
Citation: Hwang, Y.-S.; Schlüter, S.;

Um, J.-S. Spatial Cross-Correlation of

GOSAT CO2 Concentration with

Repeated Heat Wave-Induced

Photosynthetic Inhibition in Europe

from 2009 to 2017. Remote Sens. 2022,

14, 4536. https://doi.org/10.3390/

rs14184536

Academic Editors: Duk-jin Kim and

Jinmu Choi

Received: 25 June 2022

Accepted: 8 September 2022

Published: 11 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Spatial Cross-Correlation of GOSAT CO2 Concentration with
Repeated Heat Wave-Induced Photosynthetic Inhibition in
Europe from 2009 to 2017
Young-Seok Hwang 1, Stephan Schlüter 2 and Jung-Sup Um 3,*

1 Korea Environment Institute, Sejong 30147, Korea
2 Department of Mathematics, Natural and Economic Sciences, Ulm University of Applied Sciences,

89075 Ulm, Germany
3 Department of Geography, Kyungpook National University, Daegu 41566, Korea
* Correspondence: jsaeom@knu.ac.kr

Abstract: In recent decades, European countries have faced repeated heat waves. Traditionally,
atmospheric CO2 concentration linked to repeated heat wave-induced photosynthetic inhibition has
been explored based on local-specific in-situ observations. However, previous research based on field
surveys has limitations in exploring area-wide atmospheric CO2 concentrations linked to repeated
heat wave-induced photosynthetic inhibition. The present study aimed to evaluate the spatial cross-
correlation of Greenhouse gases Observing SATellite (GOSAT) CO2 concentrations with repeated heat
wave-induced photosynthetic inhibition in Europe from 2009 to 2017 by applying geographically
weighted regression (GWR). The local standardized coefficient of a fraction of photosynthetically
active radiation (FPAR:−0.24) and the normalized difference vegetation index (NDVI:−0.22) indicate
that photosynthetic inhibition increases atmospheric CO2 in Europe. Furthermore, from 2009 to 2017,
the heat waves in Europe contributed to CO2 emissions (27.2–32.1%) induced by photosynthetic inhi-
bition. This study provides realistic evidence to justify repeated heat wave-induced photosynthetic
inhibition as a fundamental factor in mitigating carbon emissions in Europe.

Keywords: GOSAT; photosynthetic inhibition; heat wave; geographically weighted regression
(GWR); Europe

1. Introduction

The intensity and frequency of heat waves, described as periods of days with unprece-
dented high temperatures, have intensified during the last decade and are anticipated to
increase in the 21st century [1]. Due to continuous record-breaking high temperatures,
the heat waves have expanded in amplitude and spatial extent in Europe during recent
decades [2]. For instance, temperature observation records at European stations continue
to be broken every year [3]. In this regard, the length of heat waves in summer has in-
creased twofold, and the number of days reporting heat extremes has increased threefold
in Europe [4]. These heat wave events are projected to become more frequent and intense
in Europe.

Plants respond to heat waves by adjusting their physiological structures, such as
decreased leaf area, root–shoot ratio changes, or osmolyte concentration [5]. This causes de-
creased CO2 assimilation rates by reducing photosynthetic enzymes and sink strength and
increasing source activity (respiration). It is thus necessary to elucidate the current status of
CO2 emitted and absorbed according to photosynthetic inhibition and net primary produc-
tivity since heat waves are a crucial regulator of rising atmospheric CO2 concentrations [6].

It is essential to explore the vertical profile of CO2 that changes according to the
photosynthetic action of vegetation and the use of fossil fuels as it is transported from the
ground to the upper atmosphere. The mechanisms of greenhouse gases, including CO2,
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are monitored at approximately 530 ground stations operated by the World Meteorological
Organization (WMO) [7]. However, these field-oriented surveys have considerable limita-
tions in generalizing research outcomes because CO2 concentrations vary significantly in
time and space, and the survey area is limited to the range of the WMO station.

Satellite-based XCO2 (column-averaged CO2) carries large amounts of information
from the bottom atmospheric layer (near-ground) to the top of the atmosphere, including
background atmospheric CO2 [8–10]. Hence, satellite-based XCO2 can be a valuable
indicator of atmospheric CO2 caused by photosynthetic inhibition on a regional scale.
Recently, the observation of CO2 through advanced remote sensing technology has been
suggested to overcome the spatio-temporal limitations of existing measurements. The
Greenhouse gases Observing SATellite (GOSAT) is the most advanced satellite system for
observing CO2, and its usefulness has been recognized in various studies [11–13].

The relationship between photosynthetic inhibition induced by heat waves and its
influence on the atmospheric CO2 growth rate varies regionally, annually, and seasonally
with time (including day and night) [14]. Geographically weighted regression (GWR)
provides a weighting of locally correlated information and allows the building of local
regression model parameters varying in space during the last ten years. Hence, GWR
could help to reveal spatiotemporal variations in the empirical relationships between
photosynthetic inhibition and CO2 concentration over a more extended period. Previous
studies have reported that heat waves affect the seasonal photosynthetic responses of
European oak [15]. It was confirmed that these studies were the closest to the topic to be
dealt with in this study. Therefore, this study aimed to evaluate the spatial cross-correlation
of GOSAT CO2 concentrations with repeated heat wave-induced photosynthetic inhibition
in Europe from 2009 to 2017.

2. Materials and Methods
2.1. Study Area

Europe is the second-smallest continent after Australia but includes 18 climate zones
in small continents from Arid to Polar [16]. There are various types of plants in Europe,
such as boreal tundra woodland, boreal coniferous forest, temperate steppe, temperate
continental forest, subtropical dry forest, and so on [17]. The 18 climate zones show the
different frequencies and characteristics of heat waves within the European continent. The
diverse types of heat waves that occurred in the 18 climate zones induce photosynthetic
inhibition stress in terms of diverse exposure temperatures, such as exposure duration, the
ability of tolerance or acclimation, time of year, and soil moisture availability. The heat
stress of terrestrial plants inhabited in 18 climates can present the quantitative influence
of differentiated response patterns on photosynthetic inhibition (reductions of carbon
assimilation and growth) [18]. Therefore, the European continent is ideal for studying heat
wave-induced photosynthetic inhibitions from terrestrial plants.

2.2. Variables for Building the GWR Model

In this study, we utilized satellite observation data acquired by the Moderate Res-
olution Imaging Spectroradiometer (MODIS) onboard the Terra satellite from June 2009
to October 2017: normalized difference vegetation index (NDVI; MOD13A2), leaf area
index (LAI), fraction of photosynthetically active radiation (FPAR; MOD15A2), daytime
and nighttime land surface temperatures (LSTs; MOD11A2), and daily net photosynthesis
(PSNet; MOD17a2) (Table 1). The original temporal and spatial resolutions of LAI, FPAR,
and PSNet were eight days and 0.5 km; those of NDVI were 16 days and 1 km; and those of
LST were eight days and 1 km, respectively. MODIS is a major observation sensor mounted
on NASA’s Earth Observation Satellite, with multipurpose sensors that can be applied to
the ocean, land, and atmosphere. The MODIS sensors observe the Earth’s surface once or
twice a day at an altitude of 705 km, with a viewing angle of ±55◦, an observation width of
2330 km, and a total of thirty-six spectral bands in the range of 0.4–14.4 µm. Two of the
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bands make 250-m resolution images at the nadir, five bands have a resolution of 500 m,
and the remaining 29 bands have a resolution of 1 km.

Table 1. Descriptive statistics for monthly anomalies of dependent and independent variables used
in GWR.

Category Resolution Min Max Mean STDEV

GOSAT level 4 XCO2 2.5◦ Month −26.2 16.69 0.23 4.71

ODIAC (tonnes C/km2) 1 km Month −0.385 0.747 0.009 0.201

MOD17a2 PSNnet (tonnes C/km2) 0.5 km 8 days −508.01 649.23 −3.98 148.32

MOD11A2 LST (◦C) 1 km 8 days −53.78 45.28 −0.11 6.85

MOD13A2 NDVI 1 km 16 days −0.55 0.44 −0.001 0.11

MOD15A2 FPAR (%) 0.5 km 8 days −0.51 0.45 0.001 0.11

MOD15A2 LAI (m2/m2) 0.5 km 8 days −3.44 4.24 −0.01 0.59

MOD16A2 Average Latent Heat Flux (J/m2/day) 0.5 km 8 days −0.0002 0.0002 0.00 0.00004

The GOSAT Level 4 (L4) product comprises Level 4A (L4A) surface CO2 flux data
and Level 4B (L4B) 3D-CO2 concentrations modeled with L4A. The L4B data contain
the CO2 concentrations at 17 vertical levels from the ground to the upper atmosphere
(666 km) [19]. The closest vertical level of the L4B data to the ground is 975 hPa [20].
Because the CO2 nearest to the ground surface provides more information on changes in
the CO2 sink and source, this study utilized the L4B CO2 concentrations at 975 hPa to reflect
near-ground CO2. The L4B product for CO2 was obtained between June 2009 and October
2017. The GOSAT L4B data provide the average monthly CO2 concentrations modeled on a
2.5◦ × 2.5◦ horizontal grid in netCDF format. Therefore, we fitted the spatial and temporal
scales of the MODIS indicators into GOSAT XCO2 by averaging MODIS observations. This
study used the monthly anomalies of GOSAT XCO2 and MODIS observations to build the
GWR model.

2.3. Moran’s I Analysis

When analyzing the statistical distribution of spatial data, the results differ according
to the location and circumstances of the data. This is because spatial data are related
to each other due to the influence of spatial interaction and spatial diffusion. Before
performing the spatial regression, spatial autocorrelation tests were conducted for each
explanatory and dependent variable. Spatial autocorrelation is multidimensional (i.e.,
two to three dimensions of space) and multidirectional; it is more complicated than one-
dimensional autocorrelation. The GWR builds a regional regression model using spatial
weights. Therefore, spatial autocorrelation must be investigated before building the GWR
model. Hence, we utilized Moran’s I to evaluate the autocorrelations of the variables used
to build the GWR model.

Moran’s I was computed from −1 to 1. The negative autocorrelation (close to −1)
exhibits that nearby locations tend to have unrelated values in adjacent areas [10]. By
contrast, a positive autocorrelation (close to 1) implies that similar values tend to occur
in adjacent areas. The spatial arrangement is randomly distributed if there is no spatial
autocorrelation (close to zero). In this study, individual variables for GWR showed strong
positive autocorrelations of 0.61–0.86 (Table 2). The mean autocorrelation of GOSAT Level
4 XCO2 appears the highest at 0.86, while the average latent heat flux appears the lowest
at 0.61. The autocorrelation of GOSAT Level 4 XCO2 is strongly associated with the
spatial distribution of CO2 sources and sinks. The GOSAT Level 4 XCO2 is calculated with
Priori flux, which utilizes ODIAC data. ODIAC data is a global, high-resolution monthly
emission data, which disaggregates the emission from diverse CO2 sources (fossil fuel,
nuclear, hydro, and other renewable energy plants) obtained from the Carbon Monitoring
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for Action (CARMA) data set [21]. Average latent heat flux is estimated with diverse
data such as land surface temperature (LST), the fraction of absorbed photosynthetically
active radiation (FPAR), the normalized difference vegetation index (NDVI), the enhanced
vegetation index (EVI), leaf area index (LAI), and albedo [22]. The parameters for estimating
average latent heat flux are heterogeneous in the terrestrial landscape [23]. Thereby, it
shows less autocorrelation than other indicators.

Table 2. Descriptive statistics for Moran’s I estimated from individual variables.

Category Max Min Mean Standard Deviation

LST 0.98 0.35 0.75 0.14

NDVI 0.93 0.34 0.7 0.13

FPAR 0.93 0.29 0.69 0.13

LAI 0.99 0.31 0.7 0.14

Average latent heat flux 0.96 0.34 0.61 0.12

CO2 (GOSAT level 4) 0.99 0.61 0.86 0.09

Emission (ODIAC-PSNnet) 0.97 0.37 0.72 0.11

2.4. Building GWR Model

A GWR local model was employed to evaluate how the variations in carbon uptake
sources and GOSAT XCO2 regional relationships changed from 2009 to 2017. GWR is a
local regression that locally differentiates the variables of a regression estimation. Unlike
traditional regression, which establishes a single global regression among explanatory
and response variables, GWR considers spatial variation in a model and provides maps
to explain spatial non-stationarity [24,25]. The GWR is estimated by multiplying the
geographically weighted matrix w(g) composed of geo-references [24,26]. w(g) is calibrated
using the geographically neighboring spatial relations between points. In this study, we
presumed that the degree of influence had an inverse ratio to the square distance of GOSAT
Level 4. This means that the greater the w(g) is, the closer the points of geographical
data and the stronger their influence on one another [27]. This study examined the spatial
variability of a locally computed coefficient to identify the underlying process that presents
spatial heterogeneity [24]. The regression model can be defined as follows (Equation (1)):

GOSAT XCO2i(g) = β0i(g) + β1iLST(g) + β2iNDVI(g) + β3iFPAR(g) + β4iLAI(g)

+ β5iAverage latent heat flux(g) + β6iEmission(g) + εi
(1)

where (g) represents the parameters estimated at each independent variable in which the
coordinates are presented by vector g. β1i · · ·β6i denotes the regression coefficient for
the ith datum of independent variables (LST, NDVI, FPAR, LAI, Average latent heat flux,
emission). εi is a residual [28]. Our analysis was implemented utilizing ArcMap 10.3 with
a significance level of 0.05. Because the distribution of variables in the study area was
non-uniform, an adaptive kernel was selected.

2.5. Mediation Analysis

Mediation analysis helps interpret the causality between dependent and independent
variables by adding a third mediator, as there is a hidden connection between these vari-
ables [29]. Baron and Kenny (1986) found that four criteria have to be satisfied to implement
the mediation analysis [30], as shown below (Table 3); (1) X significantly accounting for M,
(2) X significantly accounting for Y, (3) M significantly accounting for Y, (4) decreases in the
effect of X on Y with M entered simultaneously with X. Table 3 presents the evidence that
the results of this study satisfy the four criteria suggested by Baron and Kenny (1986) [30].
Based on this result, we assume that LST (M) directly or indirectly involves the changes in
the effects of photosynthetic activities (X), preceding changes in GOSAT XCO2 (Y). The
total effects of MODIS photosynthetic indicators on GOSAT XCO2 could be apportioned
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individually into direct and indirect effects from an LST (mediator). Preacher and Hayes
bootstrapping [31] with 5000 bootstrap samples were utilized to investigate mediation
effects that can be caused by LSTs.

Table 3. Results of Pearson’s r among mediator (LST), independent (NDVI, FPAR, LAI) and depen-
dent variables (GOSAT Level4 XCO2).

Paths X→Y X→M M→Y

Category NDVI→
GOSAT XCO2

FPAR→
GOSAT XCO2

LAI→
GOSAT XCO2

NDVI→
LST

FPAR→
LST

LAI→
LST

LST→
GOSAT XCO2

Pearson’s r −0.40 ** −0.47 ** −0.40 ** 0.32 ** 0.64 ** 0.373 ** −0.45 **

** p-value < 0.01.

3. Results

Figure 1 and Table 4 present the results of the 10-year GWR with the monthly anomaly
of GOSAT level 4 XCO2 versus photosynthetic activity. NDVI, FPAR, and LAI have
negative mean values of the standardized local coefficient of −0.22, −0.24, and −0.16,
respectively. A decrease in chlorophyll levels affects the ability of plants to reflect incident
solar radiation. Hence, stressed plants with low photosynthetic capability have reduced
NDVI values. The distribution of LAI is another crucial determinant of photosynthesis
because canopy leaf area rather than vegetation cover indicated by NDVI is often chosen
as a base reference for the growth index of plants [32–34]. Therefore, the negative local
coefficients of NDVI, FPAR, and LAI on GOSAT level 4 XCO2 show that the capability of
photosynthetic activities in Europe has been reduced from 2009 to 2017. Changes in NDVI,
FPAR and LAI possibly contributed to increasing atmospheric CO2 because of the reduced
capability of photosynthetic activities in terrestrial ecosystems. Temperature showed the
most decisive positive influence (0.35) on the geographical variations in CO2 concentrations
during June 2009–October 2017. In this study, LST and latent heat flux increased sharply,
whereas FPAR decreased. This has been caused by the scarcity of nutrients, humidity, and
water stress due to the rapid increase in temperature and latent heat flux. This possibly has
impeded the growth of carbon stocks through photosynthetic inhibition.

During one specific heat wave, the local R2 and R2 plunged simultaneously (Figure 2).
It was the second hottest year without an El Niño since 1850 [35]. Heat stress causes reduc-
tions in enzymatic activity [36], mesophyll/chlorophyll, and stomatal conductance [37].
The structural changes that occurred by leaf wilting and rolling decreased NDVI and LAI,
reducing FPAR [38]. However, according to Shekhar et al. (2020), FPAR from European
forest areas during the heat wave and drought events was not lower than FPAR in the past
three years. While FPAR did not decrease, the proportion of FPAR decreased in transporting
electrons for carbon assimilation, causing a surplus of photosynthetic energy [39]. It is
considered that a similar pattern has occurred in this study. In August 2013 (heat wave
events happened), the NDVI and LAI were relatively low, but the FPAR was the highest
in the study period (Figure 3). Generally, the relations between NDVI, LAI, and FPAR are
positively linear [40]. This abnormal negative correlation between NDVI, LAI, and FPAR
involves the stiff decline of R2 and local R2 in August 2013.
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photosynthetically active radiation (FPAR). (d) Leaf area index (LAI). (e) Average latent heat flux.
(f) ODIAC-PSNet.
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Table 4. Results of the GWR between GOSAT XCO2 (dependent variables) and heat wave-induced
photosynthetic factor, including CO2 emissions (ODIAC-PSnet, independent variables).

Category LST NDVI FPAR LAI ALHF Emi.

Standardized
local

coefficient

Min 0.04 −0.58 −0.61 −0.62 −0.34 −0.32

Max 0.77 0.09 0.21 0.46 0.45 0.64

Mean 0.35 −0.22 −0.24 −0.16 0.03 0.14

Standard deviation 0.17 0.14 0.20 0.26 0.25 0.23

t-statistics

Min 0.20 −3.41 −4.28 −2.69 −1.15 −1.61

Max 4.56 0.28 1.05 0.89 2.46 2.93

Mean 1.99 −1.44 −1.63 −0.84 0.18 0.53

Standard deviation 1.20 0.70 1.45 0.92 1.08 1.08

Local p-value

Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 0.11 0.22 0.18 0.17 0.21 0.16

Mean 0.01 0.03 0.03 0.02 0.03 0.01

Standard deviation 0.05 0.08 0.09 0.08 0.09 0.09

Local R2: 0.56–0.89 R2: 0.60–0.96 p-value: 0.02, LST: land surface temperature, ALHF: average latent heat flux,
Emi.: ODIAC-PSNnet.
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during June 2009–October 2017. The yellow box represents the coldest winter in Europe during
2009–2017. The green box represents August 2013, the second hottest year without an El Niño since
1850 [35]. Grey boxes indicate the months showing the largest discrepancy between local R2 and R2

during 2009–2017.

The indirect effects of sudden climatic events (higher heating demands, drought,
etc.) have influenced terrestrial carbon uptake activities, leading to decreased local R2

and R2. According to Bezak and Mikoš (2020) [41], heat waves have shown an increased
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probability of occurrence with compound events (hot and dry) across Europe during
recent decades. Moreover, the heat waves with high surface temperature tend to cause
the soil moisture deficit reducing the evaporative cooling and increasing heat flux. In
turn, this exacerbates the prevailing drought condition in Europe [42]. Therefore, Europe’s
photosynthetic inhibition resulted from heat waves and coincident droughts.
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Figure 3. Annual trends of GOSAT XCO2 and carbon uptake sources in Europe during 2010–2016.
Red dotted lines are the trend lines used with the linear fit (x-axis: year). The years 2009 and 2017 are
not presented in Figure 3 due to the lack of data for calculating the annual mean values. (a) GOSAT
XCO2. (b) LST. (c) NDVI. (d) LAI. (e) FPAR. (f) Open-source Data Inventory for Anthropogenic
CO2 (ODIAC).
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Interestingly, as we explored the monthly local R2 and R2 values during June 2009–July
2017, there were specific patterns between local R2 and R2. Generally, the R2 was higher
than the local R2 value. This means that regionally differentiated patterns of photosynthetic
inhibition influence the temperature rise. In Figure 2, the grey boxes denote the months
showing the larger discrepancy between local R2 and R2 of 0.15–0.28. The local R2 and
R2 discrepancies increase during the summer and winter (Figure 2). The abnormal heat
wave or temperature rise appears more clearly in the summer and winter (Figure 3). Thus,
this discrepancy between local R2 and R2 in summer and winter indicates that abnormal
photosynthetic inhibition has occurred regionally in Europe from 2009 to 2017.

The trends of MODIS photosynthetic indicators and GOSAT XCO2 support the influ-
ence of photosynthetic inhibition resulting from heat waves. LST continues to increase by
0.29 ◦C per year in Europe. This indicates that Europe had hotter summers and milder
winters from June 2009 to July 2017. Simultaneously, NDVI and LAI also increased to 0.007
and 0.018 m2/m2, respectively, because of the milder winters. However, FPAR, which
represents the photosynthetic activities of the terrestrial ecosystem, decreased annually
over Europe. This indicates that droughts induced by repeated heat waves increase water
stress in plants [43].

The trends of MODIS photosynthetic indicators and GOSAT XCO2 support the influ-
ence of photosynthetic inhibition resulting from heat waves. LST continues to increase
by 1.81% per year in Europe. This indicates that Europe had hotter summers and milder
winters from June 2009 to July 2017. Simultaneously, NDVI and LAI also increased to 1.66%
and 2.16%, respectively, because of the milder winters. However, FPAR, which represents
the photosynthetic activities of the terrestrial ecosystem, decreased by 10.19% annually in
Europe. This indicates that droughts induced by repeated heat waves increase water stress
in plants [43]. To verify the linear trends of variables utilized for GWR, this study computes
the confidence interval/confidence bands for the slope parameter b̂ of the linear regression.
This interval reads for an α error of 5% as follows:b̂− tn−2;0.95 ·

√√√√ 1
n− 2

∑(yi − ŷ)2

∑(xi − x)2 ; b̂ + tn−2;0.95 ·

√√√√ 1
n− 2

∑(yi − ŷ)2

∑(xi − x)2

 (2)

where the t denotes the Student t distribution quantile and n is the number of observations.
Y is the explained variable, and x is the input variable of the linear model. x is the average of
the input values, and ŷ is the model estimate. Based on this, we can compute the difference
between the real world and the model estimate (and square it) and divide it through the
sum of the squared deviations of the input values from the mean/average value. If n = 7
then n − 2 = 5 and the Student t quantile is 2.571. What remains to compute are the sums
in the above formula. As explained in the above formula, the estimated slope parameter
minus/plus the confidence band factor gives the confidence interval at a level of 5%. If zero
is not contained in this interval, we consider the estimated parameters to be significant.
Estimated slopes and the confidence bands of all the variables (LST, NDVI, FPAR, LAI,
GOSAT level XCO2, ODIAC) in Figure 3 are all significant (Table 5).

Table 5. Results of the computing confidence bands (confidence intervals) of variables used
in Figure 3.

Category LST NDVI FPAR LAI GOSAT XCO2 ODIAC

Slope Estimate 0.2826 0.0073 −0.0001 0.1078 2.3749 −0.26

Confidence Band 0.2129 0.0069 0.0028 0.0429 0.1451 0.1152

4. Discussion

The mediation analysis results show that LST had strong negative mediating effects on
MODIS photosynthetic indicators from 2009 to 2017 (Table 6). The indirect effects of LST on
NDVI, FPAR, and LAI ranged from −32.1% to −28.4%. Even though the mediator variable
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(LST) did not change the direction of the relationships between the MODIS photosynthetic
indicators and GOSAT XCO2 from 2009 to 2017, LST promoted stronger photosynthetic
inhibition from NDVI, FPAR, and LAI. LST operated as a mediator for NDVI, FPAR,
and LAI within a confidence level of 0.05. LST had a statistically significant mediation
effect on NDVI, FPAR, and LAI. LST indirectly influenced the decrease in photosynthetic
indicators for all the three variables. Furthermore, it might have accelerated the decrease in
photosynthetic inhibition from 2009 to 2017.

Table 6. Mediation analysis results between NDVI, fraction of FPAR, LAI, and LST on GOSAT XCO2.

Category Mediator R
R2

(p-Value)
Standardized
Coefficient

Total Effect
(p-Value)

Direct Effect
(p-Value)

Indirect Effect

Indirect (%) LLCI ULCI

NDVI LST 0.53 0.28 (0.00) −0.40 −16.96
(0.00) −12.15 (0.00) −28.4 −5.17 −4.45

FPAR LST 0.47 0.22 (0.00) −0.47 −19.47
(0.00) −12.82 (0.00) −34.1 −7.25 −6.05

LAI LST 0.40 0.16 (0.00) −0.40 −3.22 (0.00) −2.19 (0.00) −32.1 −1.12 −0.95

ULCI: upper limit of the bootstrap confidence interval; LLCI: lower limit of the bootstrap confidence interval.

The observed local coefficient and mediation analysis results between LST, LAI, FPAR,
NDVI, and GOSAT XCO2 indicate that recent heat waves in 2009–2017 have reduced the
potential of photosynthetic activities within Europe to withstand adverse heat stress. This
is well presented in an in-situ survey implemented by FOREST EUROPE [44]. The survey
reported the defoliation of forests submitted from 27 European countries, monitored at
5634 plots, 103,797 trees, and more than 130 species. According to this report, the condition
of European forests has recently deteriorated, with increasing mean defoliation of the
six most frequent tree species (Pinus pinaster, Picea abies, Pinus sylvestris, Fagus sylvatica,
and Quercus ilex) particularly obvious in 18.9% of the monitoring plots from 2010 to 2018.
Furthermore, the report pointed out that heat waves appear to be the primary drivers
triggering changes in forest tree defoliation [44].

Additionally, the recent extraordinary warming during winter greatly enhanced the
subsequent release of CO2 due to soil organic matter’s microbial decomposition [45]. Na-
tali et al. [46] suggested that increased soil CO2 loss due to warmer winters may offset
carbon uptake during the growing season under future climatic conditions. Heat waves
are also interlinked with other factors that affect forest health, such as soil acidification and
foliar nutritional imbalances. This study did not address evaporation, water stress, or pre-
cipitation caused by heat waves. The influences of these variables should also be considered
in further studies to explore the overall impacts of heat waves on photosynthetic inhibition.

Heat waves are particularly relevant because climate extremes are expected to occur
more often in the near future. There were reported losses of up to 0.06–0.5 PgC from
terrestrial net carbon uptakes during the European heat waves in 2003 and 2018 [47]. This is
equivalent to 6–50% of the annual anthropogenic CO2 emissions of the 28 member countries
of the European Union at the 2015 level. Furthermore, the record-high increment in the
atmospheric CO2 concentration during 2015–2016 was primarily due to photosynthetic
inhibition (2.5 ± 0.34 PgC) from terrestrial ecosystems in response to the drier and hotter
conditions related to the 2015–2016 El Niño event [48]. Therefore, the policy target of
reducing anthropogenic CO2 emissions might be difficult to accomplish due to negative
carbon cycle feedback on photosynthetic activities from the land sink in a more extreme
climatic regime [49]. Similarly, in this study, despite the reduction in anthropogenic CO2
emissions (−1.58% per year) and increases in NDVI (1.66% per year) and LAI (2.16% per
year) in Europe, it was found that the atmospheric CO2 is constantly increasing (0.60% per
year) and the FPAR is decreasing (−10.18% per year). Therefore, unexpected photosynthetic
inhibition caused by heat waves’ indirect or direct effects can weaken the effort to reduce
anthropogenic CO2 emissions.
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This study averages MODIS indicators into monthly data within individual GOSAT
XCO2 grids. In the case of the LST, PSNnet, and GOSAT level 4 XCO2 have more significant
numbers than the other variables. This can cause the overestimating the influences of these
variables on GWR models. Hence, Min-Max Normalization (X−MIN/MAX−MIN) was
applied for rescaling the values of dependent and independent variables into a range of
[0, 1]. GOSAT Level 4 XCO2 uses the National Institute for Environmental Studies (NIES)
transport model (TM; collectively NIES-TM) for inversion GOSAT XCO2 data with prior
CO2 flux of 2.5◦ by 2.5◦ spatial resolutions. Owing to relatively low spatial resolution
of CO2 monitoring satellite data, there is a growing number of literature conducting the
reconstruction and simulation of atmospheric CO2 by modeling the correlation between
satellite XCO2 and various higher spatial resolution environmental MODIS data (NDVI,
NPP, LST LAI, air temperature, wind speed, and direction) [50,51]. A high-resolution
inversion model (0.1◦ × 0.1◦), named NTFVAR (NIES-TM–FLEXPART-variational), has
been recently developed to overcome the limitations of coarse resolution in the existing
inversion model [52]. Therefore, further study is required regarding the impact of down-
scaling the spatial resolution of MODIS indicators (independent variables), which are fitted
with GOSAT Level 4 XCO2, on the GWR model. The NTFVAR inversion model is expected
to offer the GWR model’s better explanatory power than this study.

5. Conclusions

European countries have faced repeated heat waves, as indicated by the continuous
breaking of temperature records during the most recent decade. However, there have been
few studies on the concept of repeated heat wave-induced photosynthetic inhibition in
Europe. This study explores the spatial cross-correlation of GOSAT CO2 concentration
with repeated heat wave-induced photosynthetic inhibition in Europe from 2009 to 2017 by
utilizing GWR. It is noted that GOSAT CO2 concentration has a significant correlation with
MODIS photosynthetic indicators, such as LST, LAI, NDVI, and FPAR. The indirect effects of
sudden climatic events (higher heating demands, drought, etc.) have influenced terrestrial
carbon uptake activities, leading to decreases in local R2 and R2. Therefore, this study could
serve as a valuable reference for employing repeated heat wave-induced photosynthetic
inhibition as a fundamental factor for mitigating carbon emissions in Europe.
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