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Abstract: Hydrologic extreme events such as flooding impact people and the environment and delay
sustainable development in flood-prone areas when it is excessive. The present study developed a
seasonal floodwater forecast system for the Awash and Omo-Gibe basins of Ethiopia using the 2021
rainy season (June to September) as a temporal case study. In Ethiopia, there is no seasonal forecasting
system available to cope with the recurrent flooding impacts instead of exercising ineffective and
traditional monitoring approaches. The satellite-driven precipitation and temperature forecasts,
observed rainfall, discharge, reservoir water levels, land cover, and soil data were used in the
hydrologic (HEC-HMS) and hydraulic (HEC-RAS) models, spreadsheet, and GIS applications. The
results obtained were forecasts of the runoff, reservoir water levels, and storage. The coefficient
of determination (R2), Nash–Sutcliffe efficiency (NSE), percent of bias (Pbias), and Kling–Gupta
efficiency (KGE) were used to evaluate the model’s performance in addition to plots as presented in
the manuscript. The R2 values obtained for the Koka and Gibe-3 reservoirs’ inflows (water levels)
were 0.97 (0.95) and 0.93 (0.99), respectively, and the NSE values were 0.90 (0.88) and 0.92 (0.95)
for each reservoir. Similarly, the water levels (meter) and storage (Mm3) for the Koka and Gibe-3
reservoirs at the end of the 2021 flood season were 111.0 (1467.58) and 890.8 (13,638.5), respectively.
Excess floodwater can be maintained in and released from reservoirs depending on the future water
uses and flood monitoring activities downstream. In addition, the flood inundation extents from
Earth remote sensing satellite observation and model results were examined and showed agreement.

Keywords: satellite-driven precipitation; seasonal forecasting; floodwater; reservoir water levels;
HEC-HMS; Awash basin; Omo-Gibe basin; Ethiopia

1. Introduction

In extreme hydrologic events, flooding is one of the water-related impacts that occurs
most frequently and poses major threats to people and socio-economic development. Flood-
ing is a devastating, widespread, and recurrent natural hazard all over the globe, including
Ethiopia. In the past decades, for instance, flood events in Ethiopia have impacted peo-
ple and claimed lives and destroyed homes, properties, infrastructure, agricultural lands,
cultural sites, and the environment. For instance, in the 1996, 2006, 2016, and 2020 flood
seasons, floods impacted people and destroyed their homes and businesses, predominantly
in the main flood-prone areas of the Awash and Omo-Gibe basins. The flood-prone areas
of these basins are affected by recurrent flooding in the previous flooding seasons [1,2],
and the flood inundation maps have been captured by remote sensing satellite observation.
Nowadays, many flood-prone areas are under the pressure of increased settlements and
industrial, commercial, infrastructural, and irrigation developments. Riverine flooding,
for instance, is one of the major natural hazards that affects the life and livelihoods in
flood-prone areas. Flood impacts are more serious due to weak infrastructure, insufficient
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policy implementation, lack of flood response plans, land degradation, climate change
impacts, and other related factors. In addition, increases in the variability and number
of extreme weather conditions have been seen regarding hydrological responses, which
results in flooding from excess runoff [3]. Therefore, flood impacts cause substantial losses
of life when people interact with flood [4] in flood-prone areas.

The seasonal rainfall and average soil moisture [5,6], for instance, are the likelihood
indicators and drivers of seasonal flooding events. In recent times, the reliability of seasonal
floodwater (or flow) forecasts has increased due to hydrometeorological modeling capa-
bilities, satellite-driven observation data collection advancement, and improvements of
algorithms for analysis. The characteristics of the hydrological variability of the topography,
catchment size, land cover, soil conditions, etc. have significant importance regarding the
spatial responses of rainfall. Nevertheless, the seasonal (temporal) variability of the flood
magnitude is highly influenced by seasonal rainfall. This also helps to understand inter-
annual variability [1] and how one season affects the other season. The 2016 dry season,
for instance, had early peak rainfall that caused early flooding and landslides before the
onset of the 2016 rainy season, which affected people and devastated the environment [7]
since there was no early warning information available. In the study basins, there is no sea-
sonal forecasting system available to cope with the flooding impacts instead of exercising
ineffective and traditional monitoring approaches of human involvement.

In general, population growth and economic activities are the driving factors of the
demand for flood risk forecasting and possible protection measures.

The present study, therefore, aimed to develop a seasonal flow forecast system and
estimate excess floodwater at the points of interest and inflows maintained in reservoirs,
and flood inundation extents in the study basins. Therefore, seasonal forecasts were
produced for the 2021 flood season, and the excess floodwater maintained in reservoirs
(Koka and Gibe-3 reservoirs in this case) was estimated to inform decision-makers in their
planning and future development strategies where appropriate and to reduce flooding
impacts downstream. The specific objectives were to (1) estimate seasonal flow (floodwater)
at a sub-catchment, point and reservoir inflows, (2) retain peak floodwater in reservoirs to
complement the flood control system through optimization of the release from reservoirs,
(3) estimate flood inundation extents using a model verified with the remotely sensed
satellite observation imageries, and (4) convey the forecast products to users using a web-
based flood management tool. In a separate study, the web-based flood management
tool [8] was developed to disseminate the forecast products ahead of time.

2. Materials and Methods
2.1. Study Area

The study area is the Awash and Omo-Gibe River basins (Figure 1), which are ex-
posed to floods and are the major flood-prone basins of Ethiopia. It is located between
4◦45′/12◦50′N latitude and 34◦50′/43◦19′E longitude, with estimated altitude ranges be-
tween 250 and 2900 m.

The weather of Ethiopia, including the study basins, is under the influence of the
Intertropical Convergence Zone (ITCZ) migration [9–11], and the topographic nature of
Ethiopia influences the rainfall patterns and variations [12]. Therefore, the climate of
Ethiopia is classified into three major seasons [13], such as the Belg, Bega, and Kiremt
seasons. The Belg season is the short season that runs from February and is characterized
by warm temperatures and above-average rainfall. The second season is the longer tropical
main rainy season (or Kiremt season) that runs between June and September, which this
study focused on. In this season, evidence indicates that many flood-prone areas are
affected by flooding since they receive average to above-average rainfall that triggers high
runoff from upper land areas. The third season, which runs from October to January (or
Bega season), is characterized by dry weather and causes water shortages. These spatial
and temporal variabilities and predictability [14,15] of the rainfall in Ethiopia motivate the
development of seasonal forecasting systems before the main rainy season. The historical
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streamflow records (1981–2016) at selected river gauging stations were collected and used
for runoff forecast verification. The estimated mean annual rainfall is 1220 mm in the
highland areas and 300 mm in the lowland areas, and the mean annual temperature range
is between 10.1 and 30.2 ◦C [7]. Land use land cover with a 30 m resolution was collected
from the Water and Land Resources Center (WRLC) of Ethiopia, and soil data was accessed
from the FAO database [16] with a 90 m resolution and used in the analysis.
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Figure 1. Study area location and surface features.

2.2. Data Used
2.2.1. Satellite-Driven Data

In situ satellite-driven precipitation and temperature forecast data are required for
seasonal flood forecasts since observed data is scarce in Ethiopia. In this study, 180-day
precipitation and temperature forecast datasets produced by North American Multi-Model
Ensemble (NMME) were accessed [17] and used in the seasonal flow forecasts. In addition,
the historical data Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
with a 0.05 deg resolution [8,18] was used to connect the precipitation patterns from the
past to future forecasts. The seasonal data were also bias corrected locally and verified with
the ground measurement rainfall data obtained from the Ethiopia Meteorological Institute
(EMI) together with CHIRPS data for gap infilling.

Therefore, 180 days (or 6 months) of lead time were used for the target 2021 flood
forecast season (June to September). The forecasted precipitation data produced in January
was used to estimate the floodwater for June of 2021, the February forecast for July, the
March forecast for August, and the April forecast for September. The time frame considered
the analog years identified by EMI for the 2021 flood season. The daily gridded precipitation
data for the period of 2005–2014 was used in the model simulation after verification [19]
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using the CHIRPS data and the observed rainfall data from 13 weather gauging stations: 8
in Awash basin and 5 in Omo-Gibe basin.

2.2.2. Hydrological Data

Observed daily discharge, pool water levels, and river cross-sections at selected
river gauging stations were obtained from the Hydrology and Water Quality Directorate
(HWQD) of the Ministry of Water and Energy (MOWE) of Ethiopia for model calibration
and verification of the simulated flood forecasts. In addition, seasonal water availability in
the Koka and Gibe-3 reservoirs was addressed based on the average year flow data for the
2021 flood season. In this case, the 1996, 2001, and 2008 analog years were predicted and
identified and used in the analysis, of which 2008 was considered as most likely analog
year. In addition, the annual maximum flow rates were extracted from historical records
(1981–2016), and the threshold values above the mean value (423 m3/s) were determined to
indicate the excess floodwater (Figure 2). This showed that 14 years of data were above the
mean and often occurred in about 2.57 years (the ratio of 36 years of records to the number
of records above the mean).
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Figure 2. Annual maximum flow records of Awash-Hombole River.

2.2.3. DEM Data

DEM data is used to understand the topographic nature of the model areas, which
have an automatic surface elevation or slopes [20], and hydrographic networks with good
quality and accuracy [21]. It helps to interpret the flood extents and flood depths and derive
prior information in flood-prone areas [22]. DEM data at a 30 m spatial resolution was
obtained from the Shuttle Radar Topography Mission (SRTM) and used for terrain elevation
processing to develop geospatial data features in the Hydrologic Engineering Center
Hydrologic Modeling System (HEC-HMS) model. In terrain processing, the depressions
in the terrain elevation were filled where water flowed across the landscape from cell to
cell based on the direction of the gradient by applying the 8-point pour model. Then,
processing of the drainage (flow direction and flow accumulation) that delineates streams
with the accumulation threshold, identification of streams, delineation and processing of
watershed polygons and points, etc. were performed.

2.2.4. LULC and Soil Data

The land use land cover (LULC) and soil data were utilized since the land use prac-
tices and types of land cover and soil types have significant impacts on the processes
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of catchment runoff. If soil is un-saturated and if the land cover is minimal [23], the
travel time of runoff induced from rainfall is shorter and causes impacts from flooding
on flood-prone areas. The prominent factors that govern hydrological processes [24] in a
catchment contribute to flooding and flood risks are the characteristics of soil texture and
soil conditions [25], vegetation cover changes [21], and hydrologic responses [26].

In the model basins, ten different land covers were identified, such as cropland,
grassland, shrub/bush, bare land, waterbody, wetland, afro-alpine, forest, woodland, and
settlements. The land use data were collected from the Water and Land Resources Center
(WLRC) center, which were prepared using remote sensing satellite observation and ground
measurements. Equally, the main soil types are Luvisol (3.88%), Fluvisol (3.98%), Vertisol
(4.93%), Alisol (6.56%), Nitisol (9.69%), Cambisol (12.22%), Liptosol (50.61%), and other soil
types (8.13%). The land cover and soil datasets, in general, were utilized to estimate the
amount of runoff from rainfall within the study basins.

2.3. Methods
2.3.1. Bias Correction Analysis

Global data is biased [27,28]; thus, bias-corrected analysis was carried out on gridded
precipitation forecast data before using it in the model simulation. It was transformed into
time-series data and compared with the observed data to determine the bias correction
factor to correct the raw precipitation data and used in the seasonal forecast model. Many
studies have shown that Regional Climate Model (RCM) results improve climate change
information using spatial and physical intelligible results with ground observations [29,30].
As a reference and to correct the bias of the forecast precipitation data, the observed rainfall
data was used [31].

In the correlation analysis, the linear scaling (LS) correction method was selected
and applied [32]. The LS method was selected since it is simple, accurate, and previous
literature has indicated the reliability of the results after treatment [33,34]. If the mean
monthly values are included, it is capable of adjusting climatic factors [33]. Thus, to
estimate the variation between raw satellite-driven data and measurement for each day, the
LS method implements a constant corrected factor. In essence, a multiplicative correction
factor is applied for precipitation data and the additive correction factor for temperature,
as given in the following equations:

Pc
h,m,d = Ph,m,d ×

[
µ(PO,m)

µ(Ph,m)

]
(1)

Tc
h,m,d = Th,m,d + [µ(TO,m)− µ(Th,m)] (2)

where Pc
h,m,d and Tc

h,m,d represent the corrected precipitation and temperature on the dth

day of a given month, respectively; Ph,m,d and Th,m,d are the precipitation and temperature
from the original RCM for a target period; d and m represent specific days and months,
respectively; and µ represents the mean value.

In addition, the mean monthly precipitation data was recomputed, interpolated, and
evaluated using spatial interpolation methods, a geostatistical Kriging method [35] at a
given spatial scale [36]. The spatial interpolation method used was a geostatistical Kriging
method in an ArcGIS environment. This technique is an efficient interpolation technique
using a spherical semi-variogram to produce spatial distribution over the model basins.
Therefore, the amount of accumulated daily spatial rainfall distribution in each month also
showed an increasing trend in time and space.

2.3.2. Hydrological Model Setup

The hydrological model with its new features (HEC-HMS v4.9) was used to produce
seasonal floodwater (flow) forecasts in the study basins [37,38]. The project name as an
identifier for a hydrologic model that has a basin model, a meteorological model, and
control specifications, grid data, and terrain data components was considered before the
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model was run. Then, to run the basin model, the meteorological model and the control
specifications were combined. The basin model and basin features were created in the form
of a background map file imported into HEC-HMS from the data derived through HEC-
HMS’s GIS application components for model simulation (Figure 3). In the meteorological
model, the gridded method and the control specification model were created. The control
specifications determine the time shape of the simulation features, such as the starting and
ending date and time and the computation time step.
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The daily observed rainfall data and river gauge stations for some selected stations
were used in a hydrological model to estimate the river runoff and calibrate and verify
model results. A daily time step was used for the seasonal forecasting processes based on
the time interval of the available observations.

The Loss, Transform, and Routing Methods

In the hydrological model setup, the one-layer deficit and constant loss methods
were used for continuous simulation, which changes in moisture content. This method
is used in combination with a canopy and surface components to represent interception
and capture processes. The modified Clark (ModClark) spatial distributed method [39]
was applied in the runoff processes to transform excess precipitation to direct runoff. This
method explicitly accounts for variations in travel time to the outlet from all areas of a
watershed, and the runoff computations explicitly account for translation and storage. It
takes advantage of spatially distributed precipitation, topography, soil, and land cover as
input datasets to the model. The radar-based gridded precipitation forecast data was then
imported using the HEC-HMS model wizard (or vortex-0.10.22 tool), stored in the HEC-
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Data Storage System and Visual Utility Engine (HEC-DSSVue) database, and utilized the
gridded data of the hydrological model. Finally, the Muskingum-Cunge routing method,
which was applied in this study, is a combination of the conservation of mass and the
diffusion representation of the conservation of momentum. It uses the equation of motion
of continuity with lateral inflow included and the diffusion form of momentum equations
to route an inflow hydrograph.

Moreover, the inflow equals outflow initial condition option was adopted, which
assumes that the initial outflow is the same as the initial inflow to the reach from upstream
(considered as a steady-state initial condition). The Manning’s roughness coefficient [40]
value used was 0.035 for the channel and 0.075 for the left and the right river banks. The
space-time interval options, Auto DX (space interval), and DT (time interval) method,
which maintains numeric stability in the model configuration, and the eight-point shape
river cross-section inputs were applied in the river flow routing [41,42]. Furthermore, a
recession constant of 0.5 was applied as a baseflow contribution, where most of the model
sub-watershed area ranges between 384.7 and 9472.6 km2.

Initial and Boundary Conditions

The initial condition (IC) is introduced at the beginning of the unsteady flow simulation
that describes flow changes over time, which represents the runoff at the start of the analysis
of heavy rainfall. ICs were defined as a global value used at different calculation nodes
for the water depth and reach segments. The data frame used for simulation was the peak
flow in the simulation periods, either in hours or days. The time series was then used
in the model simulation to maintain a hydraulic energy gradient line of hydrodynamic
flow behavior. The boundary condition (BC) is the value of a system input that forces the
hydrologic system and causes it to change. In the HEC-HMS model, precipitation served
as a BC that causes runoff from a watershed.

2.3.3. Reservoir Water Level Analysis

Reservoirs (or pools) play an important role in flood management strategies. They
store floodwater and help to reduce flood risks by attenuating the peak floods and miti-
gating the intensity of flooding in the downstream reaches [43] and over the flood-prone
areas. To reduce a peak flood flow to a target reservoir level, the reservoir provides storage
for excess floodwater, which is released gradually at a later time and rate as an opera-
ble and controlled release. This limits the release of water during a flood event, thus
protecting downstream from the impacts of high flow rates and stages, and providing a
method of emptying the pond after the event so that the pond can store the coming runoff.
In this analysis and the HEC-HMS model, the Koka reservoir in the Awash basin, and
Gibe-3 reservoir in the Omo-Gibe basin were considered to indicate how they change their
hydrologic response concerning flood controls and reserving water resources. An Excel
spreadsheet was employed for the reservoir water balance analysis, using inflows to and
from reservoirs using the water balance equation [44]. Water balance analysis uses the
principle of conservation of mass in a closed system [45,46]. It is given as:

P = R + E +
∆S
∆t

(3)

where P is precipitation, E is evapotranspiration, R is runoff, ∆S is the storage change, and
∆t is the time step.

Therefore, the inflow (Qi)-inflows obtained at Awash at Hombole and Mojo River
gauging stations and other ungauged [46] tributaries, reservoir storage, outflow (Qo) from
the reservoir, losses as evaporation (pan) from the reservoir, and seepage as a function of
evaporation were considered. In addition, different analog years were obtained from EMI
for the 2021 flood season, and the 2008 analog year and the average year from historical
records were considered. Moreover, the normal operating level (NOL) of the Koka reservoir
(110.3 m) and the lowest Koka reservoir water level reached about 102.0 m due to the
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sediments stored in the reservoir from the past decades and were used in the analysis.
Similarly, the reservoir information for Gibe-3 was collected and used in the analysis, with
a maximum of 892.0 m and minimum of 854.0 m regarding the reservoir water levels.
Therefore, this analysis addressed the magnitude of combined inflows, the storage capacity
of reservoirs, and the releases without causing flooding downstream when the runoff
exceeds the conveyance capacity of the river channel.

2.3.4. Flood Mapping and Semiology

Flood inundation maps are an essential tool for safety and land use planning in
flood-prone areas. Flood risk maps are created to show different degrees of risks [47,48]
and help to determine flood damages and costs during an emergency and insurance-
related information [4]. It is a spatial context of probabilities [49], which is linked to
determine the flood inundation extents [50], flood depths, and velocities and estimate
the probability of extreme flood events and their negative impacts. In the floodplain, the
schematization shows the geometry of the river features, which was developed using a
Hydrologic Engineering Center River Analysis System (HEC-RAS) 2-Dimentional mapper.
The peak runoff record of the 2006 flood season within the study period (2005–2014) was
considered to produce the flood risk maps using the historical flood events and hydrological
extremes [50]. Then, the flood inundation maps produced by the model were compared
and verified with remote sensing satellite observations [51,52]. The satellite observation
inundation maps were accessed from Dartmouth Flood Observation (DFO) service center
for Awash basin flood-prone areas [53] and Omo-Gibe basin flood-prone areas [54] to verify
the rapid flood inundation maps in the study basins.

2.3.5. Evaluation of Model Performance

The model performance was evaluated using commonly known statistical metrics by
comparing the model forecasts and observation values of precipitation and the generated
runoff from it. The time-series-based indices: the coefficient of determination (R2), which
measures the goodness-of-fit; and the Nash–Sutcliffe efficiency (NSE) coefficient [38], which
quantifies how well a model simulation can predict the outcome variable, were applied. In
these assessment techniques, if the values are close to 1, this indicates a perfect fit, where
the runoff forecasts are compared with observations. The percent of bias (Pbias) measures
the average tendency of the simulated data to be larger or smaller than the corresponding
observed data [33,34]. The optimal value of Pbias is 0, which indicates the model accuracy,
and if it is positive (negative), this indicates underestimation (overestimation) of the model
biases. The modified Kling–Gupta efficiency (KGE) [55,56], which is written as a linear
transformation of the Euclidian distance of (α, β, r) to the ideal value (1, 1, 1) in a three-
dimensional space, was also used. These coefficients of variation were used to avoid the
impact of bias on the variability indicator:

R2 =
∑n

i=1
(
Qsi −Qs

)(
Qoi −Qo

)√
∑n

i=1
(
Qsi −Qs

)2(Qoi −Qo
)2

; 0 ≤ R2 ≤ 1 (4)

NSE = 1− ∑n
i=1(Qoi −Qsi)

2

∑n
i=1
(
Qoi −Qo

)2 ;−∞ ≤ NSE ≤ 1 (5)

Pbias = ∑n
i (Q

o
i −Qs

i)

∑n
i (Qo

i)
(6)

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (α− 1)2 (7)

KGE′ = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 ;−∞ < KGE′ < 1 (8)
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The Pearson correlation coefficient, r, was used to evaluate the error in the shape and
timing between the observed and simulated stream flow; B was used to evaluate the bias
between observed and simulated stream flow; α is the ratio between the simulated and
observed standard deviations, which was used to evaluate the stream flow variability error;
and γ is the ratio between the simulated and observed coefficients of variation (CV), which
was used to evaluate the stream flow variability error:

r =
cov(Qo, Qs)

σ2
o σ2

s
(9)

β =
µs

µo
(10)

α =
σs

σo
(11)

γ =
σsµo

µsσo
(12)

where Qsi and Qoi are the simulated and observed values at time step i, respectively; Qs
and Qo are the corresponding average values, respectively, for simulated and observed
variables; “cov” is the covariance between observation and simulation; σ is the standard
deviation; and µ is the mean of the observed and simulated flow data.

The HEC-HMS model results were evaluated and compared with the observation.
According to the efficiency category [57], if the efficiency values range between 0.40 and
0.55, the model performs satisfactorily; if the value ranges between 0.55 and 0.65, the model
performs good; and if the value is above 0.65, it performs very good. In the calibration
process, some sensitive parameters in the model basins were considered, and default
values for other less sensitive parameters were used. Some of these parameters were the
time of concentration, storage coefficient, imperviousness, baseflow-recission, loss/gain-
percolation, etc. Thus, the configured and calibrated HEC-HMS model was planned for use
in seasonal flow forecasting and early warning systems.

On the other hand, the spatial results of the flood inundation maps from the model
produced using the 2-Dimentional HEC-RAS mapper were compared with Earth remote
sensing satellite observation images [22]. The images were then exported to vector data (or
shapefile) to estimate the flood inundation extents (square meter) in the GIS environment.

3. Results
3.1. Model Performance
3.1.1. Performance of Bias Correction of Rainfall

The bias correction factors determined for the target months of the 2021 flood season
were 1.13385 for the month of June, 0.95237 for July, 0.96129 for August, and 1.08784 for
September. The R2 values determined for the selected weather stations were 0.95 for Addis
Ababa, 0.89 for Methara, 0.99 for Haik, and 0.99 for Jima as presented in Figure 4. Similarly,
the performances determined using NSE were 0.94 for Addis Ababa, 0.86 for Methara, 0.93
for Haik, and 0.98 for the Jima weather station.
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Figure 4. Observed vs. bias-corrected rainfall for selected weather stations.

3.1.2. Performance of the Hydrological Model with Historical Flow-Rate Data

The runoff forecast results from the model were compared with the observed flow
rates to evaluate the model’s use of statistical metrics, R2 and NSE, for the selected river
gauging stations. The model performed very good as presented in Table 1. The R2 values
were 0.79 for Awash-Hombole, 0.66 for Awash-7, 0.82 for Kesem, and 0.65 for the Awash-
Adaitu River stations in the Awash basin; and 0.81 for Gibe-Tolai and 0.72 for Gibe-Abelti
rivers in the Omo-Gibe basin. The NSE values were obtained for Awash-Kuntire (0.68),
Awash-Hombole (0.71), Awash-7 (0.59), and Awash-Adaitu (0.52) rivers in the Awash basin;
and Gibe-Toli (0.60) and Gibe-Abelti (0.53) river stations in the Omo-Gibe basin. Similarly,
the Pbias and KGE values are also presented in Table 1.

The scatter plots for the selected river gauging stations are also presented in Figure 5,
which compares the predicted model results with the observed data and shows very good
performance ranges (above 0.65).
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Hydrographs for selected river stations from the continuous model simulation were
produced using the 2005–2014 observation records. The time series plots for Awash-
Hombole, Awash-7, Kesem, and Awash-Adaitu River stations in the Awash basin; and
Gibe-Tolai and Gibe-Abelti River stations in the Omo-Gibe basin are presented in Figure 6.
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Table 1. Flood inundations in the model basins based on model and satellite observations.

SN Basin Name River Name R2 NSE Pbias KGE′

1

Awash

Awash-Kuntire 0.73 0.68 43.32 −0.142

2 Awash-Hombole 0.79 0.71 113.84 −0.574

3 Awash-Below Koka 0.82 0.45 52.93 −0.137

4 Methara 0.54 - 108.36 −0.378

5 Awash-7 0.66 0.59 73.74 −0.179

6 Awash-Sedi 0.66 - 63.91 −0.576

7 Kesem 0.82 0.34 69.42 −0.229

8 Awash-Werer 0.73 - 31.85 −0.095

9 Awash-Adaitu 0.65 0.52 4.41 −0.008

10

Omo-Gibe

Gibe-Tolai 0.78 0.60 22.32 −0.048

11 Gibe-Abelti 0.70 0.53 57.54 −0.206

12 Gojeb 0.44 - 103.71 −0.477

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 24 
 

 

Hydrographs for selected river stations from the continuous model simulation were 

produced using the 2005–2014 observation records. The time series plots for Awash-Hom-

bole, Awash-7, Kesem, and Awash-Adaitu River stations in the Awash basin; and Gibe-

Tolai and Gibe-Abelti River stations in the Omo-Gibe basin are presented in Figure 6. 

 

Figure 6. Observed vs. predicted runoff for selected rivers in Awash and Omo-Gibe basins. 

3.1.3. Performance of Flood Maps in Year 2006 

The flood inundation extents from the model were compared with the remotely 

sensed satellite observation maps captured during the 2006 flood season accessed from 

DFO for the flood-prone areas of the study basins. Comparative analysis was carried out 

on the flood inundation results obtained from the model run and the satellite observations 

on 3 and 21 August 2006 and 3 September 2006 (on similar days and year) as presented in 

Table 2 and Figure 7. The flood inundation extent over the main flood-prone areas in 

Awash and Omo-Gibe basins was estimated as 1487.18 km2 (Table 2). This shows that the 

lower Awash has more flood-impacted areas compared with the middle and upper 

Awash sub-basins. On the contrary, the upper Awash sub-basin is highly impacted by 

flooding since more settlements and developments are available than the middle and 

lower Awash sub-basins. Based on the flood inundation extents produced by the model 

with respect to the satellite observations (as reference values), the model results were eval-

uated. The model results are therefore in agreement with the satellite observation images 

and the model performed very good (Table 2). In this analysis, the lake (natural pool) 

areas (e.g., lake Koka, 159.52 km2 for upper Awash) were excluded. 

  

0

200

400

600

800

1000

1200

1400

1600

1 20 6 23 9 2614 1 17 4 20 9 26122916 2 19 5 221027133016 5 22 8 25133016 2 19 6 23 9 2612 1 18 4 21 9 261229

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

D
is

ch
ar

ge
, m

3
s−

1

Year, days

Awash-Hombole, Predicted Awash-Hombole, Observed Kesem, Predicted Kesem, Observed

Awash-7, Predicted Awash-7, Observed Awash-Adaitu, Predicted Awash-Adaitu, Observed

Gibe-Tolai, Predicted Gibe-Tolai, Observed Gibe-Abelti, Predicted Gibe-Abelti, Observed

Figure 6. Observed vs. predicted runoff for selected rivers in Awash and Omo-Gibe basins.

3.1.3. Performance of Flood Maps in Year 2006

The flood inundation extents from the model were compared with the remotely sensed
satellite observation maps captured during the 2006 flood season accessed from DFO for
the flood-prone areas of the study basins. Comparative analysis was carried out on the
flood inundation results obtained from the model run and the satellite observations on 3
and 21 August 2006 and 3 September 2006 (on similar days and year) as presented in Table 2
and Figure 7. The flood inundation extent over the main flood-prone areas in Awash and
Omo-Gibe basins was estimated as 1487.18 km2 (Table 2). This shows that the lower Awash
has more flood-impacted areas compared with the middle and upper Awash sub-basins.
On the contrary, the upper Awash sub-basin is highly impacted by flooding since more
settlements and developments are available than the middle and lower Awash sub-basins.
Based on the flood inundation extents produced by the model with respect to the satellite
observations (as reference values), the model results were evaluated. The model results are
therefore in agreement with the satellite observation images and the model performed very
good (Table 2). In this analysis, the lake (natural pool) areas (e.g., lake Koka, 159.52 km2 for
upper Awash) were excluded.
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Figure 7. Satellite observation from DFO (left) and model inundation maps (right) in 2006 excluding
lake areas, where (a) presents the flood inundation maps in upper Awash (on 3 September 2006); (b)
presents the flood inundation maps in middle Awash (on 3 September 2006); (c) presents the flood
inundation maps in lower Awash basin (on 3 September 2006); (d) presents the flood inundation map
in lower Omo delta (on 21 August 2006).
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Table 2. Flood inundations in the model basins based on model and satellite observations.

Basin
Name

Floodplain Area
Boundary Conditions (BC) Flood Inundation Area, km2

Model
PerformanceUpstream BC

(Energy Slope)
Downstream

BC Captured on Satellite Model

Awash

Upper Awash
(Hombole to

Awash-7)

Hydrographs
(Hombole, Mojo, and

Kelta rivers)

Friction slope
3 September

2006

138.95 133.42 0.96016

Middle Awash
(Awash-7 to

Gewane)

Hydrographs
(Awash-7, Arba

Bordede and Kesem
rivers)

522.98 454.36 0.86879

Lower Awash
(Gewane to Outlet)

Hydrographs (Awash
at Adaitu, Mile and

Logia rivers)
793.93 711.62 0.89632

Omo-Gibe
Lower Omo
(Omorate to

Outlet)

Hydrograph of Omo at
Omorate Friction slope 21 August

2006 241.17 187.79 0.77867

Total 1697.03 1487.18

The Earth remote sensing satellite images captured on 3 September 2006 for Awash
basin (Figure 7a–c) and on 21 August 2006 for Omo-Gibe basin (Figure 7d) were compared
with the model results produced by the 2-Dimentional HEC-RAS mapper for the model
basins and showed agreement.

3.1.4. Performance of Reservoir Water Levels

A comparative analysis between the runoff forecasts and reservoir water levels was
carried out for the 2021 flood season and the observation using the coefficient of deter-
mination (R2) and Nash–Sutcliffe efficiency (NSE) as presented in Table 3. Therefore, the
R2 values determined for the inflows (water levels) for the Koka reservoir for the 2008
analogue year were 0.92 (0.99) and the NSE values determined for the flows (water levels)
were 0.87 (0.95). This showed that the 2021 seasonal floodwater forecasts and the reservoir
water levels showed good correlations with the observation of the 2008 analogue year
(Table 3).

Table 3. Comparison of observation and forecasted flows and water levels for the 2008 analogue year.

Res. Name Year Months/Season
Flows (m3s−1) Reservoir Water Level (m)

Forecasted 2021 Observed 2008 Forecasted 2021 Observed 2008

Koka
2008 analogue

year

June 41.50 55.0 104.40 102.95

July 244.47 417.2 105.60 105.36

August 729.44 853.3 110.00 109.70

September 276.63 515.4 111.00 110.21

Efficiency of the model results compared between the 2008 analogue year observation and 2021
forecast and reservoir flows and water levels

R2 0.9223 0.9916

NSE 0.8712 0.9509

Note: Gibe-3 reservoir is not presented in Table 3 since the reservoir did not exist in 2008.

On the other hand, the 2021 forecasted inflows and reservoir water levels were vali-
dated with observations and are presented in Table 4. Therefore, the R2 values determined
for inflows (water levels) for the Koka reservoir were 0.97 (0.95) and 0.92 (0.99) for the
Gibe-3 reservoir. Likewise, the NSE values for the flows (water levels) for the Koka reser-
voir were 0.89 (0.88) and 0.91 (0.94) for the Gibe-3 reservoir. This shows that the 2021
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seasonal flow forecasts and the reservoir water levels showed good correlations with the
observations of 2021 of the same period.

Table 4. Verification analysis of observed and forecasted flows and water levels for 2021.

Res. Name Year Months/Season
Flows (m3s−1) Reservoir Water Level (m)

Forecasted 2021 Observed 2021 Forecasted 2021 Observed 2021

Koka

2021 flood
season

June 41.50 103.6 104.40 103.41

July 244.47 437.1 105.60 105.85

August 729.44 891.0 110.00 108.67

September 276.63 463.0 111.00 110.36

Efficiency of the model results between the observed and model flow forecasts and reservoir
water levels

R2 0.9724 0.9569

NSE 0.8979 0.8861

Gibe-3

June 128.07 336.3 858.10 862.14

July 2482.79 942.4 869.15 871.12

August 3658.84 1529.2 888.00 885.16

September 1984.78 1058.0 892.00 891.39

Efficiency of the model results between the observed and model flow forecasts and reservoir
water levels

R2 0.9267 0.9918

NSE 0.9166 0.9458

3.2. Rainfall Forecasts at Year 2021

In the model basins, 95 sub-watersheds (w001, w002, . . . , w095) were produced
(Figure 3, Section 2.3.2) in terrain processing to present the contribution of rainfall over each
sub-watershed. Based on the analysis, the bias-corrected temporal mean daily precipitation
distribution were prepared and are presented in Figure 8.
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Figure 8. Bias-corrected mean daily rainfall for the JJAS 2021 flood season over the basin.

The spatial distribution of the rainfall over the study basins showed that the upper
catchment receives more rainfall, which induces more runoff to trigger flooding (Figure 9).
In other words, the rainfall magnitude decreases from the headwater of the model basins
to the lowland areas in both time and space.
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Figure 9. Spatial precipitation distribution for the 2021 flood season (June to September). (a) presents
the precipitation distribution for the month of June; (b) presents the precipitation distribution for
July; (c) presents the precipitation distribution for August; (d) presents the precipitation distribution
for September.

Moreover, the mean accumulated monthly precipitation (Figure 10) showed increasing
trends from June (57.5 mm) to July (201.2 mm) and started decreasing after July to August
(172.5 mm) and September (90.0 mm). Moreover, the historical mean monthly rainfall
is presented in comparison with the 2021 flood season rainfall forecasts (Figure 10). In
essence, the rainfall forecasts showed agreement with the underestimated values for June
and September and were overestimated for July and August.
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3.3. Reservoir Water Level Forecasts

Results showed that the inflows to and outflows from reservoirs, water levels, and
storage were estimated for the analog year, the average year, and the model forecasts for
the 2021 flood season as presented in Table 5. The seasonal floodwater forecasts of Awash-
Hombole and Mojo rivers are major water resources for the Koka reservoir (Figure 11a).
If the reservoir water level of Koka reached 109 m and above, water release from the
reservoir can be identified based on the peak floodwater entering the reservoir. Similarly,
the river flows from Gojeb-Shebe and Gibe-Abelti with other small gauged and ungauged
tributaries are the major water resources contributing to the Gibe-3 reservoir (Figure 11b).
In general, inflow forecasts of water entering and leaving these reservoirs may result in
flooding over flood-prone areas downstream, river banks, and reservoirs, which maintain
excess floodwater for dry period uses.

Table 5. Reservoir storage and water level forecast based on 2008, the average year, and forecasts.

Year Month
Levelt−1,

m
Area,
km2

Volt−1,
MCM

Inflow,
MCM

Rainfall,
mm

Avg.
Area

Evap.,
mm

Outflow,
MCM

Seepage,
MCM

Volt,
MCM

R. Levelt,
m

Koka Reservoir

2008

June 104.67 125.77 294.34 50.92 93.10 122.09 200.00 119.91 2.44 209.86 103.90

July 103.90 118.40 209.86 387.61 251.90 128.80 184.00 110.29 2.37 493.56 106.20

August 106.20 139.20 493.56 786.49 251.90 153.39 174.00 244.70 2.67 1044.63 109.50

September 109.50 167.57 1044.63 481.53 133.70 167.57 174.00 256.66 2.92 1259.83 110.58

Average
year

June 104.67 125.77 294.34 92.50 58.00 124.29 200.00 119.91 2.49 246.79 104.20

July 104.20 122.80 246.79 397.22 83.00 131.20 184.00 110.29 2.41 518.06 106.40

August 106.40 139.60 518.06 813.95 212.00 155.94 174.00 244.70 2.71 1090.53 109.80

September 109.80 172.29 1090.53 424.68 186.00 172.29 174.00 256.66 3.00 1257.62 110.62

Forecasted

June 104.67 125.77 294.34 0.35 57.49 123.74 200.00 119.91 2.47 154.67 103.30

July 103.30 121.70 154.67 375.65 201.17 133.95 184.00 110.29 2.46 419.87 105.70

August 105.70 146.20 419.87 891.01 172.55 161.60 174.00 244.70 2.81 1063.14 109.60

September 109.60 177.00 1063.1 474.86 90.01 177.00 174.00 256.66 3.08 1263.39 110.60

Gibe-3 Reservoir

2008

June 865.71 157.50 10,056.50 1105.6 204.00 158.75 69.00 1040.67 1.10 10,141.76 866.00

July 866.00 160.00 10,141.76 3253.0 241.00 167.50 56.40 988.80 0.94 12,435.94 880.00

August 880.00 175.00 12,435.94 5784.2 236.00 187.50 59.60 1115.97 1.12 17,136.12 894.00

September 894.00 200.00 17,136.12 3416.1 163.00 200.00 67.60 1944.37 1.35 18,625.58 894.00

Average
year

June 865.71 157.50 10,056.50 897.00 204.00 157.50 69.00 1040.67 1.09 9933.00 864.00

July 864.00 157.50 9933.00 2542.90 241.00 162.50 56.40 988.80 0.92 11,516.18 874.00

August 874.00 167.50 11,516.18 4078.90 236.00 176.25 59.60 1115.97 1.05 14,509.15 894.00

September 894.00 185.00 14,509.15 2739.40 163.00 185.00 67.60 1944.37 1.25 15,320.58 894.00

Forecasted

June 865.71 157.50 10,056.50 219.54 57.49 158.75 69.00 1040.67 1.10 9232.45 860.10

July 860.10 160.00 9232.45 2278.89 201.17 168.75 56.40 988.80 0.95 10,546.01 869.15

August 869.15 177.50 10,546.01 4179.83 172.55 188.75 59.60 1115.97 1.12 13,630.06 890.00

September 890.00 200.00 13,630.10 2024.51 90.01 200.00 67.60 1944.37 1.35 13,713.33 892.00
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Figure 11. Seasonal water level forecast for Koka (a) and Gibe-3 (b) reservoirs.

The reservoir water level was 104.67 m on June 1 with storage of 294.34 Mm3 at Koka
and 865.71 m with 10,056.5 Mm3 of storage at Gibe-3 reservoir. The flow forecast values,
water levels, and storage at the end of each month for the target years were estimated and
are presented in Table 5. In the table, for instance, the model estimated and observed Koka
reservoir water levels at the end of September reached 110.60 and 110.36 m, respectively.
The estimated and observed Gibe-3 reservoir water levels reached 892.00 and 891.39 m,
respectively, at the end of September.

The water levels forecasts for the 2021 flood season were also plotted together with
the 2008 analog year, the average year, together with the observed data. The water level
forecasts of Koka reservoir (Figure 11a) and Gibe-3 reservoir (Figure 11b) were in agreement
with the 2008 analog year, average year, and observed data of the target 2021 flood season.

Based on the monthly flow forecasts to the reservoirs and the storage, the decision
to release can be made with some lead time to supplement flood monitoring systems. In
this case, the relational plans between inflow forecasts to reservoirs, the water levels in the
reservoir, and measured releases from reservoirs are important components to consider.
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If this forecast information is not produced in time nor ready for use, there is a chance
of probable flood-related impacts downstream and meager reservation of water supply
during dry periods. In general, reservoirs are used to maintain water, maximize water use
benefits, and mitigate impacts from hydrologic extremes, which are excess (or shortage)
water resources used to meet planned objectives without affecting the environmental water
requirements.

4. Discussion

A seasonal flow (floodwater) forecasting system has not been addressed in the study
basins to monitor and reduce flood risks and use the benefits of excess floodwater for
water resource planning and development. There is no well-established flood forecasting
and monitoring infrastructure in the study basins; instead, traditional techniques are
exercised. This involves data and information collected from river stations and reservoir
water levels [58] and the use of manual interventions, which is ineffective in transferring
data to the forecasting center. In addition, these collection techniques delay the preparation
and dissemination of flood forecasting and early warnings to decision-makers and local
communities. These further delays coordinated flood early warning information, which
may result in flooding impacts and damages.

The excess floodwater over the catchments of the study basins induced from heavy
rainfall in upland areas causes riverine floodings downstream. In addition, the vegetation
cover and soil affect the amount of runoff produced in the catchment and cause flooding.
In the target basins, for instance, the changes in catchment characteristics can modify the
features of river flooding, which requires planning for sustainable development and flood
risk management systems [59,60]. The impacts of flood inundations [61,62] comes from
river flooding, which occurs when the volume of river runoff exceeds the river conveyance
capacities. In this case, the river rises, and its fall may take periods that last weeks or month.
In addition, the failure of reservoir operations (Koka and Gibe-3 reservoirs) in flood control
upstream can lead to fluvial flooding and inundation in flood-prone areas.

In previous studies on seasonal floodwater forecasts, results indicated that early fore-
cast information is used in water resource planning and development strategies and flood
risk mitigation [63,64]. Excess floodwater forecasts, for instance, need to possess technical
guidance on relevant and specific aspects to maintain excess floodwater in reservoirs and
support flood management practitioners [65]. To mitigate flooding impacts using reservoir
operation strategies, different operation schemes have been proposed by researchers to
control target reservoir storages [66] and flood resilience and management activities [67].
In this research, results showed that peak river flow can be minimized using the proposed
arrangements. Nevertheless, the investigation did not use seasonal forecasts at the seasonal
scale, which are useful for reservoirs’ water management and operation [68,69] and multi-
purpose reservoir operations [70]. According to the literature, flood reduction measures
range from traditional (or manual) to technology intervention monitoring systems and
reservoir water monitoring to complement flood control mechanisms. In this study, Earth
remote sensing products and GIS tools were used to produce flood forecasting information
and flood risk maps to reduce flooding impact and damage [70,71].

In essence, the seasonal flood forecasting system will provide practical flood monitor-
ing actions to reduce flood impacts in the study basins and excess floodwater management
in the Koka and Gibe-3 reservoirs. In order to provide timely flood forecasting and early
warnings, it is important to play a role in flood management systems through scientific and
technical approaches. In various literature, monitoring of the impacts of riverine flooding
and the flood risk management tool is considered [71]. In some cases, the effectiveness of
flood risk management systems can be reduced through the variability of flooding and
incompatibility of different approaches. In this case, a web-based flood tool can be used to
convey the forecasting products and dissemination facilities [8] to inform decision-makers
regarding reservoir water monitoring and reduce flooding impacts downstream. The flood
management tool supports the conveyance of forecast products and early warnings.
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In the present study, the seasonal floodwater forecast system showed many benefits,
including the preservation of excess floodwater in reservoirs for future uses, complementing
the flood control system. Nevertheless, there are some limitations, such as (1) the time
needed to forecast products and for the mode of dissemination planned to deliver early
warnings to create awareness and familiarize decision-makers and users; (2) the forecast
models for the domain basins are stand-alone operated using satellite-driven datasets,
which means the forecast products need to be placed in a dedicated location that is accessible
by users; (3) automation and integration of the model input datasets from satellites, the
forecasting model runs, and the flood tool requires investment and operational resources,
for instance, hosting the flood management tool and future running of the forecasting
models on cloud-based infrastructure; and (4) the absence of well-organized institutional
arrangements for the national flood response plan, which aims to provide directions and
guidance to serve for monitoring, preparedness, and emergency precautionary measures.
In this case, the implementation of the flood management tool shall present a surge in
resilience against flooding impacts and future water resource monitoring systems, and (5)
it requires the development of reservoir rule curves to monitor reservoir water resources
from excess floodwater that enters and is released from reservoirs. In general, addressing
the above limitations, future study will further improve the seasonal forecasting systems,
dissemination facilities to support the decision-making processes in future water resources
planning and management strategies, mitigate the negative impacts from flooding in the
study basins, and upscale its services to the national level.

5. Conclusions

In extreme hydrological events, flooding is one of the major sources of floodwater and
poses major threats to people, socio-economics, and the environment in flood-prone areas
when it is excessive. In the past, extreme flooding events in Ethiopia, such as the 1996, 2006,
2016, and 2020 flood seasons, were sources of excess floodwater and impacted people and
destroyed their homes and businesses. The present study, therefore, developed a seasonal
flow forecasting system to estimate the floodwater availabilities and to reduce recurrent
flooding impacts in the Awash and Omo-Gibe basins where flooding impacts are an issue.
The data used were the bias-corrected seasonal precipitation and temperature forecasts
accessed from ClimateSERV (0.5 deg) and the observed rainfall and discharge data for
model calibration and verification of the model results. The methods utilized were the
hydrological model (HEC-HMS) and hydrodynamic model (HEC-RAS) with GIS features
to estimate runoff forecasts and reservoir water balance analysis to estimate the reservoirs’
water levels for the 2021 flood season as a case study.

Some of the forecast results were the rainfall and runoff forecasts at different gauged
and ungauged locations, reservoir water levels, and reservoir storages. In the model
evaluation, the coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent of
bias (Pbias), and Kling–Gupta efficiency (KGE) were applied in addition to plots. In this case,
the R2 and NSE values for selected river gauging stations were obtained and ranged from
0.60 for Gibe-Abelti to 0.79 for Awash-Hombole rivers. The Pbias and KGE values were also
obtained. The R2 values for the Koka and Gibe-3 reservoir inflows (water levels) were 0.97
(0.95) and 0.93 (0.99), and the NSE values were 0.90 (0.88) and 0.92 (0.95), respectively. Based
on the inflow forecasts, the estimated water levels (storages in Mm3) for the Koka reservoir
were 103.3 m (159.09) for June, 105.4 m (386.38) for July, 108.8 m (900.94) for August, and
111.0 m (1467.58) for September. Likewise, the estimated water levels (storage) for the
Gibe-3 reservoir were 862.1 (9546.9), 871.1 (10,937.3), 890.0 (13,530.5), and 890.8 m (13,638.5)
for each month, respectively. Moreover, the flood inundation extents obtained from remote
sensing satellite observation were compared with the model results for the main flood-
prone areas for the 2006 flood event. The comparative results indicated agreement with the
flood inundation extent and the model performed very good. In the analysis, the likelihood
of flooding impacting the upper Awash was higher than the middle and lower Awash
sub-basins where there are dense settlements and more developed infrastructure.
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In summary, the in-situ satellite-driven precipitation and temperature seasonal forecast
data were used to estimate the excess floodwater retained in reservoirs for future water
requirements, complementing the flood monitoring system. In essence, the amount of
water to be stored in and released from the reservoir can be decided based on inflows
and future water use requirements and to protect flood-prone communities, properties,
and infrastructure from the likelihood of flooding impacting downstream. In general,
the seasonal floodwater forecasting system can inform decision-makers on future water
resource planning and management and flood monitoring and early warning systems to
reduce flooding impacts. In the future, the present study can be improved in its operational
functionalities and upscale its services from the basin level to the national level.
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