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Abstract: In order to effectively improve the dim and small target detection ability of photoelec-
tric detection system to solve the high false rate issue under complex clouds scene in background
modeling, a novelty Hessian matrix and F-norm collaborative filtering is proposed in this paper.
Considering the influence of edge noise, we propose an improved Hessian matrix background
modeling (IHMM) algorithm, where a local saliency function for adaptive representation of the
local gradient difference between the target and background region is constructed to suppress the
background and preserve the target. Because the target energy is still weak after the background mod-
eling, a new local multi-scale gradient maximum (LMGM) energy-enhancement model is constructed
to enhance the target signal, and with the help of LMGM, the target’s energy significant growth
and the target’s recognition are clearer. Thus, based on the above preprocessing, using the motion
correlation of the target between frames, this paper proposes an innovative collaborative filtering
model combining F-norm and Pasteur coefficient (FNPC) to obtain the real target in sequence images.
In this paper, we selected six scenes of the target size of 2 × 2 to 3 × 3 and with complex clouds
and ground edge contour to finish experimental verification. By comparing with 10 algorithms, the
background modeling indicators SSIM, SNR, and IC of the IHMM model are greater than 0.9999,
47.4750 dB, and 12.1008 dB, respectively. In addition, the target energy-enhancement effect of LMGM
model reaches 17.9850 dB in six scenes, and when the false alarm rate is 0.01%, the detection rate of
the FNPC model reaches 100% in all scenes. It shows that the algorithm proposed in this paper has
excellent performance in dim and small target detection.

Keywords: Hessian matrix; F-norm; background modeling; energy enhancement; dim and small
target detection

1. Introduction

Dim and small target detection is commonly used in space monitoring, infrared early
warning, and space debris detection, and is a topic of broad concern [1]. According to
the definition of international society of optical engineering, the local signal-to-noise ratio
of weak and small targets is less than 5 dB, and the target size in the image is 2 × 2 to
9 × 9, which occupies an image size of 256 × 0.12% of 256 [2]. However, due to the long
imaging distance of small targets, the targets are often affected by dense clouds and system
noise, all resulting in ineffective target energy, lack of shape and texture, and extremely low
imaging contrast, seriously affecting the detection and extraction of targets by the imaging
system [3]. Hence, it is very important to carry out research on the signal detection of
targets. For example, Liu et al. proposed the one-step symmetric GLRT for the subspace
signals processing method [4], and designed the generalized likelihood ratio using the
generalized symmetric structure to verify and compare the unknown matrix to realize
the detection of target signals. On the basis of PCA principal component model analysis,
Hua et al. developed a new learning discriminant matrix information geometry (MIG)
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detector in unsupervised scenes [5], and applied it to signal detection in a non-uniform
environment, laying a foundation for the detection of weak and small targets. In the
process of actual detection research, how to highlight the target signal while suppressing
the image background information to the greatest extent has become the focus of dim
signal detection research. With the passage of time, the detection of small targets in long-
distance space is mainly divided into three categories: detection based on the traditional
spatiotemporal filtering model, detection based on the low-rank sparse recovery theory,
and the detection model based on neural network deep learning. All of them use different
information to model the background of the image to obtain the difference image and the
background image.

Among the traditional spatiotemporal filtering models, the morphological filtering
model [6,7], spatial gradient model [8,9], and anisotropic filtering model [10,11] have
achieved acceptable detection results. In morphological filtering, Wang et al. improved
top hat filtering according to the direction of target motion and proposed non-concentric
multi-directional ring structural elements to suppress the background of the image [12].
The model distinguishes the background from the target according to the differences in the
structural elements in each direction, and better suppresses the undulating background
in the image. However, traditional spatiotemporal information processing will destroy
the inherent low-rank characteristics of the image, resulting in a high false alarm rate of
model detection. Therefore, the combination of spatiotemporal domain and low-rank char-
acteristics for background prediction is proposed. For example, the low-rank tensor dim
small target detection model based on top hat regularization [13], projected by Hu et al.,
which uses the sensitivity of top hat structural elements to image features to suppress
the image background, improves the operation efficiency of the model and solves the
defects of the traditional model and low-rank theory in detection to a certain extent. Due
to the close relationship between morphological filtering and filtering structural elements,
the filtering organizational elements in different scenes are quite different, resulting in
the low adaptability of target detection in different scenes. Nevertheless, morphological
filtering is closely related to filter structural elements, and the filtering structural elements
in different scenes are quite disparate, resulting in the low adaptability of target detection
in different scenes. Therefore, during the development of target detection, research on
local information to complete target detection has achieved significant results. For exam-
ple, Bhattacharya et al. proposed an adaptive general four-component scattering power
decomposition method (AG4U) [14] to complete the monitoring and extraction of ground
information in San Francisco and California. In this method, the image is analyzed by two
3 × 3 complex special unitary transformation matrices to select the corresponding compo-
nent decomposition mode to adaptively complete the information extraction. Muhuri et al.
analyzed and described the snow cover distribution in the Himalayas of India by using
the polarization fraction variation with the temporal RADARSAT-2 C-band method [15].
This method also used the constructed 3 × 3 matrix for local analysis to obtain the detailed
information of the image, and achieved excellent verification results. Touzi et al. used the
RCM (Radarsat Constellation Mission) model [16] to detect ships on the sea in long-distance
satellite imaging, and analyzed the whole image through a 5 × 5 matrix sliding window
to extract weak signals of ships and enhance their contrast in the image. This method has
important practical application contribution to actual ship detection and classification. All
of the above methods show that the method of target detection based on local information
analysis is progressive, and can be applied to the detection of small and weak targets, which
provides a good theoretical support for the development of infrared small and weak target
detection. In the detection of dim and small targets by analyzing the local information of
the matrix, the gradient analysis of local region pixels is used to suppress the background
and then enhance the target energy, which can better solve the detection problem caused by
the lack of target texture information [17]. For example, Chen et al. proposed the dim small
target detection method (LCM) based on local contrast [1], which selects candidate targets
by analyzing the local contrast difference between the target region and the surrounding
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neighborhood. Then, the DK model is combined with the characteristics of multi-frame
correlation to extract the real target, with fairly sound effects. On this basis, researchers
have proposed many target detection models for local information processing, such as the
RLCM model [18] proposed by Han et al., the HB-MLCM model [19] proposed by Shi et al.,
and the MLCM-LEF model [20] proposed by Xia et al., all of which analyze the local infor-
mation of the image to realize background suppression and then enhance the energy of
the target. Such algorithms greatly improve the contrast of the image and ensure that the
target can be satisfactorily detected. Nonetheless, the model based on regional gradient
analysis is used for target detection in complex scenes, where strong noise is retained and
the target features are not obvious. Lin et al. proposed an improved anisotropic filter for
target detection [10]. The model analyzes the pixel gradient by constructing a new diffusion
function so as to meet the purpose of background suppression and deliver better results in
scenes with a flat background. However, the gradient operation of a single pixel makes the
model retain more edge contours in the face of complex scenes with cloud layers, and the
false alarm detection rate of the algorithm is high.

In the low-rank sparse theory, the method of target detection combined with sparse
dictionary has also attained great background modeling performance. These methods
mainly use the low-rank characteristics of the background and the sparse characteristics
of the target to inverse decompose the image and finish background suppression. The
RPCA model [21,22], PSTNN model [23], MPCM model [24], FKRW model [25], LRT-THR
model [13], ASTTV model [26], etc., have remarkable expression in single-frame target
detection. Zhang et al. combined a new non-convex low-rank constraint function with
the IPT model [27] to construct a tensor kernel norm to form a PSTNN model, which can
suppress the background while retaining the signal of the target, enhance the robustness of
the model, and meet the requirements of image background prediction. The IPI detection
model [28] proposed by Gao et al. also obtained outstanding performance, and can better
reverse the background information of an image so that the energy of the target can be better
preserved, while in the face of complex cloud scenes with multiple changing edge contours,
the low-rank recovery effect is unsatisfactory, and the detection result underperforms.

Dim and small target detection of deep learning mainly uses the pretraining mode
to complete the target detection; examples include the RISTD network model [29], SSD
network model [30,31], GAN model [32], CNN network model [33], RCNN model [34],
Fast RCNN model [35,36], etc. The SSD-ST model proposed by Ding et al. [30] constructs
the detection layer and information layer with different resolutions through the pyramid
structure of SSD multi-scale features. In the training process in this method, after classifying
the information of the image, the energy of the low-resolution layer is suppressed, and
part of the energy of the high-resolution layer is enhanced to accomplish the background
modeling processing and realize the target detection. Nevertheless, because neural network
training requires a large number of training samples to consolidate the detection rate of
the network, it takes a long time to apply it in different scenes, and with the passage of
time, the dynamic background in the target scene leads to the decline in the adaptability of
training parameters, and the effect of target detection is unexpected.

In sum, the above algorithms have certain limitations in the detection of dim and small
targets, and their detection results are poor in the face of complex and cloudy dynamic
scenes. Consequently, Refs. [37,38] used the Hessian matrix to highlight the local difference
information between the target and the background, and the effect is ideal. In this paper,
the Hessian matrix is improved to realize the background modeling of the image. The
research shows that even after the background modeling, the target signal is still faint,
which is not conducive to target detection. Therefore, on this basis, we researched target
signal enhancement. Relevant researchers have carried out corresponding research on
target energy-enhancement methods, such as high-order correlation [39,40], the multi-scale
approximation enhancement method [41], etc. These enhancement algorithms provide
reference ideas for the enhancement of dim and small signals. To further increase the
discrimination between the target and a small part of noise, researchers have proposed
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multi-frame detection methods using the multi-frame motion correlation information, such
as Zhao et al., who proposed mobile pipeline filtering [42], and Liu et al., who proposed
mobile weighted pipeline filtering [43]. The collaborative filtering algorithm based on
the Pasteur correlation coefficient and the Jaccard coefficient proposed by Yang et al. [44]
and the collaborative filtering algorithm based on the improved similarity of the Pasteur
correlation coefficient proposed by Wu et al. [45] have achieved ideal results. However,
in the face of complex motion scenes, these algorithms will cause detection loss when the
target motion speed is faster and exceeds the detection pipe diameter or when there is
little difference between the target and the background. Accordingly, we use the motion
correlation and similarity of the target between frames to propose a collaborative filtering
detection model combining F-norm and Pasteur correlation to complete the multi-frame
detection of the target.

In view of the shortcomings of the above related algorithms, the corresponding work
and contributions of this paper in the research of dim and small target detection can be
summarized as follows:

(1) An improved Hessian matrix mode (IHMM) algorithm is proposed. Here, a local
saliency function is constructed to adaptively describe the local gradient difference, and
then the eigenvalue of the Hessian matrix is solved through the local gradient difference
characteristic, so as to highlight the gradient difference between the background and the
target to achieve background suppression. After experimental verification, the structural
similarity SSIM, signal-to-noise ratio (SNR), and image contrast gain IC of the proposed
IHMM model after background suppression are 0.9999, 47.4750 dB, and 12.1008 dB, on
average, in six scenes. (2) An energy-enhancement method for target detection based
on local multi-scale gradient maximum (LMGM) is proposed to enhance the energy of
the difference image after background modeling, and the average value of the enhanced
signal-to-noise ratio of the first frame of six scenes is 17.9850 dB. (3) A collaborative filtering
detection model combining F-norm and Pasteur correlation (FNPC) is proposed by using
the interframe correlation characteristics of sequence images to realize sequence target
detection, and when the false alarm rate is 0.01%, the detection rate in six scenarios is 100%.

2. Materials and Methods

In the imaging mechanism of remote detection of dim and small targets, there is
low compatibility between the target and the background, resulting in a large gray pixel
difference between the target and the neighborhood background, which provides support
for the background modeling algorithm proposed in this paper. This section mainly
introduces the improved Hessian matrix background modeling algorithm and the related
principles of the gradient significance function described by local information. The detailed
principles are as follows.

2.1. Improve the Background Modeling Principle of Hessian Matrix

Taking advantage of the large gray difference between the target and the background,
the gradient significance function model is mainly used to adaptively calculate and enlarge
the local gradient difference information to highlight the target. First, a 3 × 3 local region
block is constructed with a single pixel as the central pixel in the figure, and the gradient of
the central pixel of the region block is compared with its surrounding pixels to carry out
local gradient adaptive calculation and analysis to highlight the target. The operation is
as follows (Figure 1):
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Figure 1. Details of the constructed local gradient model.

As shown in the figure, in the constructed 3 × 3 local area block, the gradient value
between pixels in the background area is not significantly different, but the gray pixel
difference between the target and the background is large. Therefore, according to this
characteristic, the significance analysis effect shown in the figure on the right is obtained
after the gradient study of local pixels. The corresponding model construction is as follows:

D =
1

1 + M×X
Z

(1)

where D is the image processed by the local gradient saliency function, Z is a defining
constant, and M and X are the adaptive parameters of the local gradient saliency function
in gradient analysis, which obtain the corresponding values through the local gradient
analysis judgment model; the specific model is as follows:

F1 = F(i− r : i + r, j− r : j + r)
G[V, W] = F1( row, col )− F(i, j)
i f row == i, col == j
X = min G
M = 0.02
else
X = G(V, W), (V == row & W == col)
M = min G

(2)

where (i, j) is the coordinate position of the current pixel, r is the selected radius of the local
area block, and the value in the text is 1. F is the original input image, F1 is the selected local
area block, G[V, W] is the gradient difference between the central pixel and the adjacent
pixel in the local area, (row, col) is the coordinate position of the pixel in the local area
F1, and F(i, j) is the central pixel value of the local area F1. Considering that the gradient
operation in the local region includes intermediate pixels, when row = i, col = j, the control
coefficient X is equal to the minimum gradient value, and M is a defining constant. When
V = row & W = col, the control coefficient X is equal to the current local gradient, and M
takes the minimum value of all gradients.

When the above model is applied to image background modeling, the model not
only improves the significance of the target, but also improves the significance of more
noise, and the recognition degree of the target is low. Therefore, similar to the method of
extracting feature points by combining Gaussian filtering and Hessian matrix, after the
local gradient saliency function suppresses most of the noise and edge contour, we use
the determinant value of the Hessian matrix to better reflect the characteristics of the local
gradient structure information of the image, and apply the Hessian matrix to background
modeling to suppress the background of the image further. Firstly, the Hessian matrix
filter template d = ([−1 0 1])⁄2, d2 = [1 −2 1] is defined in combination with the selected
3 × 3 region block, and the corresponding Hessian matrix is defined as follows [38]:
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H =

 ∂2D
∂x2

∂2D
∂x∂y

∂2D
∂x∂y

∂2D
∂y2

 (3)

where D is the image processed by Formula (1); (x, y) is the coordinate position of the
Hessian matrix pixel in the image; and (∂D)/(∂x2), (∂2D)/(∂y2), and(∂2D)/(∂x∂y) are the
second-order derivatives of image pixels in the lower X, Y, and XY directions, respec-
tively. According to the definition of image pixels, we calculate the first-order derivatives
∂ f /∂x = f (x + 1, y)− f (x, y) [46]. The second-order derivatives of pixels in each direction
are as follows:

∂2D(x, y)
∂x2 = [D(x + 1, y)− D(x, y)]− [D(x, y)− D(x− 1, y)]

= D(x + 1, y) + D(x− 1, y)− 2D(x, y)
(4)

∂2D(x, y)
∂y2 = [D(x, y + 1)− D(x, y)]− [D(x, y)− D(x, y− 1)]

= D(x, y + 1) + D(x, y− 1)− 2D(x, y)
(5)

∂2D(x, y)
∂x∂y

=
D′x(x, y)

∂y

=
∂(D(x + 1, y)− D(x, y))

∂y

=
∂(D(x + 1, y))

∂y
− ∂(D(x, y))

∂y

= D(x + 1, y + 1)− D(x + 1, y)− D(x, y + 1) + D(x, y)

(6)

In practical application, in order to improve the operation efficiency, the convolution
operation form is adopted when calculating the second derivative of image pixel. Therefore,
after Hessian matrix is combined with filter templates D and D2, Formula (3) can be
simplified as

H1 =

[
1 ∗ d2 ∗ D(x, y) d ∗ d ∗ D(x, y)
d ∗ d ∗ D(x, y) d2 ∗ 1 ∗ D(x, y)

]
(7)

In the formula, 1 ∗ d2 ∗ D(x, y), d2 ∗ 1 ∗ D(x, y), and d ∗ d ∗ D(x, y), respectively, rep-
resent the results of convolution operation with the filter template in the x, y, and xy
directions in the processed image D, 1 ∗ d2 represents convolution operation in the x di-
rection, d2 ∗ 1 represents convolution operation in the y direction, and d ∗ d represents
convolution operation in the xy direction. According to the calculation principle of Hessian
matrix, the operation formula for completing image background modeling is as follows:

det(H1) = (1 ∗ d2 ∗ D(x, y))× (d2 ∗ 1 ∗ D(x, y))− (d ∗ d ∗ D(x, y))2 (8)

P(m, n) = det(H1(x, y)) (9)

where P(m, n) represents an empty matrix of the same size as the input image f , which is
used to output the final difference result.

According to the above related principles, the overall process of background suppres-
sion of the improved Hessian matrix background modeling algorithm proposed in this
paper is as follows:

As shown in the figure, after passing through the local gradient significance function,
there is still more noise interference in the image, and the target recognition degree is not
high. However, after passing through the Hessian matrix, the target in the figure is highly
significant, which can clearly identify the location of the target and achieve the purpose of
background suppression and target preservation.
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2.2. Energy-Enhancement Principle Based on Local Multi-Scale Gradient Maxima

In target detection, the energy intensity of the target after background modeling has
a direct impact on target detection. Enhancing the target energy is a common processing
method in target detection, such as in the high-order correlation model [39,40], multi-
directional gradient [47], and multi-scale gradient [48], which are all models to enhance the
energy, and that have achieved good suitable results. After the improved Hessian matrix
background suppression shown in Figure 2, the target is significantly highlighted, but the
signal energy is weak, which is not conducive to target detection and extraction. In this
paper, we consider that the multi-scale gradient enhancement algorithm can effectively
distinguish the difference between the target point and the noise point, but it is found
that while the model enhances the energy of the difference map, the energy of some
noise points is also increased, resulting in image confusion. Therefore, in this paper we
improve the multi-scale gradient model, combine the multi-scale gradient model with the
local maximum segmentation in the literature [49], and construct the maximum energy-
enhancement detection model of the local multi-scale gradient, which greatly improves the
contrast of the target in the image. The specific multi-scale gradient model is as follows [50]:

GxupP(i, j) =
K

∑
l=1

(P(i, j)− P(i + l, j))

Gx down P(i, j) =
K

∑
l=1

(P(i, j)− P(i− l, j))

GyupP(i, j) =
K

∑
l=1

(P(i, j)− P(i, j + l))

Gy down P(i, j) =
K

∑
l=1

(P(i, j)− P(i, j− l))

(10)

where P is the image after the background modeling is completed by the improved Hessian
matrix, and GxupP(i, j), GxdownP(i, j), GyupP(i, j), and GydownP(i, j) represent the multi-scale
gradient values of the current pixel in the upper, lower, left, and right directions, respec-
tively. P(i, j) represents the center pixel of the image, and l and K, (K = 1, 2, 3 · · · ) represent
the radius of the region that controls the multi-scale gradient enhancement energy, which
is a predetermined constant. Basis on multi-scale gradient, the overall pseudocode of the
enhancement model is as follows:

According to the K in Formula (9) and the result of Table 1, K enhanced the regions’
result En. Intending to magnify the target in the multi-scale direction, the K locals’ results
were used to make the OR operation produce the preliminary enhancement result Fn, and
then, combining with difference diagram P, to produce the final enhanced result FEn. The
specific formula is as follows:{

Fn = En(K=1)

∣∣∣En(K=2)

∣∣∣En(K=3) · · · (K = 1, 2, 3 · · · )
FEn = Fn× P

(11)
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… …

Local gradient significance processing Hessian matrix processing

Original image and  3D of original image Local gradient significance results and 3D Image Final results and 3D Image

Figure 2. Flow chart of Hessian matrix background suppression model with local gradient significance.

Table 1. Pseudo code for target signal enhancement.

Step 1. Input the image P which outputs with improved Hessian matrix.
Step 2. Use multi-scale gradient to enhance the energy of image P and output the enhancement
results in GxupP(i, j), GxdownP(i, j), GyupP(i, j), GydownP(i, j) direction.
Step3. Initialization parameters data = [GxupP(i, j), GxdownP(i, j), GyupP(i, j), GydownP(i, j)]; thresh-
old Th = 30; statistical parameters number = 0; candidate target storage matrix HX(i, j) = 0;
constant for judging segmentation num = 0; image after segmentation En(i, j) = 0.
Step 4. Compare the 4 directions’ results in data with the set threshold to update the statistical
parameter number as follows:
i f data(1) ≥ Th||data(2) ≥ Th||data(3) ≥ Th||data(4) ≥ Th
number = number + 1
else
number = 0
Step 5. Use the following judgment pair and the count number to judge whether it meets the
requirements as a candidate target and update num:
i f number ≥ 3
number = 0
HX(i, j) = P(i, j)
num = num + 1
else
BacktoStep2
Step 6. With num, segment candidate targets HX and output the En as follows:
i f num ≥ 1
HX(i, j) = 1
En(i, j) = HX(i, j)
else
HX(i, j) = 0
En(i, j) = HX(i, j)
Step 7. end

2.3. Detection Model of F-Norm and Pasteur Coefficient Collaborative Filtering

In the remote photoelectric imaging weak and small target detection system, it is
of practical significance to realize the multi-frame detection of sequence targets. In the
sequence of multi-frame images, the target motion characteristics are not obvious, and there
is a notable correlation between the front and back frames. Considering the uneven energy
distribution during target imaging, the phenomenon of missing frames in target detection
occurs frequently when multiple frames are detected. Hence, we use the characteristics of
F-norm, which is region computing, to detect the highlighted candidate regions and fuse
the energy in the regions to improve the identification of real targets. Then, we combine
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the F-norm with the Pasteur correlation coefficient to determine the real target through the
similarity correlation between frames, and we complete the target detection of multiple
frames. The detailed model construction is as follows:

(1) To highlight the gradient difference between the target neighborhood and the
background neighborhood, we construct a local region filling model of F-norm to highlight
the candidate target and calculate the F-norm of the upper, lower, left, and right regions of
the pixel. The specific definitions are as follows:

Fc(x, y, t) =

√√√√( m=L/2

∑
m=−L/2

n=L/2

∑
n=−L/2

|FEn(x + m, y + n, t)|
)2

Fu(x, y− k, t) =

√√√√( m=L/2

∑
m=−L/2

n=L/2

∑
n=−L/2

|FEn(x + m, y− k + n, t)|
)2

Fd(x, y + k, t) =

√√√√(m=L/2

∑
m=L/2

n=L/2

∑
n=−L/2

|FEn(x + m, y + k + n, t)|
)2

Fl(x− k, y, t) =

√√√√(m=L/2

∑
m=L/2

n=L/2

∑
n=−L/2

|FEn(x− k + m, y + n, t)|
)2

Fr(x + k, y, t) =

√√√√( m=L/2

∑
m=−L/2

n=L/2

∑
n=−L/2

|FEn(x + k + m, y + n, t)|
)2

(12)

where Fc(x, y, t), Fu(x, y− k, t), Fd(x, y + k, t), Fl(x− k, y, t), and Fr(x + k, y, t) represent the
F norm of the center, upper, lower, left, and right blocks when L is 3; (x, y) represents the
current pixel coordinates; (m, n) represents the variables that control the pixel coordinate
position in the region; and k represents the moving steps of the central pixel up, down, left,
and right, and takes a constant. FEn is the image after the above enhanced target energy.
When the F norm of the middle region block is the maximum, we fill the region with the
gray pixel mean value and assign a value of 0 to the surrounding neighborhood block. The
specific F-norm candidate target enhancement model is as follows:

S = [Fc(x, y, t), Fu(x, y− k, t), Fd(x, y + k, t), Fl(x− k, y, t), Fr(x + k, y, t)]
i f max S == Fc(x, y, t)
Fc(x, y, t) = Avg(FEn(x + m, y + n, t))
Fu(x, y− k, t) = Fd(x, y + k, t) = Fl(x− k, y, t) = Fr(x + k, y, t) = 0
else
Fc(x, y, t) = Fu(x, y− k, t) = Fd(x, y + k, t) = Fl(x− k, y, t) = Fr(x + k, y, t) = 0
end
f f = S

(13)

where S represents the F-norm set of the neighborhood block of the central pixel, FEn
represents the target after energy enhancement, k is defined as above, and f f represents
the image that has completed the filling process; if the F-norm of the middle region block
reaches the maximum, this indicates that the region block contains candidate targets after
energy enhancement, and all pixels in the region block are assigned the value of the region
block pixel mean processing. On the contrary, it indicates that there is no candidate target
after energy enhancement in the selected block, and the selected block is assigned a value
of 0.

(2) On the basis of F-norm highlighting, we use the motion characteristics of the target
between frames to construct the distance constraint, and Pasteur similarity constraint
collaborative filtering model of the target motion to realize the multi-frame detection of the
target. The specific model is as follows:
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dis =
√
( f f (mt, nt, t)− f f (mtnew, ntnew, t + 1))2

u = f ft(mt− 2 : mt + 2, nt− 2 : nt + 2)
v = f ft+1(mtnew − 2 : mtnew + 2, ntnew − 2 : ntnew + 2)
T1 = Avg(u)
T2 = Avg(v)

Simloc(u, v) = ∑i∈u ∑j∈v
(ui−T1)×(vj−T2)√
(ui−T1)

2×(vj−T2)
2

(14)

where dis is the distance between the real target at time t and the candidate target at time
t+ 1, f f (mt, nt, t) is the image whose real target coordinates are known to be (mt, nt) at time
t, f f (mtnew, ntnew, t + 1) is the image whose candidate target coordinates are (mtnew, ntnew),
and when dis is less than the set threshold ls, the coordinates of the candidate targets are
output (mtnew, ntnew). u and v represent the local area in the two frames at time t and time t
+ 1, respectively; T1 and T2 are the mean values of the two regions; Simloc(u, v) represents
the Pasteur similarity of two local regions; and ui and vj represent the pixel values in the
two local areas, respectively. The larger the Pasteur correlation of the two frames, the better
the correlation of the image.

(3) Combined with the above distance constraint and similarity constraint model, we
construct a multi-frame correlation target discrimination model to finally determine the
real target location and realize the multi-frame detection of the target. When the constraint
distance dis meets the constraint condition ls and Simloc(u, v) reaches Ts, the candidate
target coordinates in time t + 1 are updated to the real target coordinates (mtt+1, ntt+1),
and we assign the energy of the target neighborhood to the maximum gray value in the
figure, which is specifically defined as follows:

f ft+1(mtt+1 − 1 : mtt+1 + 1, ntt+1 − 1 : ntt+1 + 1) = max( f f (:)) (15)

where (mtt+1, ntt+1) represents the real coordinates of the target at the finally determined
t + 1 time, and f ft+1 indicates that the target detection has been completed at time t + 1.

2.4. Summary of the Overall Process of the Algorithm

According to the construction of the above model, the overall process of weak and
small target detection in this paper can be summarized as follows Figure 3:

As shown in the Figure 3, we first use the improved Hessian matrix to model the
background of the image, restore the image background, and output the image difference
image. Then, in order to improve the target signal, an energy-enhancement model of local
multi-scale gradient maximum is constructed to enhance the signal of the difference image.
Finally, using the interframe correlation characteristics of the target, a detection model of
F-norm and Pasteur coefficient collaborative filtering is constructed to realize the detection
of sequence targets. The overall algorithm pseudocode is shown in the following table
(Table 2):

Table 2. Pseudocode of the overall flow of the algorithm.

Step 1. Input sequence images;
Step 2. Determine parameters M and X in Formula (2) operation, and initialize parameter Z in Formula
(1) value as 5;
Step3. Use Formulas (1) and (2) to calculate the local significance of the target, and then combine
Formulas (3)–(8) to finish background modeling and output the difference image P in Formula (8);
Step 4. Complete the energy enhancement with Formulas (9) and (10) and pseudocode in Table 1 and
output the energy-enhanced image;
Step 5. Define Formulas (11) and (12) to enhance the difference between target region and background
region. In addition, input the target coordinates (mt, nt) according to the different enhanced scenes for
Formula (13);
Step 6. Utilize Formula (13) to calculate the distance between candidate target and real target coordi-
nate from Step 5, and similarity between candidate target region and real target region;
Step 7. Unite Formula (14) to fulfill sequence detection and output target’s trajectory;
Step 8. end
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Figure 3. Overall flow chart of detection model.

2.5. Technical Evaluation Index

To reflect the effect of this algorithm on background suppression, target energy signal
retention, and target signal enhancement, we cite structural similarity (SSIM), image
signal-to-noise ratio (SNR), and contrast gain (IC) as the evaluation indicators of this
model. The specific evaluation model is as follows [51,52]: SSIM = (2µRµF+ε1)(2σRF+ε2)

(µ2
R+µ2

F+ε1)(σ2
R+σ2

F+ε2)

SNR = 10× log(ET−EB)σB
10

(16)



Tin = 1
l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fin
(
mt + xg, nt + yg

)
Bin = 1

l1×l1

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fin
(
mt + xg1 , nt + yg1

)
Tout = 1

l×l

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fout

(
mt + xg, nt + yg

)
Bout = 1

l1×l1

xg=l
∑

xg=−l

yg=l
∑

yg=−l
fout

(
mt + xg1 , nt + yg1

)
Cin = |Tin − Bin |/|Tin + Bin |
Cout = |Tout − Bout |/|Tout + Bout |
IC = Cout /Cin

(17)

where µR and σR are the mean and standard deviation of the input image, respectively; σRF
is the covariance between the input image and the background image; and ε1 and ε2 are
constants. ET and EB represent the mean value of the target area and the background area,
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respectively; σB is the standard deviation of the background area. In Formula (15), Tin,Bin
and Tout , Bout represent the mean value of different pixel matrices divided by the input
image and the output image with the target as the center, respectively; (mt, nt) indicates
the location of the target; l and l1 refer to different division radii, with values of 1 and 4,
respectively, Cin and Cout refer to the contrast gain ratio of the input image and the output
image at the target; and IC refers to the ratio of the signal gain ratio of the input image and
the output image, which is an important indicator of the signal enhancement or attenuation
of the target before and after the algorithm.

2.6. Experimental Setup

In order to reflect the applicability of the algorithm in the scene, we improve the
detection rate of the algorithm in complex scenes and reduce the detection false alarm
rate. According to the definition of dim and small targets, this paper selects six scenes to
participate in the algorithm test. The target size is between 2 × 2 and 3 × 3, the target
signal-to-noise is less than 5 dB, and there is more edge contour interference. Scenario A is
the outfield data taken by our team, and scenario B is the dataset in Ref. [53] (A dataset
for infrared image dim-small aircraft target detection and tracking under ground/air
background (scidb.cn)) (accessed on 28 October 2019). Scenarios C and D are the publicly
available video data on Git-Hub (daxj-uanxiong/infrared-small-target-images: infrared
small target images (github.com)) (accessed on 03 Feburary 2020). Scenarios E and F are
datasets from Ref. [54] (https://www.scidb.cn/en/detail?dataSetId=808025946870251520)
(accessed on 8 Feburary 2022). Details of the relevant scenes and the original background
and 3D information are as follows:

As shown in the figure, the six scenes selected have low signal-to-noise ratio and
complex backgrounds, which can better test the model.

3. Results

With the Table 3 and the Figure 4, this section describes the relevant experiments and
experimental results analysis on the model in terms of image background suppression,
energy enhancement, and sequence target detection. First, the algorithm proposed in
this paper is used for background modeling in six sequence scenes. The top hat filtering
model [55], anisotropic model (ANI) [56], PSTNN model [23], ASTTV model [26], NTFRA
model [57], GST model [58], NRAM model [59], HB-MLCM model [37], and the ADMD
model [60] and UCTransNet model [61] are compared and analyzed with the proposed
model with the step in Figure 3. Then, the proposed local gradient multi-scale maximum
energy-enhancement model is used to enhance the target signal, and it is used as the
final background modeling effect. Finally, on the basis of comparing the algorithms, this
algorithm is compared with other detection models for sequential multi-frame detection to
complete the target detection.

Table 3. Sequence scene-related information.

Sequence Sequence Size Target Size Image Size Target Details

Sequence A 296 frames 2 × 2 621 × 501 UAV in complex clouds.

Sequence B 100 frames 2 × 2 256 × 152 UAV movement in air and ground background.

Sequence C 302 frames 3 × 3 481 × 251 UAV motion in dark bright layered background.

Sequence D 876 frames 2 × 2 481 × 251 UAV motion in dark bright layered background.

Sequence E 300 frames 3 × 3 640 × 512 UAV movement in air and ground background.

Sequence F 300 frames 3 × 3 640 × 512 UAV in complex clouds.

scidb.cn
github.com
https://www.scidb.cn/en/detail?dataSetId=808025946870251520


Remote Sens. 2022, 14, 4490 13 of 29

(A) (B)

(C) (D)

(E) (F)

Figure 4. Sequence scene original, original 3D.

3.1. Comparison and Analysis of IHMM Model Background Modeling Results

The background suppression effects in the six scenes selected by each detection model
and the detection model in this paper are shown in Figures 5–10. From Figures 5–10, it
can be seen that the top hat filter, which relies on filter structure elements for background
suppression, has poor background suppression in the six scenes, and there is more edge
noise in the corresponding 3D images, indicating that the fixed filter structure elements
of the model impose a greater limitation on the algorithm in the face of scenes with more
complex backgrounds. In the anisotropic filtering results in Figures 5–10, the background
suppression in scenes A, B, E, and F with more clouds and more complex backgrounds is
not satisfactory, and the interference information is clearly characterized in the difference
images. This indicates that the background suppression using gradient calculation of the
image with individual image elements is less effective in suppressing the background
with strong contours. The PSTNN model, ASTTV model, GST model, NTFRA model,
NRAM model, HBMLCM model, and ADMD model in Figures 5–10 all utilize the low-rank
theory background modeling; e.g., the PSTNN model, which utilizes the combination
of local tensor and weight parametrization, can effectively preserve the target signal
while performing background suppression. The model utilizes the singularity property
of the target in the image to preserve the pixel points with a relatively large weight share,
which is effective, as shown in the detection effect in scenes C and D. However, in the
face of scenes with long edge contours, the detection model still retains some contour
information, such as in the detection of scenes A, B, E, and F, all of which have some
false alarms present. The grinding edge detection method of non-convex tensor low-
rank approximation with adaptively assigned weights is proposed in the ASTTV model,
which can adaptively come up with different suppression strengths for different image
element values and can better restore the background details while preserving the target,
such as the background modeling effect in scenes A, B, C, and D, with less redundant
information in the difference image. The GST detection model is an earlier tensor model
applied in target detection, which combines two-dimensional Gaussian and second-order
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conjugate symmetric derivatives to form a background suppression model, and achieves
good background suppression in scenes B, C, D, E, and F, indicating that the model has
suitable robustness and adaptability. The background suppression results of the NTFRA
model are represented in Figures 5–10, combining the LogTFNN model, the local tensor
model, and the HTV model to propose the NTFRA model after improving the IPT model.
From the above figure, it can be seen that the detection of the target is achieved in all scenes,
but according to the scene of differential 3D images, the model also has a high false alarm
and the background suppression is less satisfactory. Figures 6–10 show the background
suppression results of the NRAM model, which incorporates one or two parameters
proposing a non-convex, more convergent rank agent-weighted parametric background
suppression model, which solves the problem of not accurately recovering the image
background and target using only one parameter. Its detection results are better in all six
scenes, and it maintains a low false alarm rate overall. In the HBMLCM detection model,
firstly, the improved IHBF model is proposed to enhance the energy of the target based on
the model of HBF. Then, the LCM model is improved, and the adaptable MLCM model is
proposed to combine with IHBF before composing the HBMLCM model, which makes the
target’s energy stronger when background suppression processing is performed. As can
be seen in Figures 5–10, the target energy detected by the HBMLCM model is generally
stronger than that of the rest of the algorithm models, but the background suppression effect
is poor in the face of scenes where the image contains more complex information, such as
in the three scenes of A, B, and E, where more interference remains in the difference image.
Based on the AAGD detection model, the detection model ADMD with absolute directional
mean difference is proposed mainly to increase the saliency of the target, using the saliency
of the target to construct a local inner and outer window discrimination mechanism of
a single image element to carry out the energy enhancement of the target, solving the
problem that AAGD cannot detect the target in the strong low-contrast edge. As shown in
Figures 5–10, the ADMD model can effectively enhance the target signal and perform target
detection, but it is less effective in detection in scenes containing more contour clouds,
such as scenes A, B, E, and F. The differential images of scenes A, B, E, and F also retain a
high level of false alarms. The background modeling algorithm of the improved Hessian
matrix is found to maintain a low false alarm rate while achieving target detection, which
indicates that the model constructed in this paper has a better background suppression
performance and achieves the purpose of background modeling. However, it is found
that the target energy retained by the proposed model is weak through the corresponding
differential 3D image, which is not conducive to the subsequent detection of the target, so
the energy-enhancement model of local multi-scale gradient maximization is proposed to
enhance the energy of the target and improve the contrast of the image by using the locally
significant characteristics of the target; the specific experimental results are detailed in the
following section.

3.2. Result Analysis of Target Detection Energy-Enhancement Model Based on Local Multi-Scale
Gradient Maxima

To reflect the effect of the proposed model on target signal enhancement after back-
ground modeling, we analyze the signal-to-noise ratio before and after applying the pro-
posed maximum energy-enhancement model of local multi-scale gradient. The specific
experimental results are shown in the following figure:

As shown in the above Figure 11, after applying the maximum energy-enhancement
model of local multi-scale gradient, the target signal and signal-to-noise ratio of each
scene were significantly enhanced, indicating that the proposed improved Hessian ma-
trix background suppression model can enhance the target signal after combining with
the energy-enhancement model, and thus improve the robustness and adaptability of
the model.
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（a） （b） (c) (d) (e)

（f） (g) (h) (i) (j)

Figure 5. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene A, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene B, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene C, respectively.

（a） (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene D, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene E, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. (a–j): Top hat, ANI, PSTNN, ASTTV, GST, NTFRA, NRAM, HB-MLCM, ADMD, and the
proposed method’s difference diagram and three-dimensional diagram in scene F, respectively.
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3.3. Analysis of Indicators of Model Background Suppression Results

After the background suppression comparison of the above algorithm models, in order
to reflect the feasibility and innovation of the model constructed in this paper from the
perspective of data, we employ structural similarity (SSIM), signal-to-noise ratio (SNR),
and contrast gain (IC) to evaluate the algorithm results of the above models. The relevant
parameters applied by the algorithms of the above models are shown in the following table
(Table 4):

Scence A

Scence B

Scence C

Scence D

Scence E

Scence F

Figure 11. Comparison diagram of energy-enhancement model of local multi-scale gradient maxi-
mum before and after energy enhancement for 6 scenes.
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Table 4. Relevant computational parameters for each model.

Method Index

Top hat [55] Structure shape: structure size 3 × 3, db = [0 1 1 1 0, 1 0 0 0 1, 1 0 0 0 1, 1 0 0 0 1, 0 1 1 1 0]; b = [0 1 1 0, 1 1 1 1, 1 1 1 1, 0 1 1 0];

ANI [56] k = 100, step = 4, M = 20;

PSTNN [23] Patch size 40× 40, slid step 40, λL = 0.7, wsw = 1, u0 = 3× 10−3, ρ = 1.1, c = 1, k = 0;

ASTTV [26] H = 10, L = 3, C = 10, P = 0.8, k = 120, u0 = le− 2, umax = le7, ρ = 1.5, ς = le− 6;

GST [58] σ1 = 0.6, σ2 = 1.1, boundarywidth = 5, filtersize = 2;

NTFRA [57] Patch size 40× 40, slid step 40, σ = 1, mo
k = 0, r = 0.6, step P = 500

opts. θ = 0.00001, opts. varpi = 0.15, opts. omega = 100,000, opts. logto 1 = 0.000001;

NRAM [59] Patch size 50× 50, slid step 10, λ = 1/
√

min(m, n), u0
1 = 3

√
min(m, n), γ = 0.002 c =

√
min(m, n)/2.5, ε = 10−7;

HBMLCM [19] IHBF size is 9, externalwindow size is 15× 15;

ADMD [60] Struct window: window size 3× 3, 5× 5, 7× 7, 9× 9;

Proposed d = [ −1 0 1 ]/2, d2 = [ 1− 2 1 ], Z = 5, M = 0.02− 0.04, k = 4, Th = 30− 35, K = 1, r = 4;

According to the calculation parameters of each model set in the Table 4, the back-
ground suppression effects of Figures 6–10 are obtained after the background suppression
of the selected six scenes. Then, according to the above evaluation indicators of SSIM, SNR,
and IC, the background suppression detection model proposed in this paper is compared
with the above models for the calculation of relevant indicators, and the feasibility of this
algorithm is reflected through the comparison of actual data. The specific index data are
shown in Tables 5–10 below:

Table 5. Calculation of indicators in scenario A of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9941 0.9939 0.9985 1.0000 1.0000 0.9994 1.0000 0.9946 0.9893 1.0000

SNR 3.8100 2.8800 15.6600 61.5200 18.8900 10.0700 47.3400 39.7800 21.4000 61.8600

IC 16.1528 13.7604 20.5339 22.2776 18.9766 20.5339 20.5339 19.0612 20.4495 20.5339

Table 6. Calculation of indicators in scenario B of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9937 0.9968 0.9638 1.0000 1.0000 0.9987 0.9630 0.9708 0.9768 1.0000

SNR 3.3600 4.5400 17.8100 21.9100 24.5100 10.1400 20.5500 12.3500 22.0600 21.8000

IC 9.9217 10.4831 15.9631 12.4000 15.6710 16.1449 16.702 15.0016 16.5134 16.7027

Table 7. Calculation of indicators in scenario C of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9994 0.9994 0.9721 1.0000 1.0000 0.9990 0.9769 0.9995 0.9992 0.9999

SNR 26.8900 20.7600 39.4000 51.1700 61.3500 13.5900 35.3100 44.2800 44.5300 16.4200

IC 3.8400 4.6761 4.3805 3.0965 2.0393 4.3658 4.5744 5.8280 6.4572 9.5680

Table 8. Calculation of indicators in scenario D of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9993 0.9990 0.9914 1.0000 1.0000 1.0000 1.0000 0.9995 0.9988 1.0000

SNR 17.4400 16.1000 69.5300 0.0200 54.2700 38.6000 50.4700 60.7200 35.9000 34.6400

IC 1.0000 1.0000 1.0393 1.1818 1.0495 1.0754 1.0754 0.8697 0.9655 1.1394
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Table 9. Calculation of indicators in scenario E of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9968 0.9993 0.9845 0.9921 1.0000 0.9947 0.9907 0.9988 0.9987 1.0000

SNR 8.0200 5.1500 25.8300 11.1000 68.4700 5.6600 56.8500 61.8400 44.5600 50.2900

IC 11.7408 10.8942 15.8657 16.9196 14.9649 13.7152 15.8657 13.2639 14.4949 16.0730

Table 10. Calculation of indicators in scenario F of each model.

Method Top Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] Proposed

Index

SSIM 0.9960 0.9976 0.9836 0.9998 1.0000 0.9996 0.9835 0.9996 0.9983 1.0000

SNR 6.6800 3.7200 28.7300 16.6500 68.9500 22.9000 60.4100 110.5600 53.6400 57.1600

IC 5.9050 4.5500 8.2615 7.8955 7.7495 7.6748 8.2615 6.8528 7.0710 8.3680

From Tables 5–10 above, it can be observed that the algorithm proposed in this paper
has adequate structural similarity, signal-to-noise ratio, and contrast gain in background
modeling. It can restore the detailed information to the background, retain the signal of the
target, increase the signal-to-noise ratio and contrast of the differential image, and lay a
foundation for target detection. Considering that the target often changes with the dynamic
scene in the process of moving, and that there are differences in the energy contained
in the target at each time, it is still limited to directly carry out sequential multi-frame
target detection on the difference map with low signal after background suppression on the
original image. Therefore, based on the above model, using the interframe characteristics of
the target in the sequence, we propose a detection model of F-norm and Pasteur correlation
coefficient collaborative filtering to realize the multi-frame detection of the target and
output the corresponding target motion trajectory. The specific experimental results are
described in the next section.

3.4. Analysis of Multi-Frame Target Detection Results

In terms of the effect of the detection model proposed in this paper on the detection of
sequential multi-frame targets, this section compares the results of the proposed detection
model with those of the above models. The specific effects are as follows (Figures 12–17).

(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 12. Panels (a1–j1) shows the detection results of sequence A of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.
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(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 13. Panels (a1–j1) shows the detection results of sequence B of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.

(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 14. Panels (a1–j1) shows the detection results of sequence C of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.

(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 15. Panels (a1–j1) shows the detection results of sequence D of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.

As shown in the figure above, the proposed algorithm can detect multiple frames
of targets and output the trajectories of targets, and the content of false alarm targets in
the trajectories is the least among the six scenes, indicating that the algorithm achieved
suitable results in background modeling and can suppress the edge background contour in
the figure. However, when the figure contains other interfering targets, the algorithm will
also detect and output them, causing trouble with the detection of real targets. Therefore,
based on the local characteristics of the target imaging in the image and the correlation
between frames of the sequence image, we propose a detection model of F-norm and Barker
coefficient collaborative filtering to detect and extract the multi-frame target and improve
the target recognition. The specific test results are shown in the following figure:
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(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 16. Panels (a1–j1) shows the detection results of sequence E of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.

(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

Figure 17. Panels (a1–j1) shows the detection results of sequence F of top hat, ANI, PSTNN, ASTTV,
GST, NTFRA, NRAM, HB-MLCM, ADMD, and the proposed method.

As shown in the Figure 18, to avoid the influence of partial noise on the target detection
of sequence multiple frames, the detection model of F-parametric and baroclinic coefficient
co-filtering proposed in this paper using the interframe correlation property of sequence
images can achieve the target detection and output the motion trajectory of the target in
different sequences, which shows the feasibility and innovation of the algorithm.

3.5. Analysis of ROC Indicators

To further reflect the feasibility of the proposed model in weak target detection, the
detection effect of the above model on targets in each scenario is evaluated by the detection
rate Pd and false alarm rate P f , and the specific evaluation model is defined as follows:

Pd =
Number of targets actually detected

Real target number

P f =
Number of real targets not detected

Number of all pixels

(18)

where Pd and P f denote the detection rate and false alarm rate of the target, respectively,
and the feasibility of the proposed model is demonstrated by plotting the detection rate
and false alarm rate curves of each model, as shown in the following figure (Figure 9):
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Scence A Scence  B Scence C

Scence D Scence E Scence F
Figure 18. Detection results of the FNPC detection model.

As shown in the above Figure 19, the detection model constructed in this paper
achieves a detection rate Pd of 100% in all the six selected sequence scenarios, and the false
alarm rate P f does not exceed 0.01%. In scenario A, the NRAM model, ASTTV model, and
the proposed detection model perform better, maintaining a 100% detection rate, while
the false alarm rate does not exceed 0.01%, followed by the UCTransNet network which
gradually rises and reaches detection rate of 98%. The last are the top hat filtering model,
ANI model, and PSTNN detection model. In scenario B, because the scene belongs to
half-space and half-ground attributes, the image contains more detailed information, which
causes some trouble in the detection of each model, but it can be observed from the figure
that the detection model proposed in this paper can maintain a low false alarm rate while
the detection rate is 100%, which indicates that the model has certain scene adaptability and
can achieve the purpose of target detection. In this scene, the ADMD model, ANI model,
and GST model have better effects, and the detection rate reaches 100%, followed by the
UCTransNet network detection model which reaches a detection rate of 97%. Meanwhile,
the NRAM model has a poorer detection effect, and the detection rate is only 11% under the
same segmentation threshold. Scenarios C and D have smoother backgrounds and obvious
target features, and the target detection effect is better for more models, but the ASTTV
model in scenario C has a poor effect, and the detection rate Pd is only 81%; similarly, the
NTFRA model in scenario D has a poor effect, and the detection rate is only 83%. The
UCTransNet model reaches detection rate 99% and 98% in scenes C and D, respectively.
In scenario E, the detection rate of the proposed model constructed is maintained at 100%
under the same conditions and the false alarm rate Pf is 0%, followed by the UCTransNet
model, ASTTV model, GST model, and top hat filtering, which all achieve a 100% detection
rate. In scenario F, the detection effect is obviously stratified, the detection effects of the
ADMD model, ANI model, and NTFRA model are poor, and the detection rate of other
models is better, which indicates that the three models cannot achieve the detection of
the target under this limited threshold condition. In summary, our proposed detection
model can achieve the detection of the target in six different backgrounds and has merits
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compared with other advanced detection models, reflecting the feasibility, innovation, and
adaptability of the model.
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Figure 19. Schematic of ROC curves for 10 model detection models in 6 sequence scenarios.
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3.6. Comparison of Computational Model Complexity

To sum up, the method proposed in this paper achieved certain results in the detection
of infrared weak and small targets. In order to fit the actual application, this section
compares the background modeling complexity of the above comparison algorithm and the
algorithm proposed in this paper, and reflects the operation complexity of each operation
model in the background modeling through the background modeling operation time of
different scenes. Specific data are shown in the following table:

As shown in Table 11, the background modeling algorithm of the improved Hessian
matrix proposed in this paper has different operation time in different scenarios. Among
them, the GST model, PSTNN model, ANI model, top hat filter model, HBMLCM filter
model, and ADMD filter model have less operation time. The ASTTV model, NTFRA
model, and NRAM model have a long operation time. The operation time of the algorithm
proposed in this paper is moderate, and the average operation time in all the selected scenes
is 4.1890 frames per second. This shows that the background modeling model proposed
in this paper needs to be further optimized to meet the requirements of weak small target
detection in the field.

Table 11. Calculation of background modeling complexity in different scenarios of each model (unit:
frames/second).

Method Top
Hat [55] ANI [56] PSTNN [23] ASTTV [26] GST [58] NTFRA [57] NRAM [59] HBMLCM [19] ADMD [60] UCTransnet [61] Pro

Time Consumption

Scence A 0.1555 1.1242 1.7371 59.2074 0.1092 7.9126 38.6607 0.1705 0.1756 440.7594 4.3726

Scence B 0.0631 0.1420 0.2326 5.9643 0.0230 1.4706 1.6768 0.0699 0.0920 151.5486 0.5156

Scence C 0.0578 0.4358 0.3205 19.5844 0.0516 5.8255 10.5272 0.1373 0.1787 439.0609 1.5982

Scence D 0.1104 0.8034 0.6351 19.2231 0.0556 5.3351 11.0282 0.1076 0.1572 1080.6195 2.9033

Scence E 0.1098 2.0828 3.2974 58.1772 0.0946 10.8307 44.9906 0.1675 0.2001 195.0051 8.0268

Scence F 0.1209 2.0691 2.6908 56.4643 0.0717 10.8489 38.7814 0.1723 0.2245 195.0051 7.7177

4. Discussion

From the comparison and verification of the above experiments, it can be seen that the
existing weak and small target detection methods cannot suppress the complex background
when modeling the background in the scene where the image signal-to-noise ratio is low,
the edge contour is prominent, and part of the ground information is covered, resulting in
target detection failure and high false alarm rate. For example, top hat filtering, using fixed
filter structure elements for background modeling, brings great limitations to the algorithm.
The background suppression effect of the six scenes is poor, and there are many edge noise
points in the corresponding three-dimensional image. Anisotropic filtering (ANI) often
appears in the detection of weak and small targets. This model uses the characteristic
that the energy of the target is diffused from point to point, and often combines with the
kernel diffusion function to conduct background modeling. However, due to the fixed
gradient analysis property of the kernel diffusion function, the anisotropic filtering model
often retains more edge contours and noise points in the background modeling of complex
scenes, and the target discrimination is low. The GST detection model is a tensor model
applied in earliertarget detection. The overall operation speed of the model is fast, and
the background suppression effect is excellent for scenes with stable background and
few contours. However, since the model combines two-dimensional Gauss and second-
order conjugate symmetric derivatives to form a background suppression model, the
conjugate operation is not adaptable to scenes with strong edge contours, resulting in the
retention of contours and strong noise points in the scene. The PSTNN model proposed
by Zhang et al. can effectively retain the target signal while suppressing the background
by using the background modeling method combining local tensor and weight norm, but
when facing the scene with long edge contour, the detection model will still retain some
contour information. However, this method uses tensors in background suppression and
provides a research idea for low rank sparse background restoration. For example, the
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ASTTV model in this paper proposes an edge grinding detection method of low rank
approximation of non-convex tensors with adaptive weight assignment, which can adapt
to different suppression intensities for different pixel values in the image and retain the
target signal; however, in the above ASTTV background suppression difference map and
three-dimensional map, it can be observed that the target signal is excessively suppressed
and the target signal is not obvious. The HBMLCM detection model is quite different
from the traditional background modeling algorithm. This model firstly enhances the
energy of the original image in local prefetching to highlight the target, and then carries out
background modeling to detect the target. The model ensures that the target can be detected
to a certain extent; however, in the above experiments, it can be seen that the research idea
of enhancing first and then detecting is not effective in the background suppression when
facing the scene with sharp ground contours and some contour information of the ground is
still retained in the scene. In the same way, using local information processing, the ADMD
model is improved on the detection model of AAGDto enhance the target signal. From the
experimental results, it can be seen that its background modeling effect is prominent in
stable scenes, but its background suppression effect is poor in strong edge contour ground
scenes. However, when the deep learning of UCTransNet is used for background modeling,
the real target points need to be segmented after the overall training of the sequence scene,
and the target detection is not required after the background modeling. Therefore, the index
analysis after the background modeling is not carried out in this paper, which simplifies
the detection process of weak and small targets to a certain extent and has a high accuracy.
However, the training takes a long time and the adaptability is poor, and the detection
model based on neural network has great limitations in the detection of dynamic dim and
small targets. In addition, from the data in Tables 5–10, it can be clearly observed that the
existing algorithms have large differences in background modeling and low stability when
facing different scenes, which leads to low adaptability of the corresponding algorithms.
The method in this paper made corresponding work for the defects of the above algorithms.
After relevant theoretical research and scientific verification, it is found that the background
modeling of the algorithm proposed in this paper is stable in different scenes, and the
dynamic background suppression and target signal retention are prominent, so as to achieve
the goal of target detection. For the subsequent scenes with more edge contour clouds,
the next step may consider adding low rank tensor theory to distinguish the difference
between edge information, target information, and corner points, so as to highlight the
target signal and reduce the false alarm rate.

5. Conclusions

Considering that in long-range imaging, the target in the image conforms to the
distribution characteristics of point spread function, and its energy is diffused from the
center to the surrounding, based on the gray difference between the target point and
the adjacent background, an adaptive gradient saliency function model is constructed to
highlight the target signal while suppressing most of the background. However, after
relevant research and experimental verification, it is concluded that the target energy is
always weakened after background modeling, which brings difficulties to target detection.
According to the gradient difference between the target point and the noise point in different
directions, a local multi-scale gradient maximum energy-enhancement detection model
is constructed, which greatly improves the contrast of the target in the image. Finally,
according to the mutual correlation of target motion on continuous multi-frame images
and the random appearance of noise, a detection model of F-norm and Pasteur coefficient
collaborative filtering is proposed to realize the detection of the final target point. According
to the above experiments and relevant data, the summary is as follows:

(1) The proposed IHMM detection model can retain the target signal when performing
background suppression in the complex scenes. Compared with traditional methods, the
SSIM, SRN, and IC indexes are greater than 0.9999, 47.4750 dB, and 12.1008 dB, respectively.
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(2) The proposed LMGM model can significantly improve the signal-to-noise ratio of the
target in the difference image, and the target energy-enhancement effect of the LMGM
model reached 17.9850 dB in six scenes.

(3) The FNPC model proposed in this paper can maintain a high detection rate when the
false alarm rate is low, and when the false alarm rate is 0.01%, the detection rate of the
FNPC model reaches 100% in all scenes.
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