conv 0.000365 0.136848 0.000064 0.9999980 83.841604 0.9999988

conv_dia 0.000352 0.132476 0.000061 0.9999982 84.276309 0.9999989

conv&conv_dia 0.050764 1.532304 0.010584 0.975687 40.476035 0.980252

AHB

conv 0.012998 0.826653 0.000066 0.999982 83.658194 0.998290

conv_dia 0.012967 0.819673 0.000065 0.999983 83.747684 0.998540

conv&conv_dia 0.091340 2.057066 0.000496 0.998751 66.825864 0.921079

Although the proposed method has achieved good results, there are issues worthy
of further exploration. First, in order to fully expand the learnable range of the ITE, the
original input of a larger MODIS image has been used. Although dilated convolution is
used to reduce the number of parameters, compared with MSNet, the number of parameters
in this study is quite high. Table 7 presents the fusion model of deep learning and the
number of parameters that the proposed method needs to learn. It can be seen that the
proposed method needs the largest number of parameters, which means that compared
with other methods, it requires more training time and equipment with larger memory
during training. Considering the cost of learning, a way to obtain better results with a
smaller model is a direction worthy of future research. Second, the refined ITE shows very
good performance, but further improvements to adapt it to remote sensing spatiotemporal
fusion can be researched in future. Furthermore, improving the fusion effect while avoiding
the fusion strategy introduced by noise is also worthy of further study.
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Table 7. Number of parameters for different deep learning methods.

Method DCSTFN STFDCNN StfNet MSNet Proposed

Parameter 445,889 114,562 36,866

depth = 5 521,064 depth = 5 3,673,617

depth = 10 978,764 depth = 10 7,329,217

depth = 20 1,894,164 depth = 20 14,640,417

5. Conclusions

In this study, the effectiveness of EMSNet in three research areas with diverse charac-
teristics is evaluated. Its performance enhancement is found to be mainly because of the
following reasons:

1. The projection method of the original transformer encoder is improved to adapt to the
fusion of remote sensing space and time, which further expands the learning range of
the improved transformer encoder, effectively learns the connection between the local
and the global information in the remote sensing image, and uses its own attention
mechanism to fully extract the spatiotemporal information in remote sensing images.

2. Dilated convolution is used to expand the receptive field to adapt to the original input
of larger size, while keeping the number of learned parameters unchanged, effectively
extracting time information and balancing the increase in parameters brought about
by the improved transformer encoder.

3. A unique residual structure and a differentiated weight fusion method are used
to supplement the lost information and reduce the introduction of noise in the
fusion process.

Experiments show that on the CIA and AHB datasets with noteworthy phenological
changes and the LGC dataset with mainly land cover-type changes, EMSNet is better
than other models using three and five original images for fusion and gives more stable
prediction results on each dataset. Although EMSNet achieves good results, there are
still many areas worth further research in the future. First, the application of transformer-
related structures in the field of remote sensing spatiotemporal fusion will be further
studied. Second, compared with other methods, the method proposed in this paper needs
to learn significantly more parameters. How to achieve better fusion effect with smaller
model and lower learning cost is also a focus of future research. Third, although the three
datasets used in this paper cover a variety of phenological changes and land-cover changes,
there are still regional types that are not included. For example, datasets containing changes
in urban areas will also be discussed in the future.
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