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Abstract: Garlic is the major economic crop in China. Timely and accurate identification and mapping
of garlic are significant for garlic yield prediction and garlic market management. Previous studies on
garlic mapping were mainly based on all observations of the entire growing season, so the resulting
maps have a hysteresis. Here, we determined the optimal identification strategy and the earliest
identifiable phenophase for garlic based on all available Landsat 8/9 time series imagery in Google
Earth Engine. Specifically, we evaluated the performance of different vegetation indices for each
phenophase to determine the optimal classification metrics for garlic. Secondly, we identified garlic
using random forest algorithm and classification metrics of different time series lengths. Finally,
we determined the earliest identifiable phenophase of garlic and generated an early-season garlic
distribution map. Garlic could be identified as early as March (bud differentiation period) with
an F1 of 0.91. Our study demonstrates the differences in the performance of vegetation indices at
different phenophases, and these differences provide a new idea for mapping crops. The generated
early-season garlic distribution map provides timely data support for various stakeholders.

Keywords: early-season; garlic identification; phenology; Landsat 8/9; separability

1. Introduction

Garlic is one of the primary economic crops (garlic, peanut, rape, sugar beet, sugarcane,
cotton, etc.) in China. According to the Food and Agriculture Organization (FAO) of the
United Nations, China’s garlic production reached 23.3 million tons in 2019, making China
the largest garlic growing and producing region in the world (http://www.fao.org/faostat,
last accessed 15 January 2022). Timely and accurate mapping of garlic distribution is an
important way to obtain the dynamics of garlic planting and is of great significance for the
planning and management of the garlic industry.

Traditionally, the information on garlic planting has been obtained mainly based on
field surveys. This method is not only vulnerable to subjective factors [1], but also has a
long cycle and is labor-intensive and time-consuming [2,3]. With the development of cloud
computing platforms and the opening of massive satellite data archives [4], satellite remote
sensing has become a feasible method for crop type mapping and has been widely used in
many fine mapping fields, such as urban land mapping [5], water surface area change [6],
forest degradation [7], cropland classification [8], and wetland classification [9].

Given the highly overlapping growth cycles and relatively similar phenological cycles
of garlic to other winter crops (e.g., winter wheat, rapeseed), it is difficult to separate
garlic from other winter crops using a single vegetation index. Existing studies on garlic
mapping have focused on the use of very-high-resolution commercial satellite imagery (e.g.,
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Worldview-2) [10] or ultra-high-resolution imagery (e.g., unmanned aerial vehicle) [11].
However, the high cost of commercial satellites and the limited scope of UAV make it
difficult to obtain regional garlic planting. In addition, these maps use observations
throughout the lifecycle, so garlic distribution is usually obtained after harvest, which
is too late for government policymakers to predict garlic planting area and yield [12],
market traders to regulate garlic prices [13], and farmers to implement planting decisions.
Therefore, there is a need to monitor garlic distribution early or in the middle of the growing
season, to provide timely data support for the scientific management of the garlic industry
and to provide an assessment basis for insurance in extreme weather events and natural
disaster regions. In addition, obtaining a garlic distribution map in the early or middle
growing season means using fewer data, which not only eases data processing but also
may address the lack of imagery in some regions.

Methodologically, crop mapping based on remote sensing data can usually be di-
vided into (1) visual interpretation [14,15], (2) object-based [16,17], and (3) pixel-based crop
classification methods [16–20]. Visual interpretation is based on the manual interpreta-
tion of images based on expert experience, which is a costly method and is susceptible
to subjective factors. Object-based classification algorithms include hierarchical image
segmentation software [21], etc. Pixel-based classification algorithms include random forest
algorithms [22,23], support vector machines [24,25], decision tree algorithms [26], phenolog-
ical methods [18,27], etc. Such approaches are based on spectral features, vegetation indices,
or texture features derived from single-date or multi-date images, applying supervised or
unsupervised classification methods to generate crop maps. As a popular classification
algorithm, random forest (RF) is a combination of multiple decision trees. Each decision
tree obtains a training set from ground reference data and assigns a class label to the data
after training. Ultimately, the class of each pixel is determined by majority voting to fuse
the results of all decision trees [28].

However, the data are often irregular due to overlapping satellite orbits and the
influence of clouds [29], which usually need to be processed by smoothing and function-
fitting algorithms before further analysis [30]. Moreover, the use of filters to smooth the
time series can remove noise while maintaining the original trend of the curve, and does
not affect the reproducibility of the experiment. Commonly used filtering methods include
Savitzky–Golay filter, least-square fits to asymmetric Gaussian functions [31], double
logistic functions [32], Whittaker smoother [33], wavelet transforms [34], the best index
slope extraction [35], etc. Here, we use the Savitzky–Golay filter, which is based on local
polynomial least-squares fitting in the time domain and can keep the authenticity of the
time series as much as possible [36].

Efforts have been made to generate early crop products using satellite observations,
such as rice [37], corn [38,39], soybeans [40], and winter crops [41]. However, these studies
rely on coarse spatial resolution data, resulting in parcel-based fields in numerous agricul-
tural landscapes that cannot be resolved [42]. These do not migrate for use in Asia and
Africa, where parcel-level cropland (normally less than 0.2 ha) is widely available [43].
Therefore, it is necessary to map crops of complex planting areas based on images with
higher spatial resolution.

The Landsat series of satellites, with a spatial resolution of 30 m, is considered one of
the most reliable satellite products and is a vital data source for crop identification. With
the launch of the latest Landsat 9, higher radiometric precision and higher signal-to-noise
ratio images are available, and their spectral, spatial, and radiometric measurements are
consistent with those of Landsat 8. More importantly, the combination of Landsat 8 and
Landsat 9 improves the revisit cycle of the satellites, which provides important support for
obtaining key crop phenophase.

Considering the actual demands of governments, market traders, and farmers for
timely and accurate information on garlic cultivation, three objectives were proposed in
this study: (1) to evaluate the performance of multiple vegetation indices and determine
the optimal separable metrics for garlic mapping in each phenophase; (2) to identify the
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earliest phenophase of garlic mapping based on different length classification metrics
time series; and (3) to develop an automated mapping framework to map early-season
garlic distribution.

2. Materials and Methods
2.1. Study Area

Qi County lies in the east of Henan Province (Figure 1a). It has a temperate continental
monsoon climate. The total terrain is high in the northwest and low in the southeast
(Figure 1b). The main crops are garlic and winter wheat. Qi County is one of the six
major garlic-producing regions in China. According to statistics, garlic production reached
84.8 tons in 2019 (https://data.cnki.net/Yearbook, last accessed 15 January 2022), ranking
first at the county level in China.
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Figure 1. (a) Location of Qi County, Henan Province. (b) Spatial pattern of the cropland.

2.2. Datasets and Preprocessing
2.2.1. Landsat 8/9 Images

Landsat 8/9 were launched in February 2013 and December 2020, respectively, carry-
ing Operational Land Image (OLI) and Operational Land Image-2 (OLI-2) with a spatial
resolution of 30 m and a revisit period of 16 days. Landsat 8 images and Landsat 9 images
correspond to “LANDSAT/LC08/C02/T1_L2” and “LANDSAT/LC09/C02/T1_L2” in the
Google Earth Engine (GEE) cloud platform, respectively. All of these data are surface reflec-
tion data, which are the physically based normalization of the image values throughout the
dates regardless of the different atmospheric conditions [44].

2.2.2. Ground Reference Data

The ground reference data of different crop types are critical for verifying the crop
classification algorithm. Ground reference data were collected through the following
three aspects. First, ground training and validation samples were collected based on
the very-high-spatial-resolution images in Google Earth, which clearly show different
ground cover types. Second, three survey routes were designed, and fieldwork was
conducted from March 2022 to June 2022 to collect georeferenced field photos. These field
photos included different crop types, such as garlic and winter wheat. Third, multiple
multispectral images with a spatial resolution of up to 0.1 m were obtained by UAV during
the fieldwork. In these images, the garlic fields are significantly lighter colored than

https://data.cnki.net/Yearbook
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the wheat fields, which made garlic easily distinguishable from wheat. With the images
obtained from the above three aspects, 531 garlic samples and 458 non-garlic crop samples
were collected (Figure 2), including 90 garlic training samples, 82 non-garlic crop training
samples, 441 garlic validation samples, and 376 non-garlic crop validation samples.
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Figure 2. (a) Distribution of training samples for garlic and non-garlic crops. (b) Distribution of
validation samples, including polygons of garlic and non-garlic crops. (c) Distribution of UAV sites
and survey routes. (d,e) UAV images. (f–h) Ground observations from field camera. (i,j) Very-high-
spatial-resolution images from Google Earth.

2.2.3. Land Cover Data

Cropland data from the GlobeLand30 land cover product were used to mask the
study area to delimit the cropland extent. The product is based on the 30 m spatial
resolution multispectral images (including Landsat TM, ETM+, OLI, HJ-1) and the 16 m
spatial resolution GF-1 multispectral images. The overall accuracy of the product can
reach 85.72% with a kappa coefficient of 0.82. The map can be freely accessed (http:
//www.globallandcover.com/, last accessed 15 January 2022).

2.3. Methods

Figure 3 shows the algorithm framework for determining the earliest identifiable
phenophase for garlic and producing the distribution map of garlic in 2022. First, based
on all available Landsat 8/9 imagery from November 2021 to June 2022, we quantitatively
evaluated the performance of multiple vegetation indices to determine the optimal clas-
sification metrics for each phenophase. Second, the optimal classification strategy was
generated based on the optimal classification metrics. Third, input variables of different
lengths were constructed in steps of one phenophase and input random forest (RF) classifier.
Finally, the earliest identifiable phenophase was determined and an early-season map of
garlic with 30 m spatial resolution was generated.

http://www.globallandcover.com/
http://www.globallandcover.com/
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2.3.1. Vegetation Indices Calculation

Spectral indices that are sensitive to vegetation greenness [45] can be used to capture
the physical differences of different land cover types [46] and to characterize the growth
curves of different crop types [47]. In this study, we calculated multiple indices presented
in Table 1, where ρred, ρgreen, ρblue, ρnir, and ρswir represent the red, green, blue, NIR, and
SWIR band, respectively.

Table 1. The indices used in this study.

Index Formulas Implication Reference

Green Chromatic
Coordinate (GCC) GCC =

ρgreen
ρred+ρgreen+ρblue

GCC is originally designed for use with a
digital RGB camera to measure wheat cover. [48]

Green Leaf Index (GLI) GLI =
2ρgreen − ρred −ρblue
2ρgreen+ρred+ρblue

GLI is sensitive to green leaves and can be
used to measure leaf chlorophyll content. [49]

Normalized Green–Red
Difference Index (NGRDI) NGRDI =

ρgreen − ρred
ρgreen+ρred

NGRDI is similar to NDVI, but uses the
green band instead of the NIR band. [50]

Normalized Green–Blue
Difference Index (NGBDI) NGBDI =

ρgreen − ρblue
ρgreen+ρblue

NGBDI is based on NGRDI, using the blue
band instead of the red band. [50]

Enhanced Vegetation
Index (EVI) EVI = 2.5 × ρnir− ρred

ρnir+6.0ρred−7.5ρblue+1
EVI is highly related to leaf area index and

chlorophyll in the canopy. [51]

Normalized Difference
Vegetation Index (NDVI) NDVI =ρnir − ρred

ρnir+ρred

NDVI is highly related to leaf area index and
chlorophyll in the canopy. [52]

Green Normalized Difference
Vegetation Index (GNDVI) GNDVI =

ρnir − ρgreen
ρnir+ρgreen

GNDVI is more sensitive to chlorophyll
concentration than NDVI. [53]

Optimized Soil-Adjusted
Vegetation Index (OSAVI) OSAVI = ρnir − ρred

ρnir+ρred+0.16
OSAV is effective in identifying chlorophyll
content of plants in the early stage of growth. [54]

Modified Normalized
Difference Water
Index (MNDWI)

MNDWI =
ρgreen − ρswir
ρgreen+ρswir

MNDWI uses green and SWIR bands to
enhance open water features. [55]



Remote Sens. 2022, 14, 4476 6 of 14

2.3.2. Separability Test

The separability test reflects the distinguishing abilities of the metrics in detecting
two different categories. We used separability test to evaluate the potential of the above
vegetation indices in distinguishing garlic (Equation (1)) [56]. M < 1 means that the two
categories overlap significantly and the classification ability is poor; M > 1 means that the
two categories are relatively easy to separate [57–59]. In this study, garlic and non-garlic
were tested as two categories. For each phenophase, we selected three vegetation indexes
with M > 1 as classification metric, which means that the classification indexes of different
phenophases were different.

M =
|µ1 − µ2|

σ1+σ2
(1)

where µ1 and µ2 represent the mean value for class 1 and class 2, and σ1 and σ2 represent
the standard deviation of value for class 1 and class 2, respectively.

2.3.3. Time Series Construction

Compositing images at a regular interval can reduce the impact of clouds and uneven
observations in time [60,61]. Therefore, the VIs time series were constructed at a 10 d
interval. The maximum value of all good-quality observations within a 10 d period was
taken as the observation value of the 10 d period. When there was no good-quality
observation in a 10 d period due to clouds, cloud shadow, and snow effects, the linear
interpolation method was used to fill the data gap, which can be considered as a gap-
filling reconstruction strategy recovering missing information [62]. This is one of the most
well-known and used time series reconstruction methods based on a sliding temporal
window [62]. The interpolated data depend on good-quality observations before and
after the 10 d interval [63]. However, even after the above steps, extremely high or low
outliers may still appear in the time series, which is usually caused by cloud containment,
atmospheric variability, and bidirectional effects. Therefore, the Savitzky–Golay filter was
used to smooth the time series with a moving window of size 9 and a filter order of 2 [64].

Garlic is usually sown in early November and enters the seedling period after a
germination period of more than ten days. Seedling period usually lasts until March of
the following year and then enters the bud differentiation period. The buds continue to
differentiate until the formation of garlic bolt enters the elongation period. In early May,
garlic enters the expansion period, and the bulb continues to expand until the final harvest.
To explore the earliest recognizable phenophase of garlic, we took the germination period
(1 November 2021) as the fixed starting period, and the end date gradually lengthens with
the phenophase as the step, and successively generated time series of different lengths as
the subsequent input variables.

2.3.4. Classifier Setup and Training

As an algorithm for aggregating various decision trees [65], RF are highly robust
and efficient. We used the RF algorithm on GEE, where minleafpopulation was set to
10, numberoftrees was set to 100, and other parameters used default values [66]. In this
study, we used the random forest classification algorithm provided by the GEE platform.
The training samples were input to the classifier in a ratio of 7:3, while the time series of
multiple indices obtained in Section 2.3.3 were used as test data to obtain classification
results based on time series of different lengths. Later, the classification results were
validated for accuracy using validation samples and confusion matrices to obtain user
accuracy (UA) and producer accuracy (PA), which were further used to calculate F1. As
the length of the time series of the input variables increased, the F1 continually increased.
The earliest identifiable phenophase of garlic was defined as the threshold at which F1 first
reached 0.9, since it tended to stabilize when F1 reached 0.9 (Equation (2)).

F1 = 2 × UA × PA
UA + PA

(2)
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2.3.5. Map Generation and Accuracy Assessment

Early-season garlic distribution maps were derived from a binary classifier, where
pixels were divided into garlic fields and non-garlic fields. The accuracy of the maps was
assessed using the validation samples described in Section 2.2.2 and confusion matrix
method [64]. Similar to the determination of the earliest recognizable phenophase, the
early-season garlic distribution map was defined as the F1 first exceeding 0.9.

Specifically, the accuracy assessment steps were as follows. Firstly, the validation
samples obtained in Section 2.2.2 were loaded into Google Earth, and the vector boundary
of homologous ground reference point was plotted according to the actual size and shape
of cropland. Secondly, the attributes of the vector polygons were labeled by visual interpre-
tation and field survey data. Thirdly, these vector polygons with attribute information were
converted into raster data with a spatial resolution of 30 m. These raster data were used as
the validation samples to construct the confusion matrix with the classification results.

3. Results
3.1. Optimal Classification Metrics Determination

Figure 4 shows the results for the separability of each vegetation index. The M values
of vegetation indices varied during different phenophases. It should be emphasized that
the separability test was based on the original values of all garlic and non-garlic training
samples (only the cloud is removed). Therefore, the curve is not continuous. Based
on the M value and observation frequency, GLI, NGRDI, and MNDWI were selected at
germination period, GLI, NGBDI, and MNDWI were selected at seedling period, NDVI,
GNDVI, and OSAVI were selected at bud differentiation period, NDVI, GNDVI, and
MNDWI were selected at elongation period, and NGRDI, EVI, and NDVI were selected at
expansion period.
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Figure 4. Separability results of classification metrics.

3.2. Earliest Identifiable Phenophase Determination

As the length of the time series of the input classification metrics continually increased,
F1 kept increasing, as shown in Figure 5. The time series of input classifiers were processed
as described in Section 2.3.3. The F1 obtained from three synthetic images of germination
period was 0.75, from 13 synthetic images of germination period and seedling period was
0.83, from 17 synthetic images of germination period, seedling period, and bud differentia-
tion period was 0.91, from 20 synthetic images of germination period to elongation period
was 0.92, and from 22 synthetic images of germination period to expansion period was 0.93.
Therefore, the earliest identifiable phenophase of garlic was the bud differentiation period,
and then the classification accuracy tended to be stable.
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3.3. Early-Season Garlic Distribution Map

Figure 6 shows the map of garlic distribution obtained using only 17 images of the
germination, seedling, and bud differentiation periods; that is, we could obtain information
on garlic planting three months before harvest. Garlic fields were mainly located in the
central and northern parts of the study area, where garlic has a long history of planting and
a stable market has developed. The southern part of the study area was primarily winter
wheat fields, mainly due to the lack of planting experience and the lack of garlic market.
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4. Discussion
4.1. Optimal Identification Strategy

Vegetation indices are the most used metrics in crop identification. Generally, the
identification of target crops is achieved by analyzing vegetation indices characteristics
using machine learning or rule-based algorithms [19]. Many efforts have been devoted to
exploring the importance of vegetation indices in the classification of different crops [67–69].
However, it remains unclear at which specific phenological period of the crop the vegetation
index works. Here, we quantitatively analyzed the performance of vegetation indices in
each phenophase using separability tests to determine the optimal performing garlic
classification indices in each phenophase and to obtain the optimal identification strategy
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for garlic. It is worth noting that MNDWI outperformed the other indices significantly in
the early season of garlic (Figure 4), which may be attributed to its use of the SWIR band.
In the early season of garlic, leaf tissue moisture content is lower than in other non-garlic
crops (e.g., winter wheat), which is an important reason why SWIR plays a key role, as
evidenced by the conclusions of other studies [16].

To illustrate the adaptability of the method in this study to other regions, we obtained
the seasonal changes of garlic fields in other regions. Taking NDVI as an example, the
seasonal changes are very similar in different regions, for example, all capturing NDVI
peak in April to May (Figure 7). This demonstrates that the optimal strategy proposed
in this study is equally applicable to these areas. Overall, the migration of the optimal
identification strategy is feasible in the other regions with similar latitudes, but in areas
with large latitudinal differences, the influence of temperature on the seasonal change of
garlic should be considered. That is exactly what we perform next.
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Xuzhou, respectively.

4.2. Earliest Identifiable Phenophase

The accuracy of crop distribution maps increases with the number of images used [42],
but this will be limited by the ease of data acquisition and the memory requirements for
data processing. This implies a tradeoff between map accuracy and data amount. In this
study, we tried to map the garlic distribution using early and mid-phenophase images.
The automatic mapping framework proposed in this study achieved garlic identification
using images from only three phenophases (germination period, seedling period, and bud
differentiation period). Therefore, the earliest identifiable phenophase of garlic is the bud
differentiation period. During this period, garlic starts to bolt, leaves gradually turn yellow,
leaf water content and chlorophyll content keep decreasing, and the NDVI, GNDVI, and
OSAVI are lower than other crops.

Further, we generated a post-season map using all available images of garlic through-
out the entire lifecycle and compared the accuracy with the early-season map (Figure 8).
Compared to the post-season maps, the F1, overall accuracy (OA), PA, and Kappa coefficient
of the early map decreased by 0.01, and the UA was not changed. Although the accuracy
of the early-season maps is limited by the number of images used [70], Figure 7 shows
that the difference in accuracy is not significant compared to the post-season maps. This
insignificant difference precisely demonstrates that the garlic early mapping framework
proposed in this study has satisfactory accuracy while reducing data costs.
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4.3. Uncertainty

Several factors may affect the classification results of this study. First, reliable land
cover data is an important factor to improve the accuracy of the map. The GlobeLand30
product was used with a 30 m resolution to distinguish cropland from other land types.
However, there were some classification errors in this product, especially for the staggered
distribution zone of cropland and villages. In addition, the product reflects the land cover
in 2020, which is inconsistent with the study year (2022). These errors are easily propagated
to the final garlic distribution map output. The publication of more reliable land cover data
is expected to further improve the accuracy of the research results. Second, for the missing
values in the VIs time series, linear interpolation was used based on neighboring pixels.
When good-quality observations are missing at the peaks (valleys), the interpolation cannot
reflect the real positions of crop growth [64]. In addition, linear interpolation has difficulty
reflecting the long-term gaps in the data [71]. Other spatial interpolation methods such
as bilinear interpolation [72] and kriging interpolation [73,74] may better fill the missing
pixels, and the comparison of different interpolation methods is one of the directions of the
subsequent work.

Higher-resolution data may present different results. For this, we compared the results
using Sentinel-2 and Landsat 7/8 (no Landsat 9 data were available for 2020 and 2021)
(Figure 9). The results show that there is almost no difference in accuracy between these two
data, and the Landsat data are slightly more accurate. Therefore, the increased resolution
exhibited very limited contribution to the results, and the Landsat data are enough for
identifying the planting area of garlic. In addition, Landsat data of long time series provide
an opportunity to explore the interannual variability of garlic fields by extending the
method proposed in this study to multiple years, which is a limitation of Sentinel data.
Finally, non-garlic crops include winter wheat, winter canola, and winter vegetables, and
the differences between them were not discussed in this study. A comprehensive analysis
of image characteristics of different types of winter crops and improving the universality of
the algorithm proposed in this study are the directions of further research.
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5. Conclusions

In this study, we proposed an automatic mapping framework to identify and map
garlic distribution using the time series Landsat 8/9 images. Specifically, we tested the sep-
arability of multiple vegetation indices and determined the optimal identification strategy
of garlic. Further, based on this identification strategy and garlic phenology, we deter-
mined the earliest identifiable phenophase of garlic and generated the early-season garlic
distribution map. Garlic can be identified earliest at the bud differentiation period with
an F1 of 0.91. The garlic distribution map obtained in this study can spatially characterize
the population dynamics of garlic, and apply this information to plan the precise garlic
management. The garlic early-season identification algorithm proposed in this study can
map garlic at the bud differentiation period, which helps government policymakers, market
traders, and farmers access timely and effective garlic distribution information. Moreover,
the proposed phenology-based garlic mapping algorithm framework can also be applied
for mapping garlic distribution in other years or other places.
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