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Abstract: Assimilation of satellite-derived humidity with a homogenous static background error 
covariance (B) matrix computed over the entire computational domain (Full-B) tends to overpredict 
sea fog coverage. A feature-dependent B (Fog-B) is proposed to address this issue. In Fog-B, the 
static error statistics for clear air and foggy areas are calculated separately using a feature-dependent 
binning method. The resultant error statistics are used simultaneously at appropriate locations 
guided by the satellite-derived sea fog. Diagnostics show that Full-B generally has broader horizon-
tal and vertical length scales and larger error variances than Fog-B below ~300 m except for the 
vertical length scale near the surface. Experiments on three sea fog cases over the Yellow Sea are 
conducted to understand and examine the impact of Fog-B on sea fog analyses and forecasts. Re-
sults show that using Full-B produces greater and broader water vapor mixing ratio increments and 
thus predicts larger sea fog coverage than using Fog-B. Further evaluations suggest that using Fog-
B has greater forecast skills in sea fog coverage and more accurate moisture conditions than using 
Full-B.  

Keywords: heterogeneous background error covariances; satellite-derived humidity; data assimila-
tion; sea fog 
 

1. Introduction 
Sea fog is a hazardous phenomenon that occurs over the ocean and coastal regions 

[1,2]. The regions with high-frequency sea fog occurrences share common geophysical 
elements, such as cold sea waters and adjacent warm currents [3]. Given that the Yellow 
Sea featuring cold waters locates north of the warm Kuroshio Current, it experiences high-
frequency sea fog events. For example, the annual numbers of fog days reach 83 at 
Chengshantou (CS) between 1971 and 2000 and 89 at Qingdao (QD) in 2006 (see CS and 
QD in Figure 1; [4–6]). Sea fog has enormous growing and harmful impacts on many hu-
man activities (e.g., shipping, marine fishing, and engineering) due to its low atmospheric 
horizontal visibility (Vis) of less than 1 km [7]. To alleviate such risks and losses, it is nec-
essary to improve the capability of numerical sea fog prediction. An increasing number 
of numerical studies have dedicated to advancing the sea fog forecast/nowcast over the 
Yellow Sea in several critical aspects, such as data assimilation (DA), ensemble forecast-
ing, choice of physical schemes, design of vertical resolution, and physical understanding 
[8–17]. 
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Figure 1. Geographic map of the Yellow Sea (includes the northern and southern parts) overlayed 
with sea surface temperature (shaded; °C) and 10-m wind field (vectors; m s−1) at 1200 UTC 9 May 
2009 from ECMWF Reanalysis v5 (ERA5) data. Locations of sounding stations (Shanghai, Hang-
zhou, Chejudo, Qingdao, Chengshantou, Rongcheng, Dalian, Dandong, and Oscan are referred to 
SH, HZ, CJ, QD, CS, RC, DL, DD, and OS for short) are marked using black dots. 

The sea fog events over the Yellow Sea are dominated by advection fog, which occurs 
due to warm moist air masses flowing over the cold sea surface [1]. The evolution of ad-
vection fog is strongly affected by the temperature and moisture conditions within the 
marine atmospheric boundary layer (MABL). The detailed process of advection fog can 
refer to previous studies [1,3,12,18]. Therefore, accurately initializing the MABL is critical 
for the success of sea fog numerical prediction, especially the initialization of moisture 
conditions because drying biases are commonly found in sea fog simulations [10].  

As the initialization of the MABL for sea fog forecasts often suffers from a lack of 
routine observations over the ocean (Figure 2), multiple satellite observations were em-
ployed. Although direct assimilation of satellite radiance data can make up for the lack of 
observations to some extent, it has little effect on the MABL moisture structure for sea fog 
forecasts [19]. To address such issues, using the three-dimensional variational (3DVar) DA 
method, Wang et al. [10] (hereafter W14) proposed to assimilate humidity information 
(satellite-derived humidity) within the observed sea fog derived from geostationary sat-
ellites, which can provide high spatiotemporal data with a 1–4-km resolution and a ~30-
min frequency. Their results by testing 12 cases suggested that assimilating the satellite-
derived humidity from the Multifunctional Transport Satellite (MTSAT) of Japan can 
greatly improve the MABL moisture structure and consequently, the sea fog forecasts. 
Although the satellite-derived humidity assimilation approach provides a promising 
way, challenges still remain in the static background error covariances (B) for further im-
proving sea fog forecasts with the 3DVar DA method. 
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Figure 2. WRF domain for the forecasts of three cases, and locations of surface (in situ observations, 
ships, and buoys; blue crosses) and sounding stations (red triangles). 

One primary challenge is to properly construct the B-matrix specialized for sea fog. 
W14 and many studies for sea fog forecasts [8,13,14,16] applied the B-matrix following 
operational formulations, i.e., the National Meteorological Center (NMC) method [20]. 
Since the background error statistics for modeling B are averaged over the entire compu-
tational domain, the produced B-matrix is homogeneous. However, the horizontal and 
vertical correlation length scales in foggy/cloudy areas are remarkably different from 
those in clear air [21,22]. Therefore, it is improper to concurrently account for clear air and 
foggy areas using homogeneous background error statistics. In other words, the homoge-
neous error statistics cannot properly represent the forecast error structures featured by 
sea fog and thus, are inappropriate to be applied to foggy areas [13,21]. It is found that the 
sea fog coverage for many cases in W14 was overpredicted by the overly large positive 
moisture biases in their analyses. These analyses were produced probably due to the use 
of the homogeneous B-matrix when assimilating the satellite-derived humidity. Hence, 
this study focuses on yielding, understanding, and examining a heterogeneous B-matrix 
in the 3DVar framework to address this issue. 

A heterogeneous formulation of the B-matrix is feature-dependent, which can be 
achieved by using a geographical mask in the B-matrix computation, following Caron and 
Fillion [23], Montmerle and Berrer [24], and Michel et al. [22] for clouds and precipitation, 
and Ménétrier and Montmerle [21] for fog. The B-matrix is first calculated separately in 
foggy areas and clear air, and then the error statistics from both areas are simultaneously 
applied in the corresponding regions during the variational minimization. A similar 
method has been examined and proved effective for fog [21] and thunderstorms [25]. Mé-
nétrier and Montmerle [21] used the feature-dependent B to correct the vertical thermal 
structure, i.e., the inversion at the fog top. However, the impact of such B on fog coverage 
forecasts has not been discussed. Moreover, Ménétrier and Montmerle [21] highlighted 
that the quality of the geographical mask used in DA can strongly affect the impact of the 
feature-dependent B and expect a high-quality mask for further improving fog forecasts. 
The satellite-derived spatial information for sea fog proposed in W14 and highlighted in 
this study can serve as a reliable geographical mask. 

In this study, the main goal is to further improve the sea fog coverage forecasts by 
developing a feature-dependent, heterogeneous B in the 3DVar method when the satel-
lite-derived humidity is assimilated. Unlike W14 assimilating satellite-derived humidity 
in the Weather Research and Forecasting (WRF) [26]-Var framework, this study adopts 
the Grid-point Statistical Interpolation (GSI)-based 3DVar system. A sea fog case that oc-
curred on 28 April 2007 (Case07) along the southern coast of Shandong Peninsula over the 
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Yellow Sea is first used as a typical case. Single-observation and full-observation experi-
ments at a particular time are conducted to understand the impact of the feature-depend-
ent B on the analyses and forecasts. Then, together with Case07, additional experiments 
for another two cases that occurred on 9 April 2009 (Case09) and 28 March 2015 (Case15) 
are also performed with continuous update cycles to assess the effects of the feature-de-
pendent B on the forecasts of sea fog coverage and MABL moisture conditions. 

2. Methodology 
2.1. Derivation and Assimilation of Satellite-Derived Humidity  

The geostationary-orbit satellite imageries, e.g., the products of the MTSAT (2005–
2015) and its replacement Himawari-8 of Japan (since 2016), and the Fengyun-4 of China 
(since 2018), have already been widely adopted for sea fog detection over the Yellow Sea 
[10,27–31]. In the current study, the MTSAT products were used to obtain the 3D satellite-
derived humidity data following the detection method in W14, which can be applied to 
the products of Himawari-8 and Fengyun-4 as well. The quality control of the MTSAT 
products was achieved by a series of calibration techniques [32].  

First, we derived the 3D sea fog distributions as follows. The nighttime sea fog is 
indicated by a brightness temperature difference (BTD) ranging from −5.5 °C to −2.5 °C 
[27]. The BTD is the difference between the shortwave (IR4 from MTSAT) and longwave 
(IR1 from MTSAT) infrared channels. This BTD is further used to compute the sea fog top 
height Hfog in the unit of m through an empirical equation fogH 212 191 BTD 0.5= − + × ×  
[33]. Daytime sea fog areas are derived from two criteria. The first criterion is the differ-
ence between the IR4 brightness temperature and the sea surface temperature (SST) be-
yond 4 °C. The North-East Asian Regional-Global Ocean Observing System (NEAR-
GOOS) provides the daily SST. The second criterion to determine the fog area is the BTD 
value within a certain range according to the solar zenith angle. When the solar zenith 
angle is between 10° and 80°, the BTD value ranges from 3 °C to 45 °C, otherwise, the BTD 
is between −2 °C and 3 °C. An empirical equation Hfog = 45,000δ2/3 with the unit of m is 
used to calculate the daytime fog-top height, where the optical thickness δ is diagnosed 
using the satellite visible albedo and the solar zenith angle [34,35]. 

Consequently, the derived 3D sea fog spatial distributions were treated as the ob-
served fog. An assumption that the fog air mass reaches saturation (relative humidity = 
100%, RH for short) was applied to obtain the satellite-derived humidity. Therefore, as-
similating satellite-derived humidity aims to reach saturation where the observed fog is 
missed in the background. Although the observed RH value ranges between 95% and 
100% within fog [12,36], W14 found that the assimilation of satellite-derived humidity is 
insensitive to the RH value ranging from 95% to 100%. Prior to being assimilated, the sat-
ellite-derived humidity was allocated to a grid with the 5-km horizontal grid spacing and 
the 20-m vertical grid spacing within the observed fog. Subsequently, the vertically dis-
crete satellite-derived humidity at a certain horizontal grid is regarded as a sounding pro-
file of 100% RH. Thus, multiple RH profiles constrained by the fog top compose the 3D 
satellite-derived humidity data within the observed fog (Figure 4 in W14, and it is dupli-
cated here as Figure 3 for convenience). Since the default GSI system only recognizes spe-
cific humidity (q) from the observations, RH needs to be converted into q based on the 
background temperature and pressure, and then these q profiles are assimilated in this 
study. Additional procedure was applied to exclude the profiles where both observation 
and background were identified as fog to ensure that the satellite-derived humidity is 
assimilated only where the observed fog was missed in the background. Please refer to 
W14 for more details about the derivation and assimilation of satellite-derived humidity. 
A similar approach is also employed in Ladwig et al. [37] and Benjamin et al. [38] for the 
cloud assimilation.  
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Figure 3. Schematic diagram for discretizing satellite-derived humidity within the observed fog in 
a vertical cross-section. The bold dash line represents an RH profile. Information from such sound-
ings is used to allocate sea fog humidity data to a grid with the horizontal and vertical grid intervals 
of 5 km and 20 m, respectively. This figure is duplicated from W14. 

The GSI package provides the corresponding observation errors. In this study, the 
observation errors range from 0.6 to 3.8 g kg−1 for the satellite-derived humidity. GSI per-
forms additional gross error checks for q to reject observations if the innovations exceed 5 
times the observation error. Further efforts are required to quantify and validate the ob-
servation error of the satellite-derived humidity, such as in the study carried out by Ha 
and Snyder [39]. The spatial resolution of the assimilated observations is defined follow-
ing W14 and its impact on the forecast performance also needs to be explored. However, 
these discussions are beyond the scope of this paper and will be left to future studies.  

2.2. Design of Feature-Dependent B 
The adopted GSI-based 3DVar system and its mathematical framework has been in-

troduced by Wang [40]. In this system, B is a profound factor to produce the analysis in-
crement through weighting the prior state, spreading the observation information, and 
applying a balance between the control variables (CVs) [41]. Because of the large dimen-
sions, B cannot be explicitly calculated but can be modeled through several operators us-
ing 

T T T T
p v h h v pB U SU U U U S U=  (1)

Each operator was separately modeled to account for each elemental transform 
[42,43]. The set of CVs associated with the static B-matrix and their cross-variable correla-
tions are denoted in the physical transform Up. The matrices Uh and Uv are the spatial 
transforms, respectively, defining the horizontal and vertical autocorrelations of the CVs. 
The diagonal matrix S represents the standard deviations of the background errors of the 
CVs. Descombes et al. [43] provides more details on these operators and their specific 
calculations.  

Since the atmosphere truth is not explicitly known, the estimation of background er-
rors cannot be straightforward. In practice, forecast differences are used as the surrogate 
of background errors, because they are empirically assumed to have similar structures 
[44]. In the NMC method, the differences are calculated between forecasts valid at the 
same time with different initialization times. An alternative technique to calculate the 
static error statistics is the ensemble-based method (ENS) [45], where the forecast differ-
ences are the differences between two ensemble members, i.e., member i and member i + 
1, where i denotes the sequence index of an ensemble member. Compared to the NMC 
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method, the static error statistics from the ENS method have been demonstrated to im-
prove the forecast quality [44,46]. Therefore, the ENS method was adopted to calculate the 
B-matrix in this study.  

 
Figure 4. Schematic diagrams of the (a) calculation and (b) application of the feature-dependent B-
matrix. In (a), a bidimensional geographical mask defined by the background ensemble is required 
to calculate the feature-dependent B-matrix, including B-matrices from Pf and Pc, which correspond 
to the foggy areas and clear air in the background, respectively. Based on this mask, Pf represents 
the sea fog bin consisting of the points labeled as 1, and Pc indicates the clear-air bin consisting of 
the points labeled as 0. During the DA update in (b), the same feature-dependent B-matrix is applied 
in all DA cycles. In each cycle, the other geographical mask provided by the observed sea fog dis-
tributions is used to apply error statistics from different bins at appropriate locations. See texts for 
the details. 

To increase the heterogeneity of B, the error statistics in Equation (1) were computed 
over domains with specified features, i.e., foggy area and clear air, separately. Like the 
operations for precipitation [22,25] and fog [21], a feature-dependent binning method is 
employed. The bins of a domain for foggy area and clear air were obtained through the 
bidimensional geographical mask, which is marked as 1 where the sea fog occurs at the 
surface level of a background ensemble member, otherwise, marked as 0 (Figure 4a). Spe-
cifically, the sea fog bin Pf (clear air bin Pc) represents the points where the surface liquid 
water content (LWC) is greater (smaller) than 0.016 g kg−1 (the threshold for sea fog diag-
nostics from Zhou and Du [47] and W14) in two adjacent background ensemble members 
for the ENS method. Locations where two background members do not fall in the same 
threshold were omitted from the calculation of B-matrix, as this situation only occurs in 
the boundary of fog areas with small sample sizes. The grid points in Pf (Pc) comprise 
~7.5% (~91.2%) of the computational domain in this study. Then each operator in Equation 
(1) is obtained by spatially averaging the error statistics over each bin. As in Michell et al. 
[22], the decomposed B of Equation (1) was modified to Equation (2): 

T T T T T
f p v h h v p f

T T T T T
c p v h h v p c   

B PU SU U U U S U P

PU SU U U U S U P

=

+
 (2)

As a result, the B-matrix computed from Pf and Pc were obtained (Figure 4a). As such, 
B-matrix can specify the feature of sea fog; we call them feature-dependent B.  

During the 3DVar update, this study applied different error statistics from different 
bins simultaneously at appropriate locations guided by the geographical mask defined by 



Remote Sens. 2022, 14, 4537 7 of 22 
 

 

the spatial distributions of the observed fog (Figure 4b). Such a relatively reliable geo-
graphical mask is expected by Ménétrier and Montmerle [21] for applying the feature-
dependent B. To achieve this capability, we further extended GSI before the variational 
minimization by interpolating the feature-dependent B matrices into each analysis grid 
for foggy areas and clear air indicated by the geographical mask based on the observed 
fog. As shown in Figure 4b, the B-matrix from Pc was applied to the locations where is the 
clear air (labeled as 0), and the B-matrix from Pf was used within the observed fog (labeled 
as 1) in each DA cycle. Note that a discontinuity issue of the covariance function exists at 
the geographical mask border between the foggy areas and clear air, as discussed in Mé-
nétrier and Montmerle [21]. To account for this issue, the same normalized Gaussian ker-
nel with a length scale of 30 km proposed by Ménétrier and Montmerle [21] was applied 
to blur the mask border for smoothing the covariance functions (S, Uh, and Uv) from Pc 
and Pf. For brevity, the feature-dependent B is hereafter called Fog-B. In contrast, the ho-
mogeneous B computed over the entire domain comprising both foggy areas and clear air 
in W14 is hereafter referred to as Full-B. The 3DVar scheme using Fog-B keeps the same 
size of CVs with the use of Full-B by directly changing the static error statistics in foggy 
areas during the minimization. Therefore, a few extra computational costs are required.  

2.3. Calculation of B-Matrix 
Following the ENS method described above, the calculation of B-matrix needs an 

ensemble of forecast differences, obtained from the differences between two adjacent en-
semble members. The datasets of an ensemble forecast were generated as follows. Firstly, 
a total of 125-member initial ensemble was produced by adding the “random_CV” per-
turbations to the corresponding European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis v5 (ERA5) data. After, a 12-h WRF forecast was initialized from the 
initial ensemble, the required ensemble forecast was obtained. Specifically, the 12-h fore-
cast of a total of 125-member ensemble is generated from the initial ensembles of five sea 
fog cases, valid at 1200 UTC 28 April 2007, 0000 UTC 9 April 2009, 0000 UTC 27 March 
2012, 0000 UTC 20 May 2014, and 0000 UTC 28 March 2015. For each case, there is a 25-
member ensemble forecast where most members can well capture a mature sea fog. The 
utility GEN_BE_v2.0 described in Descombes et al. [43] is then extended to compute each 
operator in Equation (2) to obtain the B-matrix. Note that we followed the option of “CV5” 
in WRFDA to develop the B-matrix. Therefore, no multivariate correlation between mois-
ture CV and the other CVs is considered here, as in W14. The construction of B-matrix is 
also examined individually using the 12-h ensemble forecasts valid at 0000 UTC 10 April 
2009, at 1200 UTC 28 March 2015, and at 0000 UTC 29 March 2015. Similar error statistics 
as shown in Section 4 were obtained. Therefore, the static error statistics for fog areas show 
fewer diurnal variations and is acceptable for analyzing the states of the fog regions in the 
3DVar. 

3. Numerical Experiments 
3.1. Case Overview 

All three cases (Case07, Case09, and Case15) featured a similar synoptic system of a 
high-pressure system over the sea, which benefits the sea fog formation over the Yellow 
Sea [1,18,48]. Taking Case09 as an example, as shown in Figure 1, the warm moist air 
masses gathered over the Kuroshio Current region and the SST gradually decreased from 
south to north at 1200 UTC 9 April 2009. The southeasterly and easterly flows occurred in 
the south of a high-pressure system over the Yellow Sea. These flows led to the formation 
of the advection fog through transporting the warm moist air westward over the cold sea 
surface. Hourly evolution of the satellite-derived sea fog (namely, the observed fog) 
shows that the sea fog patches initially formed over the border between the southern Yel-
low Sea and the East China Sea. The sea surface with a sharp SST gradient promoted the 
cooling and condensation of the advected warm moist air [1,2,18,49]. The sea fog patches 
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gradually extended and enlarged when the warm moist air was continually advected over 
the cold sea surface.  

In addition, Case07 is characterized by a short-lived sea fog with a small areal cover-
age along the southern coast of Shandong Peninsula, persisting from 1900 UTC 28 April 
to 0600 UTC 29 April 2007. Case15 is a long-lived sea fog that occupied nearly a half por-
tion of the Yellow Sea from 1800 UTC 28 March to 0000 UTC 29 March 2015. Case07 was 
first chosen to understand the impact of Fog-B on the analyses and forecasts in Section 4. 
In Section 5, all three cases were used to evaluate the performance of Fog-B for the fore-
casts of sea fog and MABL moisture conditions. 

3.2. Model Configuration 
The Advanced Research WRF (Version 3.9.1) was employed in this study. A single 

domain centered at (34.2°N, 124.1°E) uses a 15-km grid spacing with 240 × 240 horizontal 
grid points (Figure 2). With the model top up to 100 hPa, 50 full-η levels (ηn ranges between 
1.0 and 0.0) are assigned in vertical. Consistent with previous numerical predictions of sea 
fog over the Yellow Sea, 16 full-η levels are placed within the lowest 1 km [11], and the 
lowest model level (between η1 = 1.0 and η2) height is specifically set to ~8 m [14] for better 
capturing the MABL processes and their interactions near the sea surface. 

The model physics configuration includes the Yonsei University (YSU) planetary 
boundary layer scheme [50,51], the corresponding fifth-generation Mesoscale Model 
(MM5) Monin-Obukhov surface layer scheme [52,53], the Lin microphysics scheme [54], 
the Rapid Radiative Transfer Model for General circulation models (RRTMG) longwave 
and shortwave radiation schemes [55], the Kain–Fritsch cumulus scheme [56,57], and the 
unified Noah land surface model [58].  

3.3. Assimilation and Forecast Experiments 
The initial and lateral boundary conditions were interpolated from the ERA5 data 

(0.25° × 0.25°, 3 hourly). The cycling setup of the GSI-based 3DVar DA system is presented 
in Figure 5. Starting at t + 0 h, the conventional data (i.e., routine radiosonde and surface 
measurements) are assimilated every 3 h, and satellite-derived humidity data are hourly 
assimilated ahead to t + 3 h. The starting time t + 0 h for each case depends on the occur-
rence of sea fog. At each satellite-derived humidity assimilation cycle, the observation-
based geographical mask was applied to guide the application of Fog-B (Figure 4b). A 6-
h free forecast is initialized every hour from t + 0 h to t + 3 h. Specifically, the 3-hourly 
conventional DA and hourly satellite-derived humidity DA were conducted from 1800 
UTC to 2100 UTC 9 April 2009 for Case09, and from 1800 UTC to 2100 UTC 28 March 2015 
for Case15. For Case07, as the sea fog initiated at 1900 UTC 28 April 2009, the conventional 
data were assimilated from 1800 UTC to 2100 UTC, but the satellite-derived humidity is 
assimilated from 1900 UTC to 2100 UTC. Therefore, each experiment has a total of 11 fore-
casts with a 6-h leading time initialized from the analyses with the satellite-derived hu-
midity assimilation for the three cases. Hourly archived model outputs were used for the 
evaluations in Section 5.  
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Figure 5. Schematic of data assimilation experiment configuration. The conventional (satellite-de-
rived humidity) data assimilation adopts the 3-h (hourly) cycling. The 6-h free forecast is initialized 
every hour from t + 0 h to t + 3 h. For satellite-derived humidity assimilation, the geographical mask 
is defined by the observed 3D sea fog distributions valid at the cycle time. 

In this study, three experiments (noMT, Q_full and Q_fog) were designed for each 
targeted case, i.e., Case07, Case09, and Case15 (Table 1). Specifically, noMT only assimi-
lates the conventional observations, while both satellite-derived humidity and conven-
tional observations are assimilated in the remaining two experiments. Using q as the mois-
ture CV [21], Q_full uses Full-B to assimilate satellite-derived humidity, while Q_fog uses 
Fog-B. Full-B is also used in the conventional DA for all experiments. The B-matrix calcu-
lated from the 125-member ensemble in Section 2.3 was employed for all three targeted 
cases. Studies of single-observation tests and the first DA cycle were separately conducted 
for Case07 to understand the impact of feature-dependent B on the analyses and forecasts. 
Subsequently, continuously cycled DA were conducted for the three targeted cases. Com-
parisons between noMT and the satellite-derived humidity assimilation experiments were 
used to examine the effectiveness of assimilating satellite-derived humidity for the sea fog 
forecasts. The comparison between Q_full and Q_fog is performed to investigate the ef-
fects of feature-dependent B on the forecasts of sea fog coverage and MABL moisture con-
ditions.  

Table 1. List of experiments. 

Experiment If Assimilating Satellite-
Derived Humidity 

B Type for Satellite-Derived Hu-
midity Assimilation 

noMT No — 

Q_full Yes Full-B 

Q_fog Yes Fog-B 

4. Understanding the Impact of Feature-Dependent B on the Analyses and Forecasts 
4.1. Difference in Error Statistics between Fog-B and Full-B 

We first present the different behaviors between Fog-B and Full-B in the error statis-
tics. Figure 6 shows the error statistics below the 10th model level (~400 m), which pri-
marily reflects the error characteristics for the low-level MABL. The horizontal length 
scale varies a little at each level for Full-B, and so is for Fog-B below the 5th model level, 
but it gradually increases along with the height above that (Figure 6a). In general, the 
horizontal length scale in Full-B is 12–24 km larger than that in Fog-B below the 10th level. 
Like Michel et al. for clouds [22], Fog-B has smaller horizontal length scales probably be-
cause a significant part of the background error here is associated with microphysical pro-
cesses. The vertical length scale represents the height of vertical mixing. Fog-B has a sim-
ilar, but slightly larger vertical length scale than Full-B near the surface, and the vertical 
length scale in Full-B is consistently much broader than that in Fog-B above the 2nd model 
level (Figure 6b). These results may reflect the thermal inversion layer around the fog top 
constrains the vertical extension in the upper level of the fog layer, and the intensive mix-
ing near the surface within fog. In terms of the background error variance, Fog-B has con-
sistently smaller values than Full-B below the 8th model level (~300 m), especially under 
the 4th model level (~60 m; Figure 6c). The smaller variances in Fog-B reflect the well-
mixing within sea fog [12,18]. This result is opposite to the findings of Michel et al. [22] 
showing that larger errors exist in convective clouds than clear air. This can be explained 
by the fact that convective clouds have strong changes in dynamic and thermodynamic 
fields, in contrast, fog with well-mixed cloud liquid water usually occurs within stable 
MABL stratification conditions with fewer state changes. In a word, Full-B generally has 
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broader horizontal and vertical length scales and larger error variances than Fog-B below 
~300 m height, except near the surface where Fog-B has a slightly larger vertical length 
scale than Full-B. 

 
Figure 6. (a) Horizontal length scales (km), (b) vertical length scales (vertical grid), and (c) variance 
(kg2 kg−2) as a function of model level for q estimated over the entire computational domain (Full-B; 
red lines) and the bin of Pf (Fog-B; blue lines). The error statistics computed from the bin of Pf are 
used to represent Fog-B here. That is because only these error statistics of the feature-dependent B 
can directly affect the assimilation of satellite-derived humidity, since the satellite-derived humidity 
is assimilated only where the observed fog is missed in the background. 

4.2. Differences in Analyses and Forecasts between Experiments Using Fog-B and Full-B 
To preliminarily examine the impact of Fog-B on the analysis increments, Q_full and 

Q_fog with the assimilation of a single observation were performed for Case07. We as-
similate an artificial q observation with an innovation of 0.5 g kg−1 at 1000 hPa of the loca-
tion (35.65°N, 120.54°E) in both experiments. The background field is provided by the 
ERA5 data valid at 1900 UTC 28 April 2007. Figure 7 shows the analysis increments of the 
water vapor mixing ratio (Qvapor) for the two experiments. Q_full produces much 
broader horizontal distributions of Qvapor increments than Q_fog. Moreover, the magni-
tude of Qvapor increments with the use of Fog-B is ~0.05 g kg−1 smaller than that using 
Full-B. These apparent differences between Q_full and Q_fog in Qvapor increments are a 
straightforward consequence of the differences between Full-B and Fog-B in the horizon-
tal length scale and error variance. Both experiments share a similar vertical extension of 
Qvapor increments probably because the vertical length scales of Fog-B and Full-B differ 
very little near the surface.  

 
Figure 7. Vertical cross-sections of water vapor mixing ratio increments (shaded; g kg−1) below 1000 
m across the location of the assimilated point valid at 1900 UTC 28 April 2007 in single-observation 
experiments for (a) Q_full and (b) Q_fog. 
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With the assimilation of full satellite-derived humidity data at 1900 UTC 28 April 
2007, the analysis increments from Q_full and Q_fog were also compared for Case07 (Fig-
ure 8). Q_full yields larger and more widespread Qvapor increments than Q_fog, con-
sistent with the single-observation experiments (Figure 7). Notably, the added Qvapor in 
Q_full extends severely outside of the observed fog areas (Figure 8a). In contrast, the cov-
erage of Qvapor increments in Q_fog is more consistent with the observed fog areas (Fig-
ure 8b).  

 
Figure 8. The analysis increments of water vapor mixing ratio (shaded; g kg−1) from the satellite-
derived humidity DA cycle valid at 1900 UTC 28 April 2007 for the first DA cycle of (a) Q_full and 
(b) Q_fog. The black contours outline the observed sea fog distributions.  

Subsequently, we further compared Q_full and Q_fog to show how their analyses fit 
to the observations (O–A) in Figure 9, where O stands for the observed q converted from 
the satellite-derived humidity, and A is the analyzed q. Both experiments share the same 
deviation (O–B) between the observed q and the background q, and such deviation is sig-
nificantly reduced by up to 4.0 g kg−1 through the satellite-derived humidity assimilation. 
The analysis produced by Q_fog fits closer to the observations than that by Q_full. Q_fog 
has 0.1–0.6 g kg−1 smaller O–A than Q_full, especially below 80 m. However, the better 
fitting to observations at the analysis time does not necessarily mean an improved analysis 
[59]. The quality of the analysis should be evaluated by verifying the subsequent forecasts. 
Figure 10 presents the cross-sections of the analyses at 1900 UTC 28 April 2007 and 5-h 
forecasts valid at 0000 UTC 29 April 2007 from Q_full and Q_fog. Results indicate that the 
distributions of the near-saturation (indicated by RH ≥ 95%) agree well with the horizontal 
coverage of Qvapor increments at the analysis time (Figure 10a,b vs. Figure 8). Compared 
to Q_fog, the greater and more widespread Qvapor increments in Q_full lead to a more 
widespread saturated air near the surface. In the subsequent forecasts, the added moisture 
at 1900 UTC is transported northeastward and condenses into fog due to the cold sea sur-
face along with the prevailing wind. The greater and more widespread Qvapor incre-
ments result in more widespread sea fog in the later forecasts. Therefore, Q_full produces 
more widespread sea fog than Q_fog facilitated by the southwesterly advection at 0000 
UTC (Figure 10c,d).  
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Figure 9. The vertical profiles of O–B (black) and O–A from the satellite-derived humidity DA cycle 
for the first DA cycle of Q_full (red) and Q_fog (blue) valid at 1900 UTC 28 April 2007 for specific 
humidity (g kg−1). The O–A is the root-mean-square difference between the observed and the ana-
lyzed specific humidity and the O–B stands for the root-mean-square difference between the ob-
served and the background specific humidity. 

 
Figure 10. Vertical cross sections along the black line in Figure 8a of water vapor mixing ratio (black 
contours from 5 to 10 g kg−1 at 1 g kg−1 intervals), relative humidity (shaded; %), cloud water mixing 
ratio (red contours at 0.016 g kg−1), and horizontal wind (vectors) for the (a,b) analyses and (c,d) 5-
h forecasts initialized at 1900 UTC 28 April 2007 for the first DA cycle of (a,c) Q_full and (b,d) Q_fog. 

To conclude, we found that (1) Full-B generally has broader horizontal and vertical 
length scales and larger error variances than Fog-B below ~300 m, except near the surface 
where the vertical length scale of Fog-B is slightly broader than that of Full-B; (2) using 
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Full-B tends to add greater and more widespread Qvapor increments and thus predicts 
sea fog with a larger areal coverage than using Fog-B. These results indicate that the be-
havior of Qvapor increments is a straightforward consequence of the static error statistics 
and strongly affects the predicted sea fog distributions facilitated by the effects of mois-
ture advection.  

5. Evaluating the Role of Feature-Dependent B in Sea Fog Coverage Forecasts 
In Section 4, we aim to understand how the feature-dependent B affects the analyses 

and the subsequent forecasts of sea fog coverage. In this section, the systematic evaluation 
of the impact of Fog-B on sea fog forecasts, including sea fog coverage and MABL mois-
ture conditions, is performed through multiple-case studies. The overall skills of sea fog 
forecasting are evaluated over 11 forecasts from three cases for each experiment. 

5.1. Sea Fog Coverage 
According to Stoelinga and Warner [60], Vis is calculated as a function of the extinc-

tion coefficient that is related to hydrometeors, such as the mixing ratios of cloud liquid 
water, rain, cloud ice, and snow. Given that only the cloud liquid water is included in sea 
fog over the Yellow Sea, the extinction coefficient can be parameterized using the LWC at 
low levels as in Kunkel [61]. Hence, a threshold of 0.016 g kg−1 for the LWC at the lowest 
model level that is equivalent to the 1-km Vis from the fog definition [7] is obtained. This 
threshold has been used to identify the bins of Pf and Pc in Section 2.2. In addition, Zhou 
and Du found that the fog-top height of the advection fog rarely exceeds 400 m [47]. There-
fore, the criteria adopted to diagnose the predicted sea fog coverage are the view from the 
fog top that is defined when LWC ≥ 0.016 g kg−1 using a top-down manner and the fog-top 
height ≤ 400 m, which are commonly used in the previous sea fog numerical studies [10–
14,47,62].  

5.1.1. Subjective Evaluation 
Through examining the spatial distributions of the predicted sea fog, we found that 

the impact of Fog-B keeps consistent among all forecasts for the three cases. In Figure 11, 
the sea fog forecasts of noMT, Q_full, and Q_fog initialized from the first satellite-derived 
humidity DA cycle for each case are shown and verified against the observed fog. 
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Figure 11. Observed sea fog area (OBS) for (a,b) Case07, (i,j) Case09, and (q,r) Case15, and forecasts 
from continuously cycled DA experiments for (c,d,k,l,s,t) noMT, (e,f,m,n,u,v) Q_full, and 
(g,h,o,p,w,x) Q_fog. For Case07, (c–h) forecasts are initialized at 2100 UTC 28 April. For Case09, (k–
p) forecasts are initialized at 1800 UTC 9 April. For Case15, (s–x) forecasts are initialized at 1800 
UTC 28 March. The light blue shadings in (q,r) show the observed high clouds. 

The 2- and 4-h forecasts initialized at 2100 UTC 28 April 2007 for Case07 are shown 
in Figure 11c–h. The effectiveness of assimilating satellite-derived humidity is first 
demonstrated since noMT completely misses the observed sea fog while Q_full and Q_fog 
can capture it. Consistent with the discussions in Section 4, Q_full tends to produce a more 
widespread sea fog than Q_fog. The sea fog distributions in Q_full are nearly two times 
larger than the observed sea fog coverage (Figure 11e,f vs. Figure 11a,b), and the overes-
timated sea fog spreads northeastward approaching 124°E. In contrast, Q_fog has a better 
performance than Q_full because of its smaller predicted sea fog coverage closer to the 
observations (Figure 11g,h vs. Figure 11a,b).  

Figure 11k–p present the 1- and 6-h forecasts initialized at 1800 UTC 9 April 2009 for 
Case09. Like in Case07, noMT needs a longer time to spin up and significantly underesti-
mates the observed fog, and the sea fog distributions in Q_full are larger than those in 
Q_fog. At 1900 UTC, two sea fog patches were observed over the southern Yellow Sea and 
the East China Sea (Figure 11i). The northern patch stretched across the south of the Yel-
low Sea and the southern patch was located in the northwest of the East China Sea. Q_fog 
well captures these patterns (Figure 11o), while the two patches have severely extended 
in Q_full (Figure 11m). Then the southern fog patch was observed stretching along the 
coastal at 0000 UTC 10 April (Figure 11j), which is better produced by Q_fog with smaller 
sea fog coverage than Q_full (Figure 11n,p). Therefore, Q_fog performs the best in the sea 
fog coverage forecasts among the three experiments. 

For Case15, Figure 11s–x show the 1- and 6-h forecasts initialized at 1800 UTC 28 
March 2015. It is found that both Q_fog and Q_full improve sea fog forecasting upon 



Remote Sens. 2022, 14, 4537 15 of 22 
 

 

noMT. Consistent with Case07 and Case09, Q_fog predicts lesser widespread sea fog dis-
tribution than Q_full, especially for the southern sea fog area (Figure 11u–x). Therefore, 
while both Q_full and Q_fog overestimate the observed fog, the sea fog coverage in Q_fog 
is closer to the observation than in Q_full.  

5.1.2. Quantitative Evaluation 
Subsequently, the statistical scores of frequency bias (FBIAS) and equitable threat 

score (ETS) are employed to quantitatively evaluate the predicted sea fog distributions. 
These scores are introduced and widely used in many studies on sea fog [10,12–15,47]. 

The FBIAS score is defined as 
FBIAS F

O
=

, where F and O represent the number of points 
for forecasted and observed fog areas, respectively. Therefore, it represents the relative 
size of the forecast and observed fog distributions, i.e., a larger FBIAS score means a larger 
forecast sea fog coverage, and the FBIAS score close to 1.0 means that the size of the fore-
cast sea fog area is comparable to the observed one. The ETS with the perfect score of 1.0 
is considered as a comprehensive verification score [63]. Using H denotes the number of 

correctly forecast points, 
ETS H R

F O H R
−=

+ − − , where 
F OR
N
×=

 is a random hit pen-
alty, and N refers to the grid size of the verification domain. Figure 12 presents the time 
series of the scores of FBIAS and ETS aggregated over the 11 1–6-h forecasts from three 
cases for each experiment. The forecast skills evaluated by these statistics are consistent 
with the subjective evaluations in Section 5.1.1.  

 
Figure 12. The statistical scores of (a) FBIAS and (b) ETS for the predicted sea fog coverage aggre-
gated over the 6-h free forecasts initialized at each hour during the DA period from Case07, Case09, 
and Case15 for noMT, Q_full, and Q_fog. 

Among all experiments in Figure 12a, Q_full has the highest FBIAS scores exceeding 
1.5 for all lead times, which indicates the significant overestimation of sea fog distribution. 
The FBIAS scores of Q_fog are greater than 1.0 but closer to 1.0 than those of Q_full, sug-
gesting that Q_fog has relatively comparable sea fog coverage with the observations. Ex-
periment noMT severely underestimates the observed fog coverage with the lowest FBIAS 
scores smaller than 0.6 for all lead times, especially at the first two lead times. As a larger 
FBIAS score means a larger forecast sea fog coverage, the FBIAS scores in Figure 12a also 
reflect the relative size of the areal coverage of the predicted sea fog over the 11 forecasts 
from the three cases for each of the three designed experiments. In general, Q_full has the 
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largest predicted sea fog coverage, followed by Q_fog, and noMT has the smallest. These 
results are consistent with the forecasts initialized from the first satellite-derived humidity 
DA cycle in Figure 11.  

In terms of the ETSs (Figure 12b), Q_fog has the highest forecast skills with its ETSs 
larger than 0.4 throughout the entire forecast period. The ETSs in Q_full are ~0.1 smaller 
than those in Q_fog because of its consistent overestimation of sea fog coverage. The ETSs 
due to the satellite-derived humidity decrease after the 2nd lead time and start to level off 
after the 3rd lead time. The decreased ETSs are consistent with the increased FBIASs, in-
dicating the overestimated sea fog coverage in this period. Such reduced ETSs may be 
related to the overestimated moisture at the analysis time as the temperature is not 
changed in the assimilation. This overestimated moisture is carried over in the subsequent 
forecasts. It is suggested that additional efforts are required to further advance methods 
for assimilating the satellite-derived humidity, including to further refine B. While noMT 
fails to spin up in the earlier forecast stage, its sea fog coverage gets broader since the 
forecast lead time of 3 (Figure 12a). As a result, noMT has the lowest forecast skills at 1–3 
lead times, and its ETSs become larger after the 3rd lead time, leading to around 0.05 
higher compared to Q_full. 

The aggregated statistical scores temporally averaged over the 1–6 h lead times are 
listed in Table 2. This result obeys the above subjective and objective evaluations for the 
predicted sea fog distributions. It shows that noMT predicts the smallest sea fog area with 
the lowest FBIAS score (0.387) and has the worst performance with the lowest ETS of 
0.249. In contrast, Q_fog has the highest forecast skill with the ETS of 0.477, which is 0.134 
greater than that of Q_full. The inferior skill of Q_full mostly results from its significantly 
overpredicted sea fog indicated by the largest FBIAS score of 1.678. Furthermore, the ETS 
improvements are calculated between any two experiments (relative to experiments in the 
first column of Table 2). Compared to noMT, Q_fog significantly improves the sea fog 
coverage forecasts with the ETS improvement higher than 91%, and Q_full has only 37.8% 
improvement. Between the experiments with the satellite-derived humidity assimilation, 
Q_fog performs significantly better than Q_full with an improvement of 39.1%. A Stu-
dent’s t-test was applied to the ETS improvements to test whether the improvement be-
tween any two experiments is statistically significant. Results show that the improve-
ments of Q_fog relative to noMT and Q_full well pass the significant test with a confidence 
interval of 95%.  

Table 2. Aggregated statistical scores averaged over the 1–6-h forecasts initialized every hour dur-
ing the DA period from three cases for designed experiments. The marker # indicates the statistical 
significance at the confidence level of 95%. 

Experi-
ment FBIAS ETS 

ETS Improvements (%) 
Q_Full Q_Fog 

noMT 0.387 0.249 37.80% 91.6% # 
Q_full 1.678 0.343 — 39.1% # 
Q_fog 1.383 0.477 — — 

5.2. MABL Moisture Conditions 
Previous studies have shown that the distribution of advection fog highly relies on 

the saturation conditions near the sea surface [10,12,14,18,64]. From the physical perspec-
tive, sea fog formation and maintenance are strongly affected by the temperature and 
moisture conditions within the MABL. The satellite-derived humidity assimilation aims 
to improve the MABL moisture conditions favorable for sea fog evolutions. Given the lack 
of routine observations over the ocean, the soundings (black dots in Figure 1) along the 
coast in the onshore wind near the sea fog are selected to represent the marine environ-
ment associated with the sea fog. In this study, the Qvapor measurements of the selected 
soundings are chosen to assess the MABL moisture conditions, especially near the surface 
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associated with the sea fog evolution during the forecast period. The agreement between 
the model and observations over the selected soundings were evaluated using the bias, 
which is defined by averaging the difference between the forecasted and observed Qvapor 
with the best value of 0.0 g kg−1. For each case, the forecasts from all DA cycles have a 
similar pattern of Qvapor biases for each experiment. Some forecasts compared against 
the soundings are selected and shown in Figure 13. 

 
Figure 13. Profiles of biases for water vapor mixing ratio (Qvapor; g kg−1) between forecasts from 
noMT, Q_full, and Q_fog and sounding observations, respectively, aggregated over specific stations 
(Figure 1) close to the observed sea fog area. For Case07, the forecasts valid at 0000 UTC 29 April 
initialized at (a) 1900 UTC and (b) 2100 UTC 28 April are aggregated over QD and CS stations. For 
Case09, the forecasts valid at 0000 UTC 10 April initialized at (c) 1800 UTC and (d) 2100 UTC 9 April, 
respectively, are aggregated over SH, HZ, and CJ stations. For Case15, the forecasts valid at 0000 
UTC 29 March initialized at (e) 1800 UTC and (f) 2100 UTC 28 March, respectively, are aggregated 
over RC, DL, DD, OS, QD, and CJ stations. 

For Case07, the forecasts valid at 0000 UTC 29 April 2007 initialized at 1900 UTC and 
2100 UTC 28 April were verified against the soundings at QD and CS (Figure 13a,b). Ex-
periment noMT experiences drying biases below 1.1 km, which are about –0.75 g kg−1 near 
the surface and up to –1.6 g kg−1 around 500 m (Figure 13a). With the satellite-derived 
humidity assimilation at 1900 UTC, the forecasted Qvapor profiles from Q_full and Q_fog 
are adjusted toward the observations following the characteristics of their own applied B-
matrix. Relative to noMT, both Q_full and Q_fog alleviate the drying biases below 1.0 km. 
Q_full has 0.25–0.5 g kg−1 greater amounts of Qvapor than Q_fog, which reflects the 
greater error variance in Full-B (Figure 6). Below 150 m, Q_full has up to 0.7 g kg−1 wetting 
biases, and it has the maximum drying biases of ~1.25 g kg−1 above 300 m. The wetting 
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biases in Q_fog is ~0.2 g kg−1 and ~0.5 g kg−1 smaller than Q_full below 150 m, while Q_fog 
has the drying biases up to 1.5 g kg−1 above 150 m. Similar results are also seen from the 
forecasts initialized at 2100 UTC (Figure 13b). Both Q_fog and Q_full alleviate the drying 
biases in noMT. While both Q_fog and Q_full have increased wetting biases, Q_fog still 
has ~0.25 g kg−1 smaller wetting biases than Q_full below 200 m. Therefore, the MABL 
moisture conditions at low levels are better forecasted by Q_fog than by Q_full. 

The forecasts valid at 0000 UTC 10 April 2009 initialized from the analyses at 1800 
and 2100 UTC 9 April were verified against the soundings at Shanghai, Hangzhou, and 
Chejudo (CJ) (Figure 13c,d). Figure 13c shows positive Qvapor biases below 1.5 km in 
noMT except negative Qvapor biases around 300 m, which indicates that the predicted 
MABL in noMT is up to 2.2 g kg−1 wetter than the observations. The satellite-derived hu-
midity assimilation at 1800 UTC significantly changes the Qvapor profile of the 6-h fore-
cast through humidifying the air. The wetting biases of Q_full generally are 0.1–1.0 g kg−1 
larger than those of Q_fog. These results are consistent with the differences between Full-
B and Fog-B in the error variance (Figure 6). Similar differences in the Qvapor biases 
among the three experiments can also be found in the 3-h forecasts initialized at 2100 UTC 
(Figure 13d). Given that noMT already presents wetting biases throughout the whole lev-
els except the height around 300 m, there is no need to further add moisture within the 
MABL for this case. Therefore, the magnitudes of Qvapor positive biases in Q_full and 
Q_fog are similar to those in Figure 13c. As this case has wetting biases in noMT, it is 
unreasonable to further increase moisture through the satellite-derived humidity assimi-
lation. Simultaneously adjusting temperature and moisture may be required. Yang et al. 
[15] alleviated this issue by proposing an alternative observation operator to assimilate 
the satellite-derived humidity.  

The forecasts valid at 0000 UTC 29 March 2015 initialized from the analyses at 1800 
and 2100 UTC 28 March were evaluated using the soundings at Rongcheng, Dalian, Dan-
dong, Oscan, QD, and CJ (Figure 13e,f). We notice drying biases up to ~0.35 g kg−1 in noMT 
below ~550 m for the 6-h forecasts initialized at 1800 UTC (Figure 13e). Similar to Case07 
and Case09, the satellite-derived humidity assimilation further increases Qvapor upon 
noMT, and the forecasted Qvapor changes following the characteristics of the applied B-
matrix in each experiment. Specifically, Q_full has ~0.15 g kg−1 wetting biases below 1.2 
km on average. Q_fog still has drying biases below 500 m, which get significantly smaller 
than those of noMT, especially below 300 m, and its wetting biases above 500 m is 0.05–
0.1 g kg−1 smaller than Q_full. For the 3-h forecast initialized at 2100 UTC (Figure 13f), 
noMT still has negative biases below ~550 m. This result further demonstrates that the 
cycling assimilation of conventional observations is unable to sufficiently correct the dry-
ing biases in the MABL. The positive biases in Q_full get much larger and the negative 
biases in Q_fog turn into positive due to the cycling assimilation of satellite-derived hu-
midity. Q_fog with smaller Qvapor biases is closer to the observations than Q_full as a 
result of their used static error statistics. 

We also evaluated the wind and temperature forecasts in the MABL by comparing 
the temperature and wind measurements of the selected soundings with the correspond-
ing forecasts (not shown). Small differences (below 1.0 m s−1) in the wind fields among the 
three experiments are shown for the three cases. For the temperature field, all experiments 
have warm biases at low levels. Q_fog and Q_full reduce the warm biases compared to 
noMT. It was found that the performance of the temperature forecasts for Q_full and 
Q_fog depends on the stage of sea fog evolution. For example, Q_fog has smaller warm 
biases in the dissipated fog stage and larger warm biases in the mature fog stage than 
Q_full. As the temperature is not adjusted in the assimilation of the satellite-derived hu-
midity due to the design of B in this study, the differences in temperature among the three 
experiments largely result from their different sea fog forecasts, which are mostly affected 
by the Qvapor analyses. 

Overall, using noMT as the baseline, Q_full has larger Qvapor increases in the fore-
casts than Q_fog. It was found that the amounts of these Qvapor increases for the forecasts 
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of Q_fog and Q_full are consistent with their corresponding Qvapor increments in Section 
4. In other words, the differences in the analyses between Q_fog and Q_full were carried 
over in the subsequent forecasts. The Qvapor forecasts directly affected by the analyzed 
Qvapor in these results are similar to the diagnostics of single-cycle tests in Figure 10. 
Therefore, the overall skills of sea fog forecasts (Figure 12 and Table 2) agree well with the 
magnitudes of the Qvapor biases in the low levels during the forecasting (Figure 13) as 
well as the Qvapor increments at the analysis time in Q_full and Q_fog (Figures 7 and 8). 
Compared to Q_full, the higher forecast skills obtained by Q_fog correspond well with its 
more properly analyzed Qvapor increments. 

6. Conclusions and Discussion 
Assimilating satellite-derived sea fog information (satellite-derived humidity) using 

the 3DVar was proposed by W14. Although this method produced encouraging results in 
improving the sea fog forecasts and associated moisture conditions of the marine atmos-
pheric boundary layer (MABL), the sea fog coverage for many cases was overpredicted in 
W14 using a homogeneous static background error covariances (B) computed over the 
entire computational domain (Full-B). This study aims to further improve the sea fog cov-
erage forecasts by developing a feature-dependent, heterogeneous B (Fog-B) within the 
GSI-based 3DVar system when the satellite-derived humidity is assimilated. In Fog-B, the 
static error statistics for sea fog areas and clear air are calculated separately using a fea-
ture-dependent binning method. The resultant Fog-B was applied simultaneously at ap-
propriate locations guided by the observed sea fog derived from the satellite products.  

It was found that Full-B generally has broader horizontal and vertical length scales 
and larger error variances than Fog-B below ~300 m except for the vertical length scale 
near the surface. Diagnostics and comparisons were performed to understand and exam-
ine the impact of Fog-B on analyses and forecasts of the sea fog, including sea fog coverage 
and MABL moisture conditions. Results show that the distribution and magnitude of the 
water vapor mixing ratio (Qvapor) analysis increments are a straightforward consequence 
of the static error statistics and then affect the sea fog forecasts. The Qvapor increments 
analyzed using Fog-B are narrower with a smaller magnitude than those using Full-B, 
leading to smaller sea fog coverage in the subsequent forecasts. Verifications against the 
observations show that using Fog-B performs better than using Full-B in the forecasts of 
sea fog coverage and the MABL moisture conditions for three sea fog cases over the Yel-
low Sea.  

As an initial effort of optimizing the satellite-derived humidity assimilation, this 
study aimed to illustrate the necessity of applying the feature-dependent B to foggy areas 
for improving the forecasts of sea fog coverage. The predicted sea fog in this study mostly 
occurred between midnight and late morning. Systematic experiments using more cases 
across a full day will be warranted for more robust conclusions. Figure 13 shows that Fog-
B alleviates the positive Qvapor biases in Full-B but still overestimates the Qvapor. Fur-
ther efforts are required to refine the feature-dependent B, such as the selection of control 
variables [59], the inclusion of cross-variable correlations between moisture and temper-
ature [16], etc. Moreover, the assimilation of satellite-based clear air observations [37,65] 
with the feature-dependent B for suppressing spurious fog and the systematic observation 
error validation need further investigation. 
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