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Abstract: Freely available satellite imagery from the EU Copernicus program can record water
surfaces precisely and at high temporal resolution. This paper provides the development status of
the open-source demo software “WaterMaskAnalyzer” (WMA) for the determination of water body
extents. The application allows simple to use on-demand monitoring of inland water dynamics by
the Otsu-thresholding algorithm that automatically classifies water bodies. The tool can answer
various hydrological issues related to disaster and water management, nature conservation, or water
body monitoring. The first results from investigations of the Sentinel-1 time series in VH polarization
show high accuracies with R2 = 0.824 compared to in situ measurements for the Quitzdorf reservoir
in Saxony, Germany. Small or indented-shaped water bodies, as well as those with forested riparian
zones, such as the Cranzahl (VH: R2 = 0.102 and VV: R2 = 0.251) and Klingenberg reservoirs (VH:
R2 = 0.091 and VV: R2 = 0.146), only achieve a low R2 for VV and VH polarization but receive equally
low RMSEs of 0.045 km2 (Cranzahl) and 0.077 km2 (Klingenberg). By separating out outliers and using
correction factors, fast improvements in the accuracies can be expected. For future improvements,
alternate classification methods and diverse new ground-truth data lead us to expect the next big
step in development.

Keywords: water mask; Copernicus; sentinel; Landsat; water area dynamics; inland water body;
image segmentation

1. Introduction

Water bodies show permanent water level fluctuations. Both natural and artificial wa-
ter share this characteristic. The monitoring of water body extents is of central importance
for the investigation of many public health and ecological questions [1]. The knowledge of
the extent and dynamics of running and standing water bodies is crucial for instant and
future management. In addition, in situ lake level measurements are globally sparse [2]. By
using freely available satellite data with high temporal and sufficient spatial resolution, the
hydrological database can be considerably expanded and thus contribute to the fulfillment
of official administrative tasks. The areas of application are diverse, from public health
topics to extreme events, such as drought and floods [3]. Low water levels also have a
negative impact on water quality, on which drinking water reservoirs and the popula-
tion they supply are particularly dependent. In addition, knowledge of water availability
during drought is important for answering ecological questions [4]. The review of the
implementation of measures from the Common Agricultural Policy (CAP) is also based
on knowledge of water levels (i.e., pond measures) [5]. Multitemporal data can be used
specifically to visualize the water surface dynamics and extents of highly fluctuating inland
water bodies and broader streams to monitor water management activities and extreme
hydrological events. Also, for the identification of inundation areas for flood damage
evaluation, the derivation of mean water levels and water–land borders are necessary, as
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well as determining water recurrence, the delineation of riparian zones, water exchange
areas, and partly wetlands [3,4].

Great progress has been made at a global scale in mapping surface water and its long-
term changes [6]. By using more than three million images from several Landsat missions,
the authors are mapping months and years when water was present over the past 36 years
with their tool, Global Surface Water Explorer (https://global-surface-water.appspot.com/)
(accessed on 10 January 2022). Some investigation parameters are available as a web
service and offer temporal profile charts for each location in the world [7] but allow only
investigations of water bodies based on pre-processed data. The user has no influence on
the investigation period, which always covers 1984 to 2020. Although the temporal profiles
of individual pixels can be displayed, the dynamics of the entire water body cannot be
recorded. Possibilities of data export do not exist. By using Sentinel-1 C-Band Synthetic
Aperture Radar (SAR), there is great potential for the automated monitoring of short-time
changes [8]. This imagery has a high spatial and temporal resolution, is unaffected by
cloud cover, and fulfills the requirements for ideal monitoring of inland water dynamics.
There is high potential for rapid mapping of water bodies at a large scale, high spatial
resolution, and accuracy by using the powerful cloud-based processing platform Google
Earth Engine (GEE) [9–12]. The first systems are already implemented that use Sentinel-1
data to evaluate inland water dynamics using GEE (e.g., “Sentinel-1 based Inland water
dynamics Mapping System” (SIMS), https://sims-toolkit.herokuapp.com) (accessed on 30
May 2022) [13]. Here, too, the setting options by the user are limited.

Therefore, the aim of this work was to develop a simple-to-use on-demand monitoring
tool for inland water dynamics using a robust and proven classifier on satellite images.
The application concept of the WaterMaskAnalyzer (WMA) provides a flexible analysis of
different types of satellite data with a universal processing algorithm to determine the water
surface extent. The main purpose is to provide on-demand analyses and visualizations of
temporal dynamics for inland water bodies along with the extraction of observed surface
water extents in an easy-to-understand, modularly structured interface. With the validation
using in situ data, the initial results for water surface mapping and calculation can be
evaluated.

On the basis of the satellite image time series determined by the user (Sentinel-1 in VV
or VH polarization, or the “Normalized Difference Water Index” (NDWI) calculated from
Sentinel-2 or Landsat-8 bands), an individual water mask can be created. The result is a
graduated representation of the temporal coverage of the pixels with water.

The WMA closes an important gap in demand-based water body mask generation
and, in contrast to other systems, enables the processing of very individual and detailed
questions. To ensure this individuality, the WMA should provide many functions: Free
choice of the investigation area and the survey period, the satellite system, and, if possible,
the associated polarizations, as well as other parameters such as filters or minimum map-
ping units. In addition, the WMA does not require the user to have their own processing
resources for big data processing; as a cloud-based system, the WMA guarantees efficiency,
resource-saving, and simple product generation.

2. Requirements, Materials and Methods
2.1. Web Tool Requirements

We identified eleven main requirements for a web tool working with remote sensing
data: The results should (1) be provided without espouse time, and the calculations
require (2) as little data input as possible from the user. As a web application, (3) the
permanent availability of the service is desired. The application must be able to draw on
(4) an extensive catalog of pre-processed satellite data to achieve large spatial coverage
at high temporal resolution. This is currently possible, in particular, with data from the
EU Copernicus program, which should also (5) provide weather-independent mapping
through predestined SAR-image recordings. The (6) database should always be up-to-date.
The use of approved scientific methods and algorithms should guarantee a (7) high quality
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of the results. The results are intended to show the relative proportion of the pixels that
were covered with water during the study period, which highlights the dynamic areas in
particular. The user should be provided with (8) easy-to-use tools and the possibility to
perform (9) graphical and (10) statistical analyses and evaluations of individual scenes or
entire time series. The user must also be able to (11) export results for further processing
independently of the WMA.

2.2. Water Mask Extraction
2.2.1. Data Used

In general, the WMA supports the image segmentation of radar and optical satellite
imagery. The application is currently designed to process Sentinel-1, Sentinel-2, and
Landsat-8 datasets.

Regarding the satellite imagery used, the core focus is on Sentinel-1. Sentinel-1 consists
of two satellites that were launched in 2014 (Sentinel-1A) and 2016 (Sentinel-1B) [10]. The
first image, e.g., the Quitzdorf reservoir, was taken on 3 October 2014. Until October 2016,
eight to ten images are available for Quitzdorf taken from ascending or descending orbit
by Sentinel-1A. From November 2016 until the end of December 2021, about 20 images per
month will then be available for the study area, as Sentinel-1B will now also provide images.
The Sentinel-1B mission was completed in December 2021 due to a technical malfunction.
The spatial resolution corresponds to a 10 × 10 m pixel size of the Sentinel-1 GRD product
in IW mode [10].

To carry out the validation of the measurement results, official in situ data from
the Federal Dam Administration of Saxony were used for the investigated reservoirs of
Cranzahl, Klingenberg, and Quitzdorf [14]. The water-area data were derived from daily
measurements of the water level in combination with a digital lake bottom and elevation
model of the reservoirs.

2.2.2. Classification Method

Varieties of methods are available today for classifying a land cover, such as a water
surface from a satellite image. These range from data-driven machine learning meth-
ods [15,16] to statistical methods, such as threshold selection, according to Otsu [17]. The
decision to use the Otsu method is because it is established for the intended classification
with good results [18]. In addition, low computing capacities and little user interaction are
required for implementation [18]. The user does not need any additional data apart from
the geometry of the study area (Figure 1a) and does not have to determine any training
areas, for example, which makes the application of the Otsu method very user-friendly
and quickly ready for use. Dealing with 455 Sentinel-1-images in 2020, the WMA needs
3:30 min to create the final water mask of the Quitzdorf reservoir.

Otsu’s method [17], an automatic thresholding algorithm for the segmentation of
digital images, splits the pixel values into two classes, in this case, water (where the pixel
value = 1) and non-water (where the pixel value = 0). Figure 1b illustrates a histogram
that shows the distribution of the pixel value classes and their frequency for an exemplary
water body (a). Smooth surfaces, such as bodies of water, reflect the transmitted radar
pulse away from the receiver. In the histogram in Figure 1b, this can be seen from the fact
that the water pixels have lower backscatter values than the non-water pixels. When the
pixel radar intensity or the backscatter coefficient (σ0) as the physical quantity equivalent
is plotted on the histogram, two characteristic peaks emerge. Otsu’s method detects the
optimal threshold near the local minimum between them. Based on the automated process,
an individual value is calculated for every image to mask all water pixels below this limit.
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Figure 1. Use of Otsu’s method for a defined (a) AOI of the Quitzdorf reservoir that shows the
(b) characteristic water–land pixel value distribution in the corresponding histogram of an exemplary
Sentinel-1 median radar image with VV-polarization.

2.3. Investigation Area

To test the functionality of the WMA and the classification results, three representative
water bodies in eastern Federal State Saxony, Germany, were selected (Figure 2). The
Quitzdorf reservoir is located west of the Town of Niesky in the region of Upper Lusatia.
With a maximum water surface of more than 6.66 km2 (with an operating space volume of
16.48 Mio. m3) in 2018, it is the largest reservoir in Saxony. Its main functions are the provi-
sion of service water, flood protection, and low water elevation. The Cranzahl reservoir
(0.35 km2 and 2.85 Mio. m3) and the Klingenberg reservoir (1.16 km2 and 14.14 Mio. m3)
are located in the Ore Mountains and are used to supply drinking water.

Remote Sens. 2022, 14, 4485 4 of 12 
 

 

optimal threshold near the local minimum between them. Based on the automated pro-
cess, an individual value is calculated for every image to mask all water pixels below this 
limit. 

  
(a) (b) 

Figure 1. Use of Otsu’s method for a defined (a) AOI of the Quitzdorf reservoir that shows the (b) 
characteristic water–land pixel value distribution in the corresponding histogram of an exemplary 
Sentinel-1 median radar image with VV-polarization. 

2.3. Investigation Area 
To test the functionality of the WMA and the classification results, three representa-

tive water bodies in eastern Federal State Saxony, Germany, were selected (Figure 2). The 
Quitzdorf reservoir is located west of the Town of Niesky in the region of Upper Lusatia. 
With a maximum water surface of more than 6.66 km2 (with an operating space volume 
of 16.48 Mio m3) in 2018, it is the largest reservoir in Saxony. Its main functions are the 
provision of service water, flood protection, and low water elevation. The Cranzahl reser-
voir (0.35 km2 and 2.85 Mio. m3) and the Klingenberg reservoir (1.16 km2 and 14.14 Mio. 
m3) are located in the Ore Mountains and are used to supply drinking water. 

 
Figure 2. The locations and shapes of three investigated water bodies in Saxony, Germany. Projec-
tion and coordinate system: ETRS89/UTM32N, EPSG: 25832. 
Figure 2. The locations and shapes of three investigated water bodies in Saxony, Germany. Projection
and coordinate system: ETRS89/UTM32N, EPSG: 25832.

About three-quarters of the riparian zone of Cranzahl consists of coniferous forests.
The remaining shares are distributed among mixed forests, mixed deciduous forests, and
grassland. Mainly the riparian zone of Klingenberg is lined by coniferous forests, followed



Remote Sens. 2022, 14, 4485 5 of 12

by mixed forests. The riparian zone of Quitzdorf is predominantly dominated by riverine
vegetation (reeds and copses).

In the drinking water dams, Cranzahl and Klingenberg, the water level is mainly
influenced by the inflowing water, which is why events such as drought have a particular
impact here. Since Quitzdorf also serves as flood protection, the water level is managed
even more actively here. Thus, reservoir space (4.45 Mio. m3) is kept available to counteract
heavy precipitation events [14].

3. Results
3.1. Web Tool Development

The requirements for the WMA as a web tool and the processing methods described
in Sections 2.1 and 2.2 could be successfully implemented by using GEE. This web-based
online demo application is available at https://bit.ly/3wEdnMI (accessed on 19 July 2022).

After launching the application, the initial map view (Figure 3) is used to define the
area of interest (AOI) with a geometry tool. Analyzing an extensive collection of satellite
scenes makes it necessary to first reduce or customize the dataset depending on the relevant
study area (the AOI) and time period. This includes spatial and temporal assembling
with convenient methods for clipping or filtering [19]. The pre-processed Sentinel and
Landsat datasets already contain basic radiometric and atmospheric corrections. To avoid
any misrepresentation, truncated or partial satellite images that do not fully cover the area
of interest (AOI) are filtered out. This also involves optical satellite imagery with adverse
cloud coverage, which can be automatically sorted out by an adjustable filter function. The
full processing scheme is shown in Figure 4.
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The WMA offers various adjustments, analyzing as well as export functions that are
embedded in a modularly structured and flexibly expandable interface. These can be
handled through control elements in an adapted pre- and post-processing user interface.

The main segmentation processing (Figure 4) uses Otsu’s method to mask the water
surface in each image of the investigation period, summed pixel-wise and divided by the
number of the processed images. As a result, a consolidated layer is generated that illus-
trates the water occurrence in percentages between 0% and 100%. To reduce granular noise
in the radar data from the interference of waves reflected from elementary scatterers [18],
several standard speckle-filtering techniques are available. In comparison, multispectral
imagery tends to have considerably less noisy scenes, so there is a simple smoothing option
in the WMA to blur uneven texture.

The results are summarized as different stacked output layers in the WMA post-
processing map view. The background layer represents a reduction of all available satellite
images by calculating the median for each pixel across the entire collection of the inves-
tigation period. The calculated water occurrence layer is shown at the top level, which
illustrates areas that were never (0%) up to constantly (100%) covered with water as a
natural color gradient. For better delineation, the contour of the water surface can also be
displayed for any of these percentage values.

The post-processing map view (Figure 5) offers additional analyzing tools. The
time-lapse function creates an animation from a series of satellite images available in a
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specific period. By calling the point inspector, a time series of the thresholds obtained with
Otsu’s method and the pixel values for a selected point is displayed. In addition, the
application provides a water area chart function that generates a graph of the water area
size identified in each satellite image over time. The generated charts of the point inspector
and water area chart function are connected to the image collection in an interactive way.
Particular satellite images will appear as an additional layer by clicking on the relevant
data point in the chart. The options button opens a settings panel that allows the adjustment
of the preset parameters and the start of recalculation. To ensure further processing, the
results can be saved using the export function.
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3.2. Validation of the Water Mask Calculation

To validate the WMA results, an analysis was made for the study sites using the
vertical–horizontal polarization (VH) and vertical–vertical polarization (VV) bands of
the Sentinel-1 and Sentinel-2 index, NDWI. For VV and VH, the first letter describes the
polarization direction in which the signal is transmitted from the transmitter. The second
letter indicates how the returning signal is received. The calculated water area from each
run was compared to in situ data of the surface water extent (Figures 6 and 7). The
difference in the number of measurement points between VV/VH and the NDWI is due
to the fact that the NDWI is calculated using optical bands. These bands cannot be used
when there is cloud cover or night, so, compared to the cloud- and light-independent radar
images (VV/VH), there are comparatively few usable images over the selected study period
(Figure 6). Radar images from Sentinel-1 allow the evaluation of a much denser time series,
which is clearly reflected in the histograms below.

The root-mean-square error (RMSE) and the coefficient of determination (R2), to
compare the in situ area data with the WMA area measurements, were calculated for the
quality evaluation of the processed data (Table 1). Images with VH polarization show high
accuracies with an R2 of 0.824 for Quitzdorf. The prominent indented-shaped Klingenberg
reservoir and smaller-sized Cranzahl reservoir only reach low R2-values. In general, it
appears that the larger the water body, the higher the RMSE value. When using the
NDWI, the highest values are obtained for all AOIs compared to VV and VH RMSEs. The
individual comparison between the in situ data and the WMA-calculated area (VV, VH,
and the NDWI) for the study areas can be seen in Figure 6.
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Table 1. Quality parameters of the WMA water area measurements from 1 January 2016 until
31 December 2021 in relation to the in situ data.

Sensor/Index Parameter Cranzahl Klingenberg Quitzdorf

Sentinel-1 VV
R2 0.251 0.146 0.570

RMSE (km2) 0.040 0.077 0.863

Sentinel-1 VH
R2 0.102 0.091 0.824

RMSE (km2) 0.048 0.085 0.708

Sentinel-2 NDWI
R2 0.153 0.088 0.320

RSME (km2) 0.065 0.323 1.276

The water area chart for the Quitzdorf reservoir over a period of seven years (2015–2021)
(Figure 7) shows detailed information about the aquatic ecosystem dynamics of the water
extent over a seven-year period (2015–2021) (Figure 7). It illustrates that the water level fell
during the summer months, especially in the dry years of 2018, 2019, and 2020, due to the
absence of precipitation and high evaporation. In addition, the water level in the reservoir was
forcibly lowered in 2019 for inspections, which can also be observed. The VV and VH area’s
over- and underestimations in Figure 7 for Quitzdorf are clearly visible in the corresponding
scatterplots in Figure 6, too.

4. Discussion

As a general pattern for the Sentinel-1 data, the course of the water area calculated
by the WMA faces some problems where statistical key figures are affected by outliers.
However, there is an overestimation, especially for low water levels, which is most sig-
nificant in the case of the Sentinel-1 VH data. When the water retrieves quickly, the soil
is still wet and can mistakenly be identified as covered with water. Recent studies show
that the C-Band-SAR is sensitive to the topsoil layer moisture level [20] but is limited by
vegetation cover [21]. Thus, at this point, it is possible that the backscatter of soil moisture
is misidentified as a water surface. When a watercourse reaches its full extent, the area
tends to be underestimated due to overlapping vegetation and may be favored by other
edge effects of pixel-based classification. The measurement error due to vegetation at the
watercourse edge increases the smaller such a watercourse is since the proportion of the
edge pixels increases in comparison to the surface area of the watercourse. The smaller
and more indented-shaped the water areas are, the relatively larger the proportion of the
edge pixels is to the total area. This causes several problems in water mask extraction. In
addition, for weakly dynamic water bodies, a low R2 says little about the quality of the
measurement. Here, the point-inspector can serve as a better tool for analyzing the inner
pixels of a water body that are not influenced by edge effects.

For determining maximum surface water extents, e.g., the analysis of flood events,
Sentinel-1 VH-polarized radar images are more usable due to a better contrast ratio along
with a lower noise tendency. The higher sensitivity to volume scattering, due to a wider
range of detectable backscattering signals over vegetated land surfaces, compared to co-
polarized data, proves to be a disadvantage. This can cause an overlapping with the
low-backscattering water areas and consequent misclassification of land, leading to the
overestimation of the water areas [22–24]. Sentinel-1 VV radar data are more sensitive
to surface scattering than that of the VH-polarized so that even ripples or small waves
have a negative effect due to interfering signals. It leads to noisier images, especially
when masking the larger and more wind-exposed water bodies. The consequences are
numerous small holes within the derived water layer or heavily distorted thresholds for
the classification processing, leading to a significant underestimation of the water area size.
The higher sensitivity of VV imagery, especially to wind, results in a higher variance of
the data and much more outliers compared to the VH data, which can be clearly seen in
Figure 7. A dense time series can help at this point to filter out noisy images due to external
factors such as wind and interpolate data gaps.
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It can be seen that the WMA reacts very sensitively to changes in the water surfaces,
even if the same intensity of decreasing and increasing trends is not achieved for Quitzdorf,
as is shown by the in situ data (Figure 7). As soon as such changes become visible, decision-
makers can take action, although ultimately, the accurate mapping of the intensity still has
its limits.

By separating the outliers and developing correction factors for frequently studied
water bodies, an improvement in the accuracies can be expected in the future for all
investigated calculations (VV, VH, and the NDWI water area).

It is also noteworthy that the final water mask, due to the summation of overlapping
pixels of the different orbits, reveals details at a spatial resolution in the subpixel range.

The Otsu method [17] itself also reaches its limit and should be critically reviewed
or even replaced by other methods in the future. The histogram, on the basis of which
the threshold value is formed, is strongly dependent on the placement of the examination
AOI and the number of water pixels it contains so that the threshold value varies from
image to image. Although the method has already named advantages, a threshold value
“correct” for a long time series should not subject each image to changes and thus affect the
classification. The temporal resolution is limited by the chosen satellite system. The WMA
itself is recommended and optimized for use with Sentinel-1 datasets. The use of optical
data (Sentinel-2 and Landsat 8) is mainly intended as Supplementary Information. Using
this chosen system, in particular, is expected to result in the availability of an increasingly
longer time series in the future. The WMA is designed for the use of free data, which is
why users of commercial data experience a limitation here. Fast mapping, as in the case
of floods, is only possible if the satellite has an overflight at the right time. Long-term
dynamics and trends, on the other hand, can be mapped with the WMA in any case.

A longer time series also means a longer processing time, so users with unrealistic
expectations of waiting time for product delivery may be discouraged.

Due to the spatial pixel resolution of the satellite imagery used, small ponds (>0.005 km2)
and narrow rivers (>50 m wide) cannot be imaged with the WMA.

5. Conclusions

Even in the current state of development, the WMA offers a fast, always web-based,
accessible, and user-friendly service for determining the area and dynamics of water bodies
of interest, supported by a well-researched classification method and allows the application
even with little previous knowledge. Individual questions of the WMA user are supported
here by the use of a variety of setting options and tools.

Small and unfavorably shaped water bodies face major challenges in measuring water
area and dynamics. The original water area calculation of the WMA does not achieve
the desired results here, but it can be replaced by using the point inspector, which is also
offered. The larger a water body is, the more the edge effects fade into the background,
with good results in VV polarization.

There is still a need for the development of the WMA based on technical limitations,
new technical possibilities, and legal restrictions. In general, varieties of methods are
available to delineate land from water. Up to now, the WMA has been working mainly
with the proven method of delimitation based on limit values, according to Otsu [17].
However, with today’s possibilities in data processing, new routines in machine and deep
learning are available, and these have not yet been tested in the context of the WMA. By
using these methods, the entire procedure could be made more efficient, and the results
of the water–land delineation could be further improved. As classifiers, support vector
machines (SVM), random forests (RFs), and neural networks are the main focus of further
development. These have also proven their worth related to land cover classification, as
numerous studies have shown [15,16]. In addition, there is potential in the use of external
data sets [25] to train deep learning algorithms.

In the further course of development, Germany-wide data sets will be available and
significantly increase the pool of in situ data and the range of dynamic water body types.
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This in situ data will provide a much better indication of the methods’ performance than,
for example, specially selected scenes and indices for comparison [13]. The developer is not
tempted to select only well-fitting scenes for comparison in order to be able to propagate
the highest possible accuracy.

The previous method uses data from only one sensor system, e.g., Sentinel-1. The
issue of data fusion has not yet been addressed. Here, advantages for the quality of the
water–land boundary dynamics can possibly be derived. Various studies [26] prove that
combining SAR and optical data improves the accuracy of classification results compared
to separate specific data sets. Especially for standing waters, the addition of elevation
models can also counteract possible sources of error in the classification algorithms.

Supplementary Materials: The GEE code is online and freely available at https://code.earthengine.
google.com/74692b50b1eb7cdd4bda9a26c4e02b8c?runCode=true&hideCode=true (short-URL: https:
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