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Abstract: Road markings, including road lanes and symbolic road markings, can convey abundant
guidance information to autonomous driving cars. However, recent works have paid less attention
to the recognition of symbolic road markings compared with road lanes. In this study, a road-
marking-segmentation dataset named the RMD (Road Marking Dataset) is introduced to compensate
for the lack of datasets and the limitations of the existing datasets. Furthermore, we propose a
novel multiscale attention-based dilated convolutional neural network (MSA-DCNN) to tackle the
proposed RMD. The proposed method employs multiscale attention to merge the weighting outputs
of adjacent multiscale inputs, and dilated convolution to capture spatial-context information. The
performance analysis shows that the proposed MSA-DCNN yields the best results by combining
multiscale attention and dilated convolution. Additionally, the proposed method gains the mIoU of
74.88%, which is a significant improvement over the existing techniques.

Keywords: road-marking segmentation; multiscale attention; dilated convolution; deep learning

1. Introduction

In recent years, autonomous-driving approaches and advanced driver assistance
systems (ADASs) have resulted in unprecedented development at both the academic and
industrial levels [1]. The breakthroughs in the fields of deep learning and computer vision,
as well as the tremendous computational ability of graphics processing units (GPUs), open
the door to research on fully autonomous driving. Fully autonomous driving requires traffic-
scene understanding, including traffic-sign recognition, vehicle and pedestrian detection,
and road-surface recognition (e.g., road-marking recognition) [2,3]. Lane detection, which
is a task of road-surface recognition, plays a vital role in autonomous driving, as road lanes
demonstrate the drivable area on the road for vehicles [4]. In the field of lane detection, a
variety of methods have been proposed, comprising traditional handcrafted feature-based
methods and convolutional neural network (CNN)-based methods [5–12].

However, on urban roads, where autonomous driving faces complex and diverse
problems, lane detection is not the only component of road-surface recognition. In addition
to the drivable area imposed by road lanes, there is abundant information that can assist the
drivers provided by symbolic road markings on road surfaces. Road markings, including
road lanes and symbolic road markings, refer to the application of paints on road surfaces
to communicate information to drivers and pedestrians, as shown in Figure 1. Generally,
a standard system of road markings can convey drivable areas, directions, speed limits,
stopping, etc. [13]. It is commonly believed that understanding the abundant guidance
information provided by symbolic road markings increases the safety of autonomous
driving. However, the publicly available datasets of and approaches to road-marking
recognition pay less attention to the recognition of symbolic road markings than road
lanes [14].
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Figure 1. Some examples of road markings on road surfaces: (a) white solid, maximum speed limit 
40, yellow solid, and left-curve notice (ordinary); (b) stop notice and stop line (shadow); (c) 
pedestrian crossing and stop line (dazzle light); (d) white solid, yellow solid, turn-right notice, and 
straight notice (occlusion); (e) white solid, maximum speed limit 40, school-zone notice, slow-down 
marking, and yellow solid (deteriorated road markings); (f) white solid, slow-down notice, stop 
notice, stop line, and +-shaped road intersection (narrow road). 

Several commonly used and publicly available datasets have been released to 
evaluate various algorithms in the field of autonomous driving (e.g., the KITTI Vision 
Benchmark Suite (KITTI) [15], Cityscape Dataset (Cityscape) [16], Mapillary Vistas 
Dataset (Mapillary) [17], Cambridge-driving Labeled Video Database (CamVid) [18], 
BDD100K [19], TuSimple Benchmark Dataset (TuSimple) [20], and CurveLanes Dataset 
[21]). However, most of the datasets mentioned above only contain a road lane, and some 
of them include limited types of road markings. These limitations mean that road-marking 
recognition is sometimes difficult [13]. For the perception of road markings, Road 
Marking Detection [22] was the first publicly available dataset, released in 2013, and it 
consists of 1443 labeled images with bounding-box annotation belonging to 11 symbolic 
road-marking classes. Most of the earlier works [23,24] using handcrafted feature-based 
methods are evaluated on the Road Marking Detection dataset. However, there exists the 
problem that multiple images present the same scene in Road Marking Detection (e.g., 
from the image of roadmark_1202 to the image of roadmark_ 1259). VPGNet [25] and TRoM 

Figure 1. Some examples of road markings on road surfaces: (a) white solid, maximum speed limit 40,
yellow solid, and left-curve notice (ordinary); (b) stop notice and stop line (shadow); (c) pedestrian
crossing and stop line (dazzle light); (d) white solid, yellow solid, turn-right notice, and straight
notice (occlusion); (e) white solid, maximum speed limit 40, school-zone notice, slow-down marking,
and yellow solid (deteriorated road markings); (f) white solid, slow-down notice, stop notice, stop
line, and +-shaped road intersection (narrow road).

Several commonly used and publicly available datasets have been released to evaluate
various algorithms in the field of autonomous driving (e.g., the KITTI Vision Benchmark
Suite (KITTI) [15], Cityscape Dataset (Cityscape) [16], Mapillary Vistas Dataset (Map-
illary) [17], Cambridge-driving Labeled Video Database (CamVid) [18], BDD100K [19],
TuSimple Benchmark Dataset (TuSimple) [20], and CurveLanes Dataset [21]). However,
most of the datasets mentioned above only contain a road lane, and some of them include
limited types of road markings. These limitations mean that road-marking recognition
is sometimes difficult [13]. For the perception of road markings, Road Marking Detec-
tion [22] was the first publicly available dataset, released in 2013, and it consists of 1443
labeled images with bounding-box annotation belonging to 11 symbolic road-marking
classes. Most of the earlier works [23,24] using handcrafted feature-based methods are
evaluated on the Road Marking Detection dataset. However, there exists the problem that
multiple images present the same scene in Road Marking Detection (e.g., from the image
of roadmark_1202 to the image of roadmark_ 1259). VPGNet [25] and TRoM [14] have be-
come the most popular datasets in road-marking recognition since 2017. VPGNet contains
21,097 labeled images with pixel-level annotation belonging to 17 classes, while TRoM
contains 712 labeled images with pixel-level annotation belonging to 19 classes. Recent
works [13,25–27] based on CNN methods have addressed the problem of road-marking
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segmentation using VPGNet and TRoM. However, it has been indicated that the instance
frequency of the symbolic-road-marking classes is much lower than that of the road lanes in
VPGNet and TRoM [28]. CeyMo [28] is a new dataset for road-marking detection consisting
of 2887 labeled images belonging to 11 road-marking classes (released in 2022). Although
CeyMo makes up for the shortcoming of the low frequency of instances for symbolic
road markings, the number of classes of road markings is too small compared with the
real-world situation.

As described before, research on road-marking perception remains an ongoing chal-
lenge due to the lack of datasets and the limitations of the existing datasets. Hence, a new
dataset called the Road Marking Dataset (RMD) was created to cope with the real-world
conditions of urban road markings in this study. The RMD has 3221 well-labeled images
belonging to 30 classes that were collected from three cities in Japan (i.e., Yokohama, Chofu,
and Nogata). The RMD covers 29 categories of road markings on urban road surfaces, and
it has the largest number of classes among the existing datasets.

The RMD contains both road lanes and symbolic road markings. This study focuses on
road-marking segmentation. Hence, a multiscale attention-based dilated convolutional neu-
ral network (MSA-DCNN) is proposed and applied to the RMD. The proposed MSA-DCNN
takes multiple-scale images that are resized from the original image as inputs to learn the at-
tention weights of each scale, following merging the semantic predictions to obtain the final
output. In addition, dilated convolution [29] is adopted in the feature-extraction process to
utilize a larger range of spatial-context information. The main inspiration of the proposed
method comes from previous studies [30,31]. Chen et al. [30] resize the input images to
several scales to pass them through a shared network, and they prove that multiscale inputs
improve the performance of semantic segmentation compared with a single-scale input.
The experiments in [31] show that large-scale objects can be better segmented in resized
images with reduced pixel counts because the receptive field of the CNN can observe
more global context. Moreover, fine details, such as objects of thin structures, can be well
predicted in resized images with increased pixel counts.

The remainder of this paper is organized as follows. Section 2 describes the related
work. Section 3 introduces the proposed dataset. Thereafter, the proposed method is
presented in Section 4. Section 5 presents the results of the experiments. Finally, Section 6
concludes the paper.

2. Related Work
2.1. Road-Marking Recognition

The earlier works [4,23,32,33] on road-marking recognition commonly adopted a
combination of highly specialized handcrafted features and heuristics to identify road
markings [1]. The common procedure of the traditional methods is distortion correction,
inverse perspective mapping (IPM), feature extraction, and line or curve fitting. Within the
last few years, the research into deep learning and computer vision has witnessed exciting
progress, which has been expanded into autonomous driving and ADAS applications. It
has been shown that CNN-based methods outperform traditional approaches in many
applications [12]. Therefore, CNN-based methods have been replacing handcrafted feature-
based methods in road-marking recognition. Davy et al. [1] proposed an end-to-end
solution to lane detection for the first time by converting lane detection to an instance-
segmentation problem. Pan et al. [3] won first place on TuSimple [20] by proposing
a spatial convolutional neural network (SCNN) in 2017 in which traditional layer-by-
layer convolutions are converted to slice-by-slice convolutions within feature maps. The
aforementioned lane-detection approaches adopted the idea of segmentation, finding all
the masks belonging to the same road lane, and then outputting the lane line through the
method of curve fitting.

For the recognition of symbolic road markings, Lee et al. [25] exploited vanishing-point
prediction to guide robust lane and road-marking detection. Liu et al. [13] presented the
residual neural network (ResNet) [34] with pyramid pooling (RPP) as the baseline model for
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their TRoM dataset. Oshada et al. [28] presented two baseline models, an object-detection
model and an instance-segmentation model, as baseline models for their CeyMo dataset.
As mentioned in Section 1, the approaches to road-marking recognition pay less attention
to the perception of symbolic road markings than road lanes. Although algorithms on
road-lane detection [1,3,11] have achieved convincing results, CNN-based methods on
symbolic road markings have rarely been seen, except in [14,25,28].

2.2. Semantic Segmentation by CNN

Semantic segmentation is a computer-vision task that associates a class with each
pixel of an image. It is used to identify the cluster of pixels that make up a distinguishable
class. Various methods [29,35–38] have been proposed to address problems on different
topics, such as the semantic segmentation of medical images, satellite images, street views,
etc. Most of the current mainstream semantic-segmentation methods are based on a work
called the fully convolutional network (FCN) for semantic segmentation [35]. Different
from the classic CNN that uses the fully connected layer after the convolutional layers to
obtain a fixed-length feature vector for classification, the FCN uses the deconvolution layer
to upsample the feature map to the same size as the input image. However, FCN-based
methods usually have the problem that the gradually decreasing feature-map resolution
will lead to the loss of spatial information as the network deepens. U-Net [36] is assuredly
one of the most successful methods, and particularly in the task of medical-image segmen-
tation. The encoder–decoder structure and skip connections are still the core ideas of many
CNN-based methods that ensure that the feature map of each layer in the decoder part is
fused by low-level features and high-level features. The pyramid scene-parsing network
(PSPNet) [38] obtained high-quality results in scene-parsing tasks by introducing context
information to the network. The PSPNet employs the feature extraction layers of ResNet-
101 [34] for the encoder, and it adds a pyramid pooling module (PPM) between the encoder
and decoder to gather spatial-context information. The encoder part of DeepLabv3+ [29]
adopts a CNN with atrous convolution, in which ResNet [34] can be used, following atrous
spatial pyramid pooling (ASPP), which mainly utilizes multiscale context information.
The decoder part further fuses low-level features with high-level features to improve the
accuracy of the segmentation boundaries [29,37].

2.3. Multiscale Context

The problem of multiple-scale objects is prevalent in the proposed RMD. Due to the
size and location of road markings, the pixels occupied by each instance are different. As
shown in Figure 1e, the number of pixels occupied by the road marking of maximum
speed limit 40 on the left side of the road is significantly greater than that on the right
side of the road, although they are the same object. Chen et al. [29] specify this problem
as the existence of objects at multiple scales, which is a main difficulty for the task of
semantic segmentation. To handle the problem, a wide range of methods have been
proposed [30,36–38], which can be summarized into the following four types of network
architectures, shown in Figure 2 [29].

The first type is the image pyramid (Figure 2a), which uses images of different sizes
as inputs to obtain individual predictions by two separate networks. The final output is
commonly derived by merging the two predictions by average pooling or max pooling [30].
U-Net [36], which adopts an encoder–decoder structure, is a typical example of the second
type (Figure 2b). The encoder–decoder structure extracts multiscale features from the
encoder part, and it restores the feature-map resolution by the decoder part. The third
type (e.g., the DeepLab series [29,37]) employs dilated convolution (atrous convolution)
using different dilation rates to extract multiscale features (Figure 2c). Furthermore, dilated
convolution can control the receptive field of the feature map. The fourth type is spatial
pyramid pooling (SPP) (e.g., PPM of the PSPNet [38]), which can accept a feature map of
any size, and then control the size of the feature map after SPP (Figure 2d).
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3. Proposed Dataset

The proposed RMD is a new dataset for the semantic segmentation of road markings,
including symbolic road markings and road lanes. It comprises 3221 pixel-level annotated
road-surface images of 29 road-marking categories, with a size of 1920 × 1080. The RMD
was built with the aim of making up for the lack of datasets and the limitations of the
existing datasets in the field of road-marking recognition, as mentioned in Section 1. The
raw data of the proposed RMD were collected by a camera mounted inside a vehicle from
three cities in Japan: Yokohama, Chofu, and Nogata, in November 2015, November 2015,
and March 2017, respectively. Thereafter, from the 9779 frames of road-surface scenes
obtained, 3221 representative scenes with more than one symbolic road marking were
extracted for composing the RMD, which ensured that each image contained at least one
symbolic road marking.

As shown in Figure 1, a variety of scenarios, such as (a) ordinary, (b) shadow, (c) dazzle
light, (d) occlusion, (e) deteriorated road markings, and (f) narrow road, were carefully
selected to design the proposed RMD. To the best of our knowledge, the RMD covers the
most categories compared with the other existing datasets, as shown in Table 1.

Table 1. Comparative statistics of the proposed RMD with the existing datasets.

Dataset Categories Images Location

Road Marking Detection [22] 11 1443 USA
VPGNet [25] 17 21,097 Korea
TRoM [14] 19 712 China
CeyMo [28] 11 2887 Sri Lanka

RMD (this study) 30 3221 Japan

A graphical image-annotation tool called Labelme [39] was used to manually annotate
the raw images. Both symbolic road markings and road lanes were manually annotated as
polygons with corresponding shapes. After annotation, pixel-level segmentation masks
were converted from the generated JSON format data. Examples of RMDs are shown in
Figure 3. It should be noted that, when annotating road markings consisting of multiple
Japanese characters, only the key characters were annotated, as shown in Figure 3d.
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Figure 3. Examples of RMD: (a,c) image of scene; (b,d) segmentation mask.

The RMD is divided into the training and test sets at a ratio of approximately 9:1,
which correspond to 2990 and 321 images, respectively. Table 2 shows the ID and RGB
value of each category, and the numbers of images for each category in the training set,
test set, and the total. Because the road surface in each image may involve several road
markings (Figure 1e), including the same road marking in plural, the number of instances
of each category is more than the number of images for each category. The RMD needs to
be perfected by adding more road-surface images with symbolic road markings due to the
problem of class imbalance, shown in Table 2.

Table 2. Summary of the Road Marking Dataset (RMD) compiled by this study.

ID RGB Category Training Set Test Set Total

0 0,0,0 Background 2900 321 3221
1 128,0,0 Yellow solid 676 66 742
2 0,128,0 Stop line 626 81 707
3 128,128,0 White solid 2119 222 2341
4 0,0,128 Left notice 56 7 63
5 128,0,128 Right notice 26 3 29
6 0,128,128 Pedestrian crossing 1024 109 1133
7 128,128,128 Approach to pedestrian and bicycle crossing 311 39 350
8 64,0,0 Maximum speed limit 40 139 19 158
9 192,0,0 Sharp-turn notice 34 5 39

10 64,0,128 School-zone notice 33 4 37
11 192,128,0 White broken 368 40 408
12 64,0,128 White dotted 183 24 207
13 192,0,128 Slow-down marking 75 16 91
14 64,128,128 Slow-down notice 33 6 39
15 192,128,128 Straight 87 11 98
16 0,192,0 Stop notice 52 5 57
17 128,192,0 +-shaped road intersection 6 2 8
18 0,64,128 T-shaped road intersection 55 11 66
19 128,64,128 Maximum speed limit 20 124 18 142
20 0,192,128 Right 17 2 19
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Table 2. Cont.

ID RGB Category Training Set Test Set Total

21 128,192,128 Maximum speed limit 50 48 7 55
22 64,64,0 Straight-plus-left notice 11 4 15
23 192,64,0 Straight plus left 92 8 100
24 64,192,0 Left-curve notice 75 18 93
25 192,192,0 Notice 14 4 18
26 0,192,128 Left 18 9 27
27 192,64,128 Bicycle crossing 9 2 11
28 64,192,128 Straight notice 13 5 18
29 192,192,128 Maximum speed limit 30 32 5 37

4. Proposed Method
4.1. Overview of Proposed Method

In this study, we propose a novel multiscale attention-based dilated convolutional
neural network (MSA-DCNN) to tackle the RMD. The structure of the MSA-DCNN is
similar to the image pyramid shown in Figure 2a. The most intuitive examples of Figure 2a
are the average pooling and max pooling over two input scales. They can be considered as
special cases of an attention mechanism applied to the image pyramid. Average pooling
assigns the same weight to features at each scale, while max pooling assigns the weights of 0
and 1. In this study, unlike merging the predictions by average pooling or max pooling, we
adopted an attention module that can softly weight the feature maps from different input
scales [30,31]. The weights obtained by the attention module can reflect the importance of
features at all the spatial positions from different input scales. The representation power of
the CNN can be increased by the pixel-wise multiplication of the attention weights and
feature maps, such that the attention mechanism allows the CNN to focus on features from
important input scales, and it suppress features from the other input scales. As a result, the
attention module decides the weight of a feature at the same position for each scale, and it
increases the representation power of the CNN. In addition, dilated convolution [29] is used
to enlarge the receptive field of feature maps and utilize a large range of spatial-context
information. Hence, the MSA-DCNN can be seen as a combination of types, as shown
in Figure 2a,c. The proposed MSA-DCNN is a share-net [30], where multiscale inputs
are fed to an attention-weight-shared DCNN. The network for each scale is composed of
a feature-extraction part, semantic head, and attention module. To be more specific, we
explain the procedures of the training process and inference processes by two examples.
The basic notations and meanings are defined in Table 3.

Table 3. Notations and meanings for the proposed method.

Notations Meanings

s The scale of input
scales = 〈s1, s2〉 The list of input scales in the training process composed of s1 and s2
scales = {s1, s2} The list of input scales in the inference process composed of s1 and s2

ps The semantic prediction of scale s obtained by semantic head
αs The attention weights of scale s obtained by attention module
Os The output mask of scales
O f The final output mask
U The upsampling operation by bilinear interpolation
D The downsampling operation by bilinear interpolation
∗ The pixel-wise multiplication
+ The pixel-wise addition

4.1.1. Training Process

First, the original image is scaled by s = 0.5 and s = 1.0 (s = 0.5 means that the
number of pixels on a side is resized to 0.5 times, while s = 1.0 means no operation), such
that we have multiscale inputs of s = 0.5 and s = 1.0, denoted as scales = 〈0.5, 1.0〉, as
shown in Figure 4. Images at two scales are passed through the same feature-extraction part
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to obtain feature maps with semantic information. The feature maps then go through the
semantic head and attention module. The semantic head performs the semantic prediction
(ps), and the attention module produces attention weights (αs) over all spatial positions.
It should be noted that the attention weights are learned from the adjacent scale pairs in
the training process, which are the input scales of s = 0.5 and s = 1.0 in this example. The
learned attention weights are considered relative attention weights between the adjacent
scale pairs. Thereafter, the output mask (O0.5) of scale s = 0.5 is produced by the pixel-wise
multiplication of semantic prediction p0.5 and attention weights α0.5. The equation can be
formalized as:

O0.5 = p0.5 ∗ α0.5 (1)

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

𝑂𝑂𝑓𝑓 The final output mask 
𝑈𝑈 The upsampling operation by bilinear interpolation 
D The downsampling operation by bilinear interpolation 
∗ The pixel-wise multiplication 
+ The pixel-wise addition 

4.1.1. Training Process 
First, the original image is scaled by 𝑠𝑠 = 0.5 and 𝑠𝑠 = 1.0 (𝑠𝑠 = 0.5 means that the 

number of pixels on a side is resized to 0.5 times, while 𝑠𝑠 = 1.0 means no operation), 
such that we have multiscale inputs of 𝑠𝑠 = 0.5  and 𝑠𝑠 = 1.0 , denoted as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
〈0.5,1.0〉, as shown in Figure 4. Images at two scales are passed through the same feature-
extraction part to obtain feature maps with semantic information. The feature maps then 
go through the semantic head and attention module. The semantic head performs the 
semantic prediction (𝑝𝑝𝑠𝑠), and the attention module produces attention weights (𝛼𝛼𝑠𝑠) over 
all spatial positions. It should be noted that the attention weights are learned from the 
adjacent scale pairs in the training process, which are the input scales of 𝑠𝑠 = 0.5 and 𝑠𝑠 =
1.0  in this example. The learned attention weights are considered relative attention 
weights between the adjacent scale pairs. Thereafter, the output mask (𝑂𝑂0.5) of scale 𝑠𝑠 =
0.5 is produced by the pixel-wise multiplication of semantic prediction 𝑝𝑝0.5 and attention 
weights 𝛼𝛼0.5. The equation can be formalized as: 

𝑂𝑂0.5 = 𝑝𝑝0.5 ∗ 𝛼𝛼0.5 (1) 

The output mask (𝑂𝑂1.0)  of scale 𝑠𝑠 = 1.0  is produced by the pixel-wise 
multiplication of semantic prediction 𝑝𝑝1.0 and attention weights (1 − 𝑈𝑈(𝛼𝛼0.5)), where 𝑈𝑈 
represents the upsampling operation. The equation can be formalized as: 

𝑂𝑂1.0 = 𝑝𝑝1.0 ∗ (1 − 𝑈𝑈(𝛼𝛼0.5)) (2) 

Thus, the final output (𝑂𝑂𝑓𝑓 ), which is the same size as the original image, can be 
expressed with pixel-wise addition, denoted as +. 

𝑂𝑂𝑓𝑓 = 𝑈𝑈(𝑂𝑂0.5) + 𝑂𝑂1.0 

= 𝑈𝑈(𝑝𝑝0.5 ∗ 𝛼𝛼0.5) + 𝑝𝑝1.0 ∗ (1 − 𝑈𝑈(𝛼𝛼0.5)) 
(3) 

 
Figure 4. The procedure of the training process of the proposed method. 

  

Figure 4. The procedure of the training process of the proposed method.

The output mask (O1.0) of scale s = 1.0 is produced by the pixel-wise multiplication
of semantic prediction p1.0 and attention weights (1−U(α0.5)), where U represents the
upsampling operation. The equation can be formalized as:

O1.0 = p1.0 ∗ (1−U(α0.5)) (2)

Thus, the final output (O f ), which is the same size as the original image, can be
expressed with pixel-wise addition, denoted as +.

O f = U(O0.5) + O1.0= U(p0.5 ∗ α0.5) + p1.0 ∗ (1−U(α0.5)) (3)

4.1.2. Inference Process

The procedure of the inference process is similar to that of the training process. Because
the attention weights are learned between adjacent scales in the training process, different
multiscale inputs can be selected at the inference time. Here, we explain the inference
process using the three inputs, the scales of which are s = 0.5, s = 1.0, and s = 2.0,
denoted as scales = {0.5, 1.0, 2.0}, as shown in Figure 5. We obtain the final output mask
(O f ) by combining the semantic predictions of these three different scale inputs based on
the attention modules.
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First, the original image is scaled by s = 0.5, s = 1.0, and s = 2.0 (s = 2.0 means that
the number of pixels on a side is resized to 2.0 times), such that we have multiscale inputs
of s = 0.5, s = 1.0, and s = 2.0, denoted as scales = {0.5, 1.0, 2.0}. Images at three scales
are passed through the feature-extraction part to obtain feature maps, and the semantic
head to obtain semantic predictions. The output mask (O1.0) of scale s = 1.0 is produced
by the pixel-wise multiplication of semantic prediction p1.0 and attention weights α1.0. The
equation can be formalized as:

O1.0 = p1.0 ∗ α1.0 (4)

The output mask (O2.0) of scale s = 2.0 is produced by the pixel-wise multiplication
of semantic prediction D(p2.0), where D represents the downsampling operation, and
attention weights (1− α1.0). The equation can be formalized as:

O2.0 = D(p2.0) ∗ (1− α1.0) (5)

The output mask (O0.5) of scale s = 0.5 is produced by the pixel-wise multiplication
of semantic prediction p0.5 and attention weights α0.5. The equation can be formalized as:

O0.5 = p0.5 ∗ α0.5. (6)

Thus, for the final output (O f ), the equation can be formalized as:

O f = U(p0.5 ∗ α0.5) + (p1.0 ∗ α1.0 + D(p2.0) ∗ (1− α1.0)) ∗ (1−U(α0.5)) (7)

As described above, the training and inference processes are explained by the two
examples. Multiscale inputs of s = 0.5 and s = 1.0, denoted as scales = 〈0.5, 1.0〉, are used
in the example of the training process. The attention weights (α0.5) of scale s = 0.5 and the
attention weights (1−U(α0.5)) of scale s = 1.0 are learned from the adjacent scale pairs
of s = 0.5 and s = 1.0, respectively. Because the attention weights learned are relative,
we can flexibly select the scales of the inputs at the inference time. For the example of
the inference process, the multiscale inputs s = 0.5, s = 1.0, and s = 2.0, denoted as
scales = {0.5, 1.0, 2.0}, are used. The attention weights learned from the training process
will be used in the inference process, and the learned attention weights can be rescaled by
bilinear interpolation to fit the semantic predictions of different scales of inputs.
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4.2. Feature Extraction

The feature-extraction part in the proposed method is a modified ResNet-50 [34] based
on dilated convolution [29]. ResNet is widely used to design CNNs as a backbone, and
dilated convolution is used to enlarge the receptive field of feature maps and utilize a
large range of spatial-context information. Stage 1 and Stage 2 in the feature-extraction
part represent the layers of conv2_x and conv3_x in ResNet-50 [34], while Stage 3 and
Stage 4 are the modified layers of conv4_x and conv5_x in ResNet-50 [34], based on
dilated convolution. We removed the striding in the layers of conv_4x and conv5_x by
adding dilated convolution layers. ResNet-50 has five downsampling operations by conv1,
max pool, conv3_1, conv4_1, and conv5_1, with a stride of 2, which makes the whole
downsampling factor 32. However, our modified ResNet-50 has a downsampling factor
of 8 to enlarge the receptive field of the feature maps. Table 4 shows the comparison of
the output size of the feature map caused by the downsampling operation in the feature-
extraction part of the proposed method and the original ResNet-50. It can be seen that the
feature map is enlarged to preserve more spatial information by our feature-extraction part.
The dilated convolution is embedded into the last two stages because avoiding the memory
consumption caused by the high-resolution feature map and the downsampling factor of 8
is enough to preserve most of the spatial information [40].

Table 4. Comparison of the output size of the feature map caused by the downsampling operation in
the feature-extraction part of the proposed method and the original ResNet-50.

Suppose the Crop Size is 1024 × 1024

Feature-extraction part Downsampling Conv7 × 7 Stage1 Stage2 Stage3 Stage4
Output size 512 × 512 256 × 256 128 × 128 128 × 128 128 × 128

ResNet-50
Downsampling Conv1 Conv2_x Conv3_x Conv4_x Conv5_x

Output size 512 × 512 256 × 256 128 × 128 64 × 64 32 × 32

4.3. Semantic Head and Attention Module

As mentioned earlier, the semantic predictions are performed by the semantic head,
and the attention module produces the attention weights. The structures of the semantic
head and attention module are identical, both consisting of Conv (3 × 3) (256), BN, ReLU,
Conv (3 × 3) (256), BN, ReLU, and Conv (1 × 1) (dimension), as shown in Figure 4. Both
the semantic head and attention module are fed with the final feature map from Stage 4 in
the feature-extraction part. The only difference between the semantic head and attention
module is the dimension of the final convolution output (conv1 × 1). For the semantic
head, the number of channels of the final convolution output is consistent with the number
of categories in the dataset. However, the attention module outputs a single channel, where
the value of each position represents the weight of the corresponding position.

To be more specific, we discuss how the attention module merges the feature maps
from multiscale inputs. Assuming that the spatial position of semantic prediction is i,
and c ∈ {1, . . . , C}, where C is the number of categories, the semantic prediction can be
denoted as ps

i,c, where s ∈ {1, . . . , S} is the scale of the input. The attention module merges
the semantic predictions from multiscale inputs to obtain the weighted sum, which is the
output mask in this study. We denote oi,c as the output mask at the spatial position i for the
category c, and αs

i as the attention weight at position i for scale s, and we have:

oi,c =
S

∑
j=1

ps
i,c.αs

i (8)

The attention weight (αs
i ) is computed as follows:

αs
i = k1,1 ⊗max(0, k3,3 ⊗max(0, k3,3 ⊗ fS4)) (9)
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where ⊗ denotes the convolution operation, k1,1 and k3,3 represent kernels with the sizes
of 1× 1 and 3× 3, respectively, and fS4 ∈ RCh×H×W is the final feature map from Stage
4 in the feature-extraction part. The attention module was designed to compute a soft
weight at each spatial position for each scale. Because the convolution operation can
extract informative spatial features, we designed the structure of the attention module as
mentioned earlier. Furthermore, backpropagation is used to calculate the gradient of the
loss function. As a result, the attention module decides the weight of a feature at the same
position for each scale, and it increases the representation power of the CNN.

5. Results
5.1. Experimental Details

The proposed MSA-DCNN was trained using the RMD on a Linux Ubuntu 20.04 LTS
with one NVIDIA GeForce RTX 3090 GPU with 24 GB video memory and the PyTorch
framework. The batch size was set as 2. The stochastic gradient descent (SGD) with an
original learning rate of 0.005, a momentum of 0.9, and a weight decay of 0.0001 was
selected to optimize the proposed MSA-DCNN. We trained the models for 200 epochs.
Random horizontal flipping, Gaussian blurring, color augmentation, and cropping were
employed to augment the RMD. The cross entropy [41,42] was used as the loss function,
which can be defined as follows:

L(yo,c, po,c) = −
1
m

m

∑
j=1

n

∑
i=1

yo,clog(po,c) (10)

where m is the batch dimension, n is the number of classes, y is the binary indicator (if
class label c is the correct classification for observation o, y = 1), and p is the predicted
probability that observation o is of class c. To evaluate the proposed models, we used
intersection over union (IoU) [43] as the metric, which can be defined as follows:

IoU =
|A ∩ B|
|A ∪ B| (11)

where A is the ground truth, and B is the predicted result.

5.2. Results of the Proposed Method

As mentioned in Section 4, the original image will be scaled by specific factors to
compose scale pairs in the training process to learn the attention weights between adjacent
scale pairs. In the example of the training process described in Section 4, the input scales of
s = 0.5 and s = 1.0, denoted as scales = 〈0.5, 1.0〉, are used to explain the training process.
In the experimental stage of this study, we trained the two models: Model 1 and Model 2.
Model 1 employed scales of s = 0.5 and s = 1.0, denoted as scales = 〈0.5, 1.0〉, and Model
2 employed scales of s = 1.0 and s = 2.0, denoted as scales = 〈1.0, 2.0〉.

The loss and mean IoU (mIoU) values of the two models for the test set during the
training process are shown in Figure 6. It should be noted that, when calculating the loss
and mIoU, the images of the test set are scaled with the same factors as those of the training
set. Model 1, with scales = 〈0.5, 1.0〉, gained the best mIoU (73.29%) for the epoch of 153,
while Model 2, with scales = 〈1.0, 2.0〉, obtained the best mIoU (67.32%) for the epoch of
180. Model 1 and Model 2 learn the attention weights between specific adjacent scale pairs,
which are scales = 〈0.5, 1.0〉 and scales = 〈1.0, 2.0〉, respectively.
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In the example of the inference process described in Section 4, scales of s = 0.5, s = 1.0,
and s = 2.0, denoted as scales = {0.5, 1.0, 2.0}, are used to explain the inference process.
Because we can flexibly select multiple scales at the inference time, five kinds of multiscale
inputs were selected to evaluate Model 1 and Model 2 in the experimental stage of this study:
scales = {1.0, 2.0}, scales = {0.5, 1.0}, scales = {0.5, 1.0, 2.0}, scales = {0.25, 0.5, 1.0}, and
scales = {0.25, 0.5, 1.0, 2.0}. For example, scales = {0.25, 0.5, 1.0, 2.0}means that multiple
scales of s = 0.25, s = 0.5, s = 1.0, and s = 2.0 are used as the inputs to evaluate the two
models at the inference time.

Table 5 presents the mIoU values of Model 1 and Model 2 with five kinds of multiscale
inputs in the inference process. It is shown that both Model 1 and Model 2 result in the best
mIoU values: 73.55% for Model 1 and 74.88% for Model 2, when scales = {0.5, 1.0, 2.0}.
Except for scales = {1.0, 2.0}, the differences in the mIoU values obtained by Model 1
and Model 2 are not larger than 1.1% and 1.15%, respectively. Using the scale of s = 2.0
will enhance the segmentation accuracy of smaller road markings, but it is not conducive
to the segmentation of larger road markings. In contrast, using scales of s = 0.5 and
s = 0.25 can improve the segmentation accuracy of larger road markings, but is not good at
the segmentation of smaller road markings. We have observed that the number of road
markings at a relatively large scale is significantly larger than that at a smaller scale in the
RMD. This is considered the main reason for the low mIoU values on scales = {1.0, 2.0}
compared with the others.

Table 5. The mIoU values obtained by Model 1 and Model 2 with the five kinds of multiscale inputs.

Input Scale mIoU

Model 1 Model 2

scales = {1.0, 2.0} 65.68 67.32
scales = {0.5, 1.0} 73.29 74.41

scales = {0.5, 1.0, 2.0} 73.55 74.88
scales = {0.25, 0.5, 1.0} 72.45 73.73

scales = {0.25, 0.5, 1.0, 2.0} 72.64 74.22

Examples of the results obtained by Model 1 and Model 2 with five kinds of multiscale
inputs are shown in Figure 7. Apart from the result of scales = {1.0, 2.0}, the results of the
other multiscale inputs seem to be credible. For the result of scales = {1.0, 2.0} obtained
by Model 1 (Figure 7c) and Model 2 (Figure 7h), a clear misprediction indicated by the
red ellipse can be observed. We assume that the short white line in the red ellipse was
incorrectly predicted as the stop line because the scale s = 2.0 was used to allow the
network to pay more attention to the fine details. However, the other multiscale inputs
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(Figure 7e,g,j,l) containing scale s = 2.0 do not show this trend. We believe that scale s = 0.5
successfully weakens the effect of scale s = 2.0 because there are more relatively large road
markings in the RMD.
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Figure 7. Examples of results obtained by Model 1 and Model 2 with five kinds of multi-
scale inputs: (a) original input image; (b) ground truth; (c) prediction result of Model 1 with
scales = {1.0, 2.0}; (d) prediction result of Model 1 with scales = {0.5, 1.0}; (e) prediction result
of Model 1 with scales = {0.5, 1.0, 2.0}; (f) prediction result of Model 1 with scales = {0.25, 0.5, 1.0};
(g) prediction result of Model 1 with scales = {0.25, 0.5, 1.0, 2.0}; (h) prediction result of Model 2 with
scales = {1.0, 2.0}; (i) prediction result of Model 2 with scales = {0.5, 1.0}; (j) prediction result of
Model 2 with scales = {0.5, 1.0, 2.0}; (k) prediction result of Model 2 with scales = {0.25, 0.5, 1.0};
(l) prediction result of Model 2 with scales = {0.25, 0.5, 1.0, 2.0}. The performances of multiscale
inputs with s = 2.0 on the short white line are highlighted by the red ellipses.

In addition, the best results obtained by Model 2 with scales = {0.5, 1.0, 2.0} are shown
in Table 6 (IoU of each class), and some examples are illustrated in Figure 8. Excluding the
background, the model achieved a 74.05% mIoU. Overall, half of the road markings have
IoU values greater than 75%. Regardless of the distance between the road markings and
the camera inside the vehicle, the road markings at a large scale, such as the pedestrian
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crossing and slow-down marking, are better segmented, achieving IoU values of more than
80%. At the same time, those that achieved lower IoU values are generally road markings
at a small scale. Hence, perfecting the proposed RMD by adding images of road-surface
scenes with road markings at a smaller scale becomes more crucial. The illustration of
some prediction results shows that the model reproduces the overall features of the road
markings. The first row of Figure 8 shows that the model can detect deteriorated road
markings. We can also see that the model can detect road markings in shadow, as shown in
the fourth row of Figure 8.

Table 6. IoU of each category obtained by Model 2 with scales = {0.5, 1.0, 2.0}.

Category IoU

Background 99.08
Yellow solid 83.62

Stop line 58.42
White solid 71.46
Left notice 60.23

Right notice 52.62
Pedestrian crossing 82.16

Approach to pedestrian and bicycle crossing 85.91
Maximum speed limit 40 77.98

Sharp-turn notice 78.04
School-zone notice 81.65

White broken 65.49
White dotted 82.71

Slow-down marking 85.19
Slow-down notice 82.82

Straight 75.42
Stop notice 83.93

+-shaped road intersection 79.85
T-shaped road intersection 85.40
Maximum speed limit 20 79.11

Right 82.64
Maximum speed limit 50 73.61
Straight-plus-left notice 83.41

Straight plus left 50.68
Left-curve notice 52.01

Notice 63.73
Left 82.37

Bicycle crossing 72.22
Straight notice 65.78

Maximum speed limit 30 68.95
mIoU 74.88

mIoU (29 road-marking categories) 74.05

5.3. Performance Analysis

To validate the performance of the proposed MSA-DCNN, a performance analysis
was conducted. Because the multiscale attention module and dilated convolution are the
core ideas adopted, we set up three additional experiments, as shown in Table 7. We
evaluated the model with ResNet-50 [34]-based feature extraction as the baseline model
(No. 1) on the test dataset of the RMD, and we obtained a 67.24% mIoU. The second model
(No. 2), with our modified ResNet-50 as the feature-extraction part, outperformed the
baseline model by a gain of 2.11% mIoU. The multiscale attention-based CNN [31] without
dilated convolution in the feature-extraction part (No. 3) resulted in a gain of 1.72% mIoU
compared with No. 2. Finally, the proposed MSA-DCNN acquired the top value of a 74.88%
mIoU. The ablation study shows that the proposed MSA-DCNN yields the best results
combining multiscale attention and dilated convolution.
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Table 7. Performance analysis on the test dataset of RMD.

No. Multiscale Attention Dilated Convolution mIoU

1 67.24
2

√
69.35

3
√

71.07
4

√ √
74.88
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5.4. Comparisons with Other Models

The proposed method was designed to tackle the problem of the existence of objects
at multiple scales of the RMD, as mentioned in Section 4.1. Moreover, our proposed
method is a combination of two types of methods to handle the problems that are the image
pyramid (Figure 2a) and dilated convolution (Figure 2c). It is reasonable to compare the
proposed method with other types of methods (i.e., encoder–decoder, dilated convolution,
and pyramid pooling). Hence, we selected three representative state-of-the-art models,
U-Net [36], PSPNet [38], and DeepLabV3+ [37], to compare with our proposed method.

The proposed method outperforms all the compared models in terms of the mIoU, as
shown in Table 8. DeepLabV3+ achieves a better result than U-Net and PSPNet because it
adopts dilated convolution and ASPP based on an encoder–decoder structure. The PSPNet
yields a better result than U-Net, as the PPM of the PSPNet can provide additional context
information in the semantic-segmentation task, while U-Net only adopts the encoder–
decoder structure among the four types of methods shown in Figure 3. However, the
training process of the proposed method is time consuming, taking approximately 78 h on
an NVIDIA GeForce RTX 3090 GPU, while the three compared models take less than 48 h.

Table 8. Comparison of the results.

Model mIoU

U-Net [36] 68.79
PSPNet [38] 71.42

DeepLabV3+ [37] 73.82
MSA-DCNN (this study) 74.88

Figure 9 presents the visual results of the four models on the two test images of the
RMD. In Figure 9(a1–f1) shows that U-Net and the PSPNet fail to finely segment the road
marking of the approach to the pedestrian and bicycle crossing in the distance (as high-
lighted by the white ellipse). It can be observed that DeepLabV3+ and the proposed method
improve the accuracy of the boundary segmentation. The proposed method obtains a better
result compared with the others, as it uses multiscale inputs to improve the segmentation
accuracy of the fine detail. In Figure 9(a2–f2) shows that the segmentation results of the
pedestrian crossing (as highlighted by white rectangles) of U-Net completely fail, and those
of the PSPNet and DeepLabV3+ are irregular due to shadows. The segmentation result of
the proposed method is more similar to the ground truth.
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6. Conclusions

In this study, a new dataset for the semantic segmentation of road markings named the
RMD is introduced. The RMD is proposed to compensate for the lack of datasets and the
limitations of the existing datasets in the field of road-marking recognition. The proposed
RMD comprises 3221 pixel-level well-annotated road-surface images of 29 road-marking
categories, with a resolution of 1920 × 1080. It is divided into the training and test sets at a
ratio of approximately 9:1, which correspond to 2990 and 321 images, respectively.

We focus on the problem of the existence of objects at multiple scales of the proposed
RMD, and we investigate four kinds of network architectures that deal with the multiscale
context. Inspired by previous studies, we propose a novel MSA-DCNN to tackle the RMD.
An attention module that can softly weight the feature maps from different scales and
dilated convolution to enlarge the receptive field of feature maps and utilize a large range
of spatial-context information are adopted. The two models that employ scales = 〈0.5, 1.0〉
(Model 1) and scales = 〈1.0, 2.0〉 (Model 2) are trained to evaluate five kinds of multiscale
inputs on the RMD. At the inference time, Model 2, with scales = {0.5, 1.0, 2.0}, gained the
best mIoU of 74.88%. The ablation study shows that the proposed MSA-DCNN yields the
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best results by combining multiscale attention and dilated convolution. Additionally, it
obtains better results in comparison with other state-of-the-art models.

The RMD should be constantly improved by adding more road-surface images with
symbolic road markings due to the problem of class imbalance. In this study, we proposed
the MSA-DCNN, which focuses on the accuracy of the segmentation rather than real-time
segmentation. For a future study, we will work on designing a real-time accurate road-
marking-segmentation algorithm to solve the diverse needs in the field of road-marking
recognition.
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