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Abstract: Debris flows, triggered by dual interferences extrinsically and intrinsically, have been
widespread in China. The debris-flow susceptibility (DFS) assessment is acknowledged as the
benchmark for the mitigation and prevention of debris flow risks, but DFS assessments at the national
level are lacking. The role of human activities in the DFS assessment has always been overlooked.
On the basis of a detailed inventory of debris-flow sites and a large set of environmental and
human-related characteristics, this research presents the comparative performance of the well-known
information value (IV), logistic regression (LR) and random forest (RF) models for DFS assessments in
China. Twelve causative factors, namely, elevation, slope, aspect, rainfall, the normalized difference
vegetation index (NDVI), land use, landform, geology, distance to faults, density of villages, distance
to rivers and distance to roads, were considered. Debris-flow susceptibility maps were then generated
after the nonlinear relationship between the debris-flow occurrence and the causative factors was
captured. Finally, the predictive performance of the three maps was evaluated through receiver
operating characteristic (ROC) curves, and the validation results showed that areas under the ROC
curves were 81.98%, 79.96% and 97.38% for the IV, LR and RF models, respectively, indicating that the
RF model outperformed the other two traditional statistical methods. The importance ranking of the
RF model also revealed that distance to roads, slope and rainfall dominated the spatial distribution of
debris flows. This is the first experiment to compare between the traditional statistical and machine
learning methods in DFS studies for the whole of China. Our results could provide some empirical
support for China’s policymakers and local practitioners in their efforts to enable residents to be less
vulnerable to disasters.

Keywords: debris-flow susceptibility; information value; logistic regression; random forest; comparative
evaluation; China

1. Introduction

Debris flows are devastating natural hazards due to their sudden outbreak, rapid
movement, increasing material flow and expansive runout zone. These debris flows,
consisting of a mixture of mud, silt, rocks and soils, not only pose risks to dwellings
and infrastructure, but also threaten the lives of human beings [1]. Although a debris
flow by its nature is always unpredictable and multifaceted, it is generally recognized
that the causative factors determining whether a debris flow could take place are grossly
classified into exogenous and endogenous factors [2]. The former expected to contribute
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to debris flows consist of topography, vegetation, geology, geomorphology, hydrology
and land use, among others, whereas the latter, which mainly refer to heavy rainfall,
strong earthquakes and unreasonable human activities, among others, extrinsically trigger
flows [3]. A susceptibility assessment which is aimed at articulating the spatial correlation
between causative factors and existing debris-flow occurrence, then delineating potential
debris-flow propagation areas [4], is the key to alleviating and avoiding damage caused by
debris flows [5]. What is more, the performance of each approach varies due to different
study areas and study scales, hence the need for a comparison among various models.

China is prone to debris flows, especially in the hilly and mountainous areas [6–8]. A
total of 10,123 debris flows released by the National Bureau of Statistics occurred around the
country from 2000 to 2021, among which the giant debris-flow catastrophe that hit Zhouqu
County in the Gansu Province on 7 August 2010 has been the most severe debris-flow
disaster since the foundation of China, producing 1156 victims and leaving 588 missing.
Additionally, with the ever-rising focus on the global temperature increase and climate
change, there is clear evidence that damage from debris flows tends to continually intensify
because of increasingly frequent localized heavy downpours in China [4,9]. Therefore,
a nationwide debris-flow susceptibility (DFS) assessment is an essential prerequisite for
China’s policymakers and local practitioners in their efforts to enable residents to be less
vulnerable to disasters.

Generally, qualitative and quantitative approaches have been applied successively to
DFS assessments. A qualitative analysis is rather subjective and is conducted primarily in
situ to describe the environmental background of an area of interest, or it may be empiri-
cally based on experts’ assignment of weights to various conditioning parameters [2,10,11],
mainly including a field investigation, analytical hierarchy process and weighted linear
regression [12–14]. Often, the qualitative analysis is not applicable at a large scale because
of the prohibitive cost of resources and the time-consuming nature of such surveys. By
contrast, quantitative methods, which can improve our ability for large-scale coverage on
the basis of the correlation between debris-flow inventories of past events and the con-
trolling factors extracted from multi-temporal topographic and remotely sensed data sets,
have been universally implemented. Various quantitative assessments, such as information
value (IV) [2,11,15,16], logistic regression (LR) [16–19], frequency ratio [20,21], weight of
evidence [22] and Bayes discriminant analysis [6,23], have been well verified in mapping
DFS. More significantly, recent advances in machine learning practices have provided
an efficient alternative to clarify the potential distribution of debris flows. Susceptibility
maps using diverse machine learning methods, such as random forest (RF) [6,19,24,25],
decision tree [26,27], support vector machine [23], artificial neural network [28], extreme
gradient boosting [29] and maximum entropy model [30], have also been generated by
researchers, and each algorithm has its pros and cons [11,31]. For example, most machine
learning algorithms do not directly provide the ranking of factor importance, such as the
common artificial neural network model, and a random selection of negative samples when
applying these models may probably lead to sampling bias while the maximum entropy
model should be a much more suitable alternative in this regard [32,33].

Previously, a single model was often used (e.g., LR or RF) or a series of models of
one sort (e.g., statistical or machine learning) was considered, but a comparison of statis-
tical and machine learning methods for a DFS assessment was generally neglected [6,24].
Numerous medium- or local-scale analyses adopting integrated information into quan-
titative methods were addressed in some specific regional studies [4,5,30,34], but such a
data-driven analysis at a larger scale, such as continentally or nationally, was comparatively
scarce. Environmental factors have been always considered in the DFS studies, but few
research studies have incorporated the role of human activities [33]. Therefore, comparing
the applicability and performance of traditional statistical and machine learning models
while, at the same time, integrating environmental and human-related drivers of debris
flow for large areas is presently a critical exploration in DFS assessment [35]. Hence, in this
research, we chose the IV model, LR model and RF model as representatives of bivariate
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statistical approaches, multivariate statistical approaches and machine learning approaches,
respectively, to compare the performance of DFS from a larger national scale.

The initiation and mobilization of debris flows account for the interplay of exogenous
triggers, such as heavy rainfall, a violent earthquake and serious deforestation, and endo-
genic drivers, such as the topography, vegetation, geology, hydrology and climate at the
local scale [36,37]. Hence, we chose China as the study area and obtained an inventory
of past debris-flow events, including more than 28,000 points. First, we built up a set of
comprehensive index systems involving 12 causative factors from previous works [6,7,11],
which integrated both intrinsic and extrinsic conditions to create factor classification maps
of DFS at a 200 m spatial resolution. Second, three well-established models involving two
typical statistical methods, namely, IV and LR, and a machine learning method, namely, RF,
were implemented to analyze and fit the correlation between the debris-flow occurrence and
triggering factors, and to generate susceptibility maps for each model. Finally, we adopted
the receiver operating characteristic (ROC) curve and statistical analysis to evaluate the
prediction accuracy of the above-mentioned three models. An overall schematic illustration
of the steps involved is shown in Figure 1. Our goal was (1) to compare the performance
among the IV, LR and RF models on their accuracy, applicability and analyticity for a DFS
assessment, (2) to explore the dominant factors that trigger the occurrence of debris flows
in China, and (3) to provide a basis for risk mitigation and land use planning in a changing
climatic regime.
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Figure 1. The overall flowchart in this study. NDVI, normalized difference vegetation index; IV,
information value; LR, logistic regression; RF, random forest; ROC, receiver operating characteristic;
AUC, area under the curve.

2. Materials and Methods
2.1. Data Sources and Processing
2.1.1. Debris-Flow Inventory

Collection of a complete and accurate debris-flow inventory is an essential premise
for a DFS assessment. In this study, a point data set of 28,485 debris-flow sites was
collected through image interpretation, official announcements, historical reports and field
surveys by the end of 2018 in China. The information on debris flows was provided by
the Resource and Environment Science and Data Center (RESDC), Chinese Academy of
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Sciences (https://www.resdc.cn (accessed on 1 July 2020)). The debris-flow inventory map
and its corresponding kernel density map are shown in Figure 2.
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2.1.2. Causative Factors

Due to the poly-genesis and multiple stages of debris-flow development, there is no
universal criterion concerning the selection of causative factors for a DFS assessment. On
the basis of previous literature, data availability and reliability, and expert experience,
a total of 12 potential causative factors, including elevation, slope, aspect, rainfall, the
normalized difference vegetation index (NDVI), land use, landform, geology, distance to
faults, density of villages, distance to rivers and distance to roads, were considered in this
study. Subsequently, all the causative factors were converted into raster format with the
same resolution of 200 m through resampling or interpolation and then reclassified for
further analysis (Figure 3).

Topography, which determines water, heat, wind and sunlight, among others, is one
of the indirect conditions triggering debris flows [7,38]. The wide-open spaces formed by
greater elevation differences, steeper slope degrees and more-suitable slope aspects are
more prone to the release and conversion of material potential energy in slopes, giving rise
to debris-flow development [39]. A digital elevation model, with a resolution of 90 m from
Shuttle Radar Topography Mission images, was provided by the Geospatial Data Cloud
supported by the Chinese Academy of Sciences and is available at http://www.gscloud.cn
(accessed on 1 June 2020). Using this digital elevation model, we extracted three factors
related to topography, specifically, elevation, slope degree and slope aspect based on ArcGIS
software (Figure 3A–C).

The precipitation, as the carriage medium of solid materials, is one of the most crucial
induction factors for the initiation of debris flows. Generally, debris flows occur dur-
ing the rainy seasons, accompanied by heavy rainfall. Not only short-term antecedent
precipitation but also long-term accumulated precipitation contributes to debris-flow de-
velopment [40,41]. Hence, the annual average precipitation at 613 basic-reference meteo-
rological stations over the period from 1978 to 2018 was used to construct a rainfall map
through ordinary Kriging interpolation (Figure 3D), and rainfall data were obtained from
the China Meteorological Data Sharing Service System (http://data.cma.cn (accessed on
1 September 2021)).

Vegetation, land use and geomorphology also affect the type, intensity and scale
of debris flows, especially in medium- and large-scale analyses [20,42]. The sparser the
vegetation coverage, the more fragmented the landscapes, the more severe the soil erosion,
and the greater the probability of a debris-flow occurrence. In this study, the NDVI was
selected as an indicative parameter of vegetation coverage (Figure 3E), and NDVI maps
over the period from 2001 to 2018 were derived from preprocessed and enhanced Landsat
ETM+ satellite images with a resolution of 500 m (http://www.gscloud.cn (accessed on

https://www.resdc.cn
http://www.gscloud.cn
http://data.cma.cn
http://www.gscloud.cn
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1 August 2020)). The land use map in 2015 with a 30 m grid, also available from RESDC,
was divided into six categories: cropland, forest land, grassland, water, built-up land
and unused land (Figure 3F). In addition, the geomorphology was prepared by using a
geological map at a scale of 1:4,000,000, and landforms were reclassified into seven classes:
plain, mountain, hill, platform, dune, lake and glacier (Figure 3G).
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The geological environment, as the bedrock and reserve of porous solid materials in
the formation of a debris flow, controls the stability of slopes and determines the processes
of rock weathering and erosion [18,20]. In addition, debris flows occur around faults
because the existence of faults causes the surrounding geological structures to become
fragmented and prone to triggering debris flows [43,44]. In this study, maps of the lithology
and distance to faults were constructed by using a geological map at a scale of 1:2,500,000,
and six lithology groups were identified based on the stratigraphic timetable: Cenozoic,
Mesozoic, Proterozoic, Paleozoic, Archaean and undated (Figure 3H,I).

The distance to rivers reflects the degree of fluvial erosion and catalyzes the instability
of slopes [7,18]. Moreover, streams carry water during and after rainfall and may provide



Remote Sens. 2022, 14, 4475 6 of 20

a hydrological basis as a transportation channel in the mobility of a debris-flow [11]. For
this criterion, a distance to rivers map was constructed by using the Euclidean distance
function (Figure 3K), and river data, including stream vector of all levels, was provided
by the National Earth System Science Data Center (NESSDC) and is available at http:
//www.geodata.cn (accessed on 1 June 2020).

Human activities, especially road construction and resident interference, are crucial
triggers for a debris-flow and should not be ignored. Road construction and undercutting
may cause changes in the surrounding geological structure and increase stress and strain on
the back of the slope, leading to slope disturbance and failure [45]. Meanwhile, some human
activities, such as cultivation, reclamation, excavation, deforestation and mining, produce
massive loose solid deposits, and these activities often occur around village settlements.
Hence, two factors related to human activities were selected in this study, distance to roads
and density of villages, which reflect the alteration of human activities to the environment
(Figure 3J,L). Road data were also downloaded by the NESSDC (http://www.geodata.cn
(accessed on 1 June 2020)), and a village density map was made by the kernel density
estimation in ArcGIS software using village point data derived from the China Electronic
Map 2012 [46]. Table 1 summarizes the data and data sources of debris-flow inventory and
all the causative factors. All the causative factors were normalized and encoded for further
analysis before modeling (Table 2). The reclassification of each debris-flow-related variable
is based on natural break method, as well as expert experience, which not only fits perfectly
with the distribution of the data but also accumulates the inheritance of experts to avoid
bias [11,17,22].

Table 1. Data and data sources.

Data Source of Data Year Data Type Definition/Data Processing

Debris flow inventory
RESDC, available at
https://www.resdc.cn (accessed on
1 July 2021)

By the end of 2018 Point
Each point located in the
centroid of the area for each
debris flow.

Elevation

Shuttle Radar Topography Mission
images, available at
http://www.gscloud.cn (accessed on
1 June 2020)

- Grid (90 m) Resampling (the nearest
neighbor interpolation)

Slope

Shuttle Radar Topography Mission
images, available at
http://www.gscloud.cn (accessed on
1 June 2020)

- Grid (90 m) Slope gradient, resampling (the
nearest neighbor interpolation)

Aspect

Shuttle Radar Topography Mission
images, available at
http://www.gscloud.cn (accessed on
1 June 2020)

- Grid (90 m)
Slope orientation, resampling
(the nearest neighbor
interpolation)

Rainfall

Annual average precipitation from
613 basic stations, available at
http://data.cma.cn (accessed on
1 Septemper 2021)

1978–2018 Point Averaging, spatial interpolation
(Ordinary Kriging)

NDVI
Landsat ETM+ satellite images, available
at http://www.gscloud.cn (accessed on
1 August 2021)

2001–2018 Grid (500 m) Resampling (the nearest
neighbor interpolation)

Land use
RESDC, available at
https://www.resdc.cn (accessed on
1 June 2020)

2015 Grid (100 m) Reclassification, resampling (the
nearest neighbor interpolation)

Landform Geomorphological of China 1:4,000,000 - Polygon Reclassification and rasterizing
(Feature to raster)

Geology The 1:2,500,000 geological map of China - Polygon Reclassification and rasterizing
(Feature to raster)

Distance to faults The 1:2,500,000 geological map of China - Line Euclidean distance
Density of villages China Electronic Map 2012 2012 Point Kernel density

Distance to rivers
NESSDC, available at
http://www.geodata.cn (accessed on
1 June 2020)

2018 Polygon Euclidean distance

Distance to roads
NESSDC, available at
http://www.geodata.cn (accessed on
1 June 2020)

2018 Line Euclidean distance

http://www.geodata.cn
http://www.geodata.cn
http://www.geodata.cn
https://www.resdc.cn
http://www.gscloud.cn
http://www.gscloud.cn
http://www.gscloud.cn
http://data.cma.cn
http://www.gscloud.cn
https://www.resdc.cn
http://www.geodata.cn
http://www.geodata.cn
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Table 2. Information values (IV) of each factor category.

Factor Class Code %Site %Class IV

Elevation

<500 m 1 20.64 27.60 −0.2906
500–1500 m 2 31.73 33.45 −0.0529
1500–3500 m 3 30.27 15.41 0.6752
3500–5500 m 4 17.34 22.34 −0.2533
>5500 m 5 0.02 1.19 −4.0393

Slope

0–2◦ 1 8.33 36.88 −1.4881
2–5◦ 2 18.13 15.37 0.1653
5–15◦ 3 43.86 24.15 0.5967
15–25◦ 4 20.16 14.14 0.3547
25–35◦ 5 7.61 7.17 0.0594
>35◦ 6 1.91 2.30 −0.1814

Aspect

Flat 1 0.30 2.06 −1.9320
North 2 10.77 11.74 −0.0869
Northeast 3 13.30 13.00 0.0224
East 4 15.06 12.38 0.1957
Southeast 5 14.42 12.26 0.1623
South 6 13.47 12.23 0.0963
Southwest 7 11.93 12.37 −0.0360
West 8 10.83 11.80 −0.0862
Northwest 9 9.94 12.15 −0.2016

Rainfall

<200 mm 1 7.74 29.85 −1.3504
200–400 mm 2 11.36 14.54 −0.2468
400–600 mm 3 30.48 20.77 0.3838
600–800 mm 4 22.58 8.25 1.0065
800–1200 mm 5 18.19 10.72 0.5287
1200–1600 mm 6 6.13 9.41 −0.4287
>1600 mm 7 3.52 6.46 −0.6068

NDVI

<0.2 1 4.58 26.67 −1.7611
0.2–0.4 2 9.70 10.60 −0.0880
0.4–0.6 3 18.22 9.62 0.6390
0.6–0.8 4 37.23 22.51 0.5030
>0.8 5 30.26 30.60 −0.0112

Land use

Cropland 1 32.23 18.77 0.5406
Forest land 2 23.40 24.07 −0.0282
Grassland 3 30.82 28.02 0.0953
Water 4 3.38 3.02 0.1110
Built-up land 5 5.54 2.65 0.7375
Unused land 6 4.63 23.47 −1.6226

Landform

Plain 1 12.87 29.52 −0.8301
Mountain 2 73.07 45.19 0.4805
Hill 3 9.54 12.64 −0.2816
Platform 4 4.39 5.99 −0.3115
Dune 5 0.02 5.63 −5.4340
Lake 6 0.08 0.56 −1.8987
Glacier 7 0.03 0.47 −2.8099

Geology

Cenozoic 1 18.42 37.21 −0.7031
Mesozoic 2 38.61 29.84 0.2577
Proterozoic 3 14.41 8.65 0.5109
Paleozoic 4 23.41 20.80 0.1179
Undated 5 0.16 2.05 −2.5228
Archaean 6 4.98 1.45 1.2375

Distance to faults

<5 km 1 60.71 41.39 0.3829
5–10 km 2 20.55 21.25 −0.0334
10–40 km 3 17.96 31.22 −0.5527
40–100 km 4 0.78 4.84 −1.8264
100–200 km 5 0.00 1.29 −1.8264
>200 km 6 0.00 0.01 −1.8264
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Table 2. Cont.

Factor Class Code %Site %Class IV

Density of villages

<0.2 per km2 1 43.59 61.91 −0.3509
0.2–0.6 per km2 2 31.24 15.55 0.6977
0.6–1.0 per km2 3 15.08 9.04 0.5121
1.0–1.6 per km2 4 7.80 8.37 −0.0712
1.6–2.2 per km2 5 1.73 3.57 −0.7219
>2.2 per km2 6 0.57 1.57 −1.0127

Distance to rivers

<2 km 1 21.27 16.23 0.2707
2–5 km 2 15.50 17.40 −0.1157
5–10 km 3 19.70 20.76 −0.0524
10–30 km 4 35.04 34.64 0.0114
30–50 km 5 7.01 7.56 −0.0762
>50 km 6 1.48 3.41 −0.8345

Distance to roads

<2 km 1 71.68 38.07 0.6329
2–5 km 2 14.23 17.25 −0.1923
5–10 km 3 6.24 11.50 −0.6109
10–20 km 4 4.24 10.51 −0.9089
20–50 km 5 2.89 11.66 −1.3953
>50 km 6 0.72 11.01 −2.7337

2.2. Methods
2.2.1. Information Value

The IV model, which derives from information theory, is a bivariate statistical approach
for DFS assessments on the basis of the spatial relationship between debris flows and
geographical factor classes. The model was proposed by Yin and Yan (1988) and later
modified by Sarkar et al. (2006, 2013) [47–49], then gradually applied for geological hazard
prediction and disaster risk assessment. The information value I(ij) of each causative factor
class ij can be defined as shown in Equation (1):

I(ij) = ln
Nij/N
Sij/S

(1)

where Nij is the number of debris-flow pixels of causative factor i in a given class j;
Sij is the total number of total pixels of causative factor i in a given class j; N and S
represent the total number of debris-flow pixels and the total number of pixels in the study
area, respectively. What is noteworthy is that when Nij is 0, I(ij) is not defined. Thus,
the value of I(ij) is assigned the lowest value for the set of causative factors once that
happens [50,51]. An overall information value I of a certain pixel can then be calculated by
the following formula:

I =
n

∑
i=1

I(ij) =
n

∑
i=1

ln
Nij/N
Sij/S

(2)

The information value denotes whether a grid cell is prone to debris-flow development.
When I is negative, the grid cell is adverse to debris-flow development; whereas when I is
positive, the grid cell is conducive to debris-flow development. The higher the value of I,
the greater the possibility of a debris flow.

2.2.2. Logistic Regression

The LR model is one of the most reliable tools for assessing DFS, in which the depen-
dent variable is categorical and the independent variables are categorical, numerical or
both [52–54]. Another advantage of LR is that all the variables do not necessarily depend
on a strictly normal distribution. The LR model has the following form:

p =
1

1 + e−y (3)
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where p is the probability of a debris-flow occurrence that varies from 0 to 1 on an S-shaped
curve and parameter y is the linear combination of the causative predictors. Parameter y
can be expressed mathematically as

y = β0 + β1x1 + β2x2 + · · ·+ βixi + . . . + βnxn (4)

where β0 represents the intercept of the LR model and n represents the number of inde-
pendent variables. The parameter βi (i = 1, 2, . . . , n) represents the slope coefficients of
the independent variables xi (i = 1, 2, . . . , n). The probability that predicts whether a
debris flow will occur is then estimated by using Stata and ArcGIS software after all the
coefficients are determined.

2.2.3. Random Forest

The RF algorithm, as a nonlinear integrated machine learning method, is also consid-
ered one of the best classification models. It is composed of multiple decision trees in such
a way that each tree depends on the values of randomly chosen vectors [55,56]. In each
standard tree, each node is split by using the best features for the optimal solution [57].
Compared with the traditional decision tree, the RF algorithm is distinguished not only
by the strong resistance to over-fitting but also by its stable performance in solving the
problem of collinearity among multidimensional variables, either categorical or numerical.
Another advantage of the RF algorithm is that it provides the relative weights of all the
training variables, that is, the order of predictive contributions for causative factors in the
DFS assessment.

3. Results
3.1. Application of the IV Model

The debris-flow inventory map was overlaid on the causative factor maps, and the
attribute values of debris-flow occurrence for each of the 12 factors were extracted based on
ArcGIS 10.7 software. Table 2 shows the aftermath results of the IV model after application
of the IV calculation formula. Among all the factors, geology and rainfall were the most
influential for triggering debris flows, with IVs of 1.2375 and 1.0065, recording on Archaean
strata and on the rainfall class of 600–800 mm, respectively.

In terms of topography, areas with an elevation of class of 1500–3500 m covered
approximately 15% of the debris-flow points but made up more than 30% of the entire
country, resulting in the only positive IV (0.6752), followed by the classes 500–1500 m and
3500–5500 m. Only 2% of debris flows occurred in regions with elevations above 5500 m,
leading to the lowest IV (−4.0393), probably because of their stable rock structure. It should
be noted that slopes with gradients that were too high or too low were less conducive to
the development of a debris flow, because the minimum IV (−1.4881) was recorded on
the slope interval of 0–2◦, followed by the interval above 55◦. Moreover, the maximum IV
(0.5967) was assigned to the interval of 5–15◦, and the other three intervals showed positive
values, suggesting a high probability of occurrence with these slope categories. The IVs of
the factor aspect did not vary significantly except for the aspect oriented to flat of the lowest
IV (−1.9320). Among all the remaining classes, the calculated IVs were relatively small and
ranged from −0.2016 to 0.1957. Such a result suggested the aspect might be less influential
in the process of inducing a debris flow compared with the other two topographic factors.

Similar to aspect, the rainfall factor showed an inverted U distribution for the debris
flow within various classes. Of the debris flows, 30.48% occurred within the interval of
400–600 m, 22.58% in occurred within 600–800 m and 18.19% occurred within 800–1200 m.
Their IVs were 0.3838, 1.0065 and 0.5287, respectively, whereas the others contained very low
proportions and presented negative IVs. The lowest IV (−1.3504) was observed for areas
that received the least amounts of precipitation annually. From the existing relationship
between debris-flow points and vegetation coverage, those regions of higher or lower
NDVIs should correspond to lower IVs, which was also consistent with our calculation.
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Just as presumed, a moderate NDVI, meaning a class interval of 0.4–0.6, had the highest IV
(0.6390), where a debris flow was likely to take place.

Of the six land use types, cropland made up 18.77%, forest land 24.07% and grassland
28.02% of the total region, and these land use types were associated with 32.23%, 23.40%
and 30.82% of debris-flow occurrences, respectively. However, the maximum IV (0.7375)
was found in areas of built-up land; these areas covered only 2.65% of the study area but
contained more than 5% of debris flows, and forest land ran a close second. For the factor of
landform, debris flows occurred mostly in mountainous areas in the field, resulting in the
only positive IV (0.4805) for mountain class. The IVs of hills (−0.2816), platforms (−0.3115),
and plains (−0.8301) were ranked second, fourth and fifth, respectively. Dune fields were
hardly prone to debris flows, so this class had the lowest IV (−5.4340).

The most dominant geologic age was Archaean, which made up only 1.45% of the
study area but contained nearly 5% of all the debris flows, resulting in the highest IV
(1.2375). Of the debris flows, 38.61% occurred within Mesozoic strata, 14.41% in Proterozoic
strata and 23.41% in Paleozoic strata. They also presented positive values, whereas the IVs
for Cenozoic and undated strata were negative. The distribution of the factor distance to
faults categorized 60.71% of debris-flow occurrences into the interval below 5 km; thus,
the only positive IV (0.3829) was obtained for this class relative to those classes whose
distances to faults exceeded 5 km. It is worth noting that no debris flows took place when
the distance was greater than 100 km. The IVs of the factor distance to rivers assumed a
bimodal distribution within six intervals. The maximum IV (0.2707) arose in the interval
below 2 km, where 21% of debris flows were located. The IV then dropped to −0.0524 at
5–10 km and reached another peak in the 10–30 km class, which contained 35.04% of debris
flows. Such a circumstance meant that there were two types of debris flows: river-related
flows and non-river-related flows.

Two factors, namely, the density of villages and the distance to roads, were closely
associated with human activities. The proportion of all debris flows per class increased
progressively with both the growing density of villages and the decreasing distance from
roads. Higher IVs appeared within the moderate village density (0.2–1.0 per km2) categories,
whereas villages with a high or very low density were not prone to debris flows. For the
factor distance to roads, most debris flows were concentrated in the interval of less than
2 km with an IV of 0.6329, and the closer to the roads, the higher the IVs.

3.2. Application of the LR Model

Taking the presence of debris-flow sites as the dependent variable and all 12 causative
factors as the independent variables, the LR model was built to generate a DFS map.
Following the precedence set by previous international literature, we randomly selected an
equal number of non-debris flow points in the grid outside the debris-flow point to generate
negative samples [23,26,27,45]. First, 56,970 samples were adopted, including all the debris-
flow pixels and the same number of random non-debris-flow pixels, and these two types
were assigned values of 1 and 0, respectively. We then extracted the categorical encoding
(Table 2) of each causative factor to build a database through ArcGIS software. To avoid
bias caused by high correlations between causative factors, 0.7 was chosen as a threshold
of factor correlation analysis [6]. Table 3 shows that pairwise correlation coefficients of all
previously causative factors are within the threshold. To check whether multicollinearity
existed, variance inflation factors (VIF) were calculated by Stata 16.0. All the VIFs were less
than 5, indicating there was no multicollinearity (Table 2). Finally, LR coefficients and other
significant parameters were estimated by using the statistical software Stata 16 (Table 4).
By applying Equations (3) and (4), the probability of explaining a possible debris-flow
occurrence was predicted and a DFS map was subsequently presented.
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Table 3. Correlation analyses of causative factors.

Factor (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Elevation 1.000
(2) Slope 0.074 1.000
(3) Aspect 0.025 −0.008 1.000
(4) Rainfall −0.423 0.213 0.005 1.000
(5) NDVI −0.518 0.163 −0.012 0.637 1.000
(6) Land use 0.275 −0.052 0.031 −0.387 −0.483 1.000
(7) Landform −0.158 −0.039 0.004 0.044 0.091 −0.090 1.000
(8) Geology −0.289 0.159 −0.007 0.154 0.240 −0.069 0.005 1.000
(9) Distance to faults −0.033 −0.096 −0.002 −0.100 −0.048 0.019 0.086 −0.187 1.000
(10) Density of villages −0.484 0.067 −0.024 0.522 0.342 −0.245 0.148 0.127 0.039 1.000
(11) Distance to rivers 0.194 0.002 −0.010 −0.166 −0.081 0.049 0.055 −0.007 0.022 −0.059 1.000
(12) Distance to roads 0.339 0.039 −0.003 −0.283 −0.263 0.220 −0.032 −0.013 0.005 −0.264 0.158 1.000

Table 4. Logistic regression (LR) coefficients, multicollinearity test and model statistics.

Factor Coef. SD t-Value p-Value Sig. VIF

Elevation 0.533 0.013 39.65 0.000 *** 1.96
Slope 0.237 0.009 25.36 0.000 *** 1.49
Aspect −0.023 0.004 −5.37 0.000 *** 1.00
Rainfall −0.082 0.009 −8.75 0.000 *** 3.01
NDVI 0.035 0.012 2.91 0.004 *** 3.10
Land use −0.208 0.009 −23.00 0.000 *** 1.96
Landform 0.026 0.012 2.22 0.026 ** 1.07
Geology 0.171 0.008 20.31 0.000 *** 1.20
Distance to faults −0.34 0.012 −29.34 0.000 *** 1.21
Density of villages −0.118 0.011 −10.73 0.000 *** 1.89
Distance to rivers −0.033 0.008 −4.00 0.000 *** 1.16
Distance to roads −0.783 0.009 −82.97 0.000 *** 1.64
Constant 0.966 0.086 11.22 0.000 ***

Pseudo r2 0.219 No. of observations 56,970
χ2 17,334.713 Prob. > χ2 0.000
Akaike crit. (AIC) 61,668.477 Bayesian crit. (BIC) 61,784.830

*** p < 0.01, ** p < 0.05

We can infer from the estimated LR results that the model performed relatively well:
the pseudo r2 value was 0.219, indicating a high goodness of fit. With respect to the
significance for each variable, all the causative factors were statistically significant although
the significance levels varied. Five factors, namely, elevation, slope, NDVI, landform
and geology, were positively correlated with the probability of a debris-flow occurrence,
whereas an inverse association emerged between DFS and the other seven factors.

Specifically, distance to roads, elevation and distance to faults dominated the DFS
distribution from various perspectives as the coefficients that belonged to these factors
strongly departed from zero and were larger than the remaining factors. This result could
be respectively interpreted as (1) an obvious effect of human engineering activities over
debris flows; (2) a strong coincidence between high-altitude localities and mountainous
areas, topographic control over the national rainfall pattern and clusters of debris flows in
the first and second terrain ladder for China’s overall landscape; and (3) high-frequency
movements of potential materials resulting from fragmentation in proximity to tectonic
features [58]. Among other continuous variables, rainfall appeared to have a limited effect
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on the development of debris flows, which was not in agreement with our conceptual
sense. Such an unusual relationship could be explained by the fact that, in the southeastern
coastal areas of China, abundant rainfall exists but debris flows rarely occur. In addition,
debris flows were more likely to be triggered in steep-slope ranges, in sparsely vegetated
regions of low root pressure and severe erosion processes, and in proximity to drainage
lines and rural settlements. As regards the categorical cases, a significant correlation existed,
indicating that slope aspect, land use and landform accounted for the initiation of debris
flows as well. The rock lithology of various geologic ages determines the consequent release
of materials from surface erosion, and the probability of a debris flow occurring changes
with different types of geologic strata.

3.3. Application of the RF Model

All the historical debris-flow points and equally random non-debris-flow points
formed the sample data set. They were then divided into two subsets by randomly selecting
70% for training and the remaining 30% for validation of the results on the basis of ArcGIS
platform. After model optimization realized by R programming language, we chose the
area under the ROC curve to quantitatively represent the accuracy of model prediction.
The AUCs of the training and testing data sets were 0.994 and 0.910, respectively, indicating
that the model performed well (Figure 4).
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It is imperative to confirm the relative importance and mechanism of causative factors
because numerous factors have an impact on DFS in various ways [59]. The increase in
node purity is an ideal predictor to evaluate the importance of causative factors. The larger
the increase in node purity, the more important the factor is. The order of causative factor
importance is shown in Figure 5. The factor distance to roads was the most important
factor affecting the occurrence of debris flows in China, with an increase in node purity
of 1253.049, followed closely by the slope (1208.564). The influences of rainfall (871.784),
aspect (717.026) and NDVI (657.280) were ranked third, fourth and fifth, respectively. The
two most insignificant factors triggering debris flows were density of villages (459.045) and
distance to faults (403.548). Hence, by application of the RF model, human engineering
activities, precipitation and topography were recognized as the main triggering conditions
for the occurrence of debris flows in China.
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3.4. Validation of the DFS Maps

Debris-flow susceptibility maps for the three established models were generated and
are shown in Figure 6 by ArcGIS 10.7 software. According to expert experience and the
natural break method, all the maps were divided into five grades (i.e., very low, low,
moderate, high or very high susceptibility region). Areas with high susceptibility were
found to be mostly concentrated in hilly and mountainous regions in central China, which
largely corresponded to historical debris-flow sites. Specifically, the potential high-risk
areas included the Yunnan-Guizhou Plateau, Loess Plateau, Taihang and Yan Mountains,
Changbai Mountains and Shandong Hills. Low-susceptibility regions were mainly located
in most parts of northwestern China, as well as basins and plains in eastern China, including
the Sichuan Basin, Inner Mongolian Plateau, Middle-Lower Yangtze Plain, Northeast Plain,
northern Tibetan Plateau, Tarim Basin and Junggar Basin.
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The performance of the DFS models could be evaluated (see Figure 7) with the ROC
curves and the AUCs in Stata 16. For AUCs ranging from 0.5 to 1, the value equaled 1 if
a model performed the most ideally, whereas a value of 0.5 represented a model without
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a discrimination effect [59]. As shown in Figure 7, the AUC values of the IV, LR and RF
models were 0.8198, 0.7996 and 0.9738, respectively. All the models established had good
stability and reliability for the analysis of DFS in China because the prediction accuracy
exceeded 75%. The validated results also confirmed the rationality of the selected causative
factors laterally. Moreover, it was apparent that the RF model had the highest AUC, which
far outdistanced the other two models because neither the IV model nor the LR model
could absolutely overcome the effect of multicollinearity among the explanatory variables,
resulting in the lower AUC values. On the contrary, as an ensemble-learning method, the
RF model was capable of processing the data of high dimensions, diversified factors and
imbalanced samples.
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Table 5 is a statistical table of the number of grid units and historical debris flows in
each region of susceptibility. It was apparent that the proportion of debris flows increased
gradually as the susceptibility grade rose and that the debris-flow density was positively
correlated with the vulnerability level. Those regions with very high susceptibility grades
accounted for only 33.93%, 13.70% and 8.46% for the IV, LR and RF models, respectively,
whereas the number of debris-flow sites took up a great proportion, of 80.68%, 49.70% and
78.37%, respectively. The debris-flow densities of very high susceptibility grades for the RF
model were much larger than those for the IV and LR models, indicating better performance
for the RF model in identifying the high-likelihood areas. Similarly, the IV model had a
clear advantage in distinguishing between the low-risk areas and other areas because of
the lowest debris-flow densities of the low and very low regions. Hence, consistent with
the ROC curves, the LR model showed the worst performance.
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Table 5. Statistics on the susceptibility grade of debris flow.

Grade

Information Value Model Logistic Regression Model Random Forest Model

%Debris
Flow

%Predicted
Area

Density of
Debris Flow

%Debris
Flow

%Predicted
Area

Density of
Debris Flow

%Debris
Flow

%Predicted
Area

Density of
Debris Flow

Very low 0.0246 4.8651 0.0051 1.9940 25.7552 0.0774 0.2808 42.2923 0.0066
Low 0.7479 13.7304 0.0545 6.3437 20.7454 0.3058 1.2954 20.8209 0.0622

Moderate 3.2303 17.0246 0.1897 13.8108 20.7658 0.6651 4.4760 16.2221 0.2759
High 15.3125 30.4536 0.5028 28.1552 19.0359 1.4791 15.5731 12.2040 1.2761

Very high 80.6847 33.9263 2.3782 49.6963 13.6976 3.6281 78.3746 8.4607 9.2634

4. Discussion

Understanding the impact law of dominant causative factors that lead to the oc-
currence of debris flows is crucial in determining the local landscape evolution and in
minimizing the hazard risk of loss of life [60]. As shown in Figure 5, the distance to roads
was the most dominant causative factor for the initiation of debris flows in China. In this
study, this factor acted as a proxy for human engineering activities. Previously, the impacts
of human activities had seldom been considered in susceptibility models [59]. With increas-
ing regional exploitation and accelerating engineering construction, especially in China
and other developing regions, anthropogenic activities have gradually become a trigger
that cannot be ignored in the formation of debris flow. In fact, all tunnels dug and slopes
backfilled caused various degrees of damage and deformation to the geo-environment, and
any form of excavation changed the slope lines while additional attachments led to extra
burdens on existing slopes [59,60].

The slope gradient and annual average rainfall ranked second and third. The combi-
nation of a sudden rainstorm and high slope gradients scoured the surface and caused soil
erosion, which probably increased the susceptibility of slopes to debris flow. Higher slope
areas often have sparser vegetation coverage, larger weathered rocks and more frequent
debris flows. Unstable rock and soil particles are more easily taken away within a higher
slope [61]. In addition, the impact of rainfall could be explained by its close correlation
with surface vegetation because the precipitation affected the development of vegetation
coverage. The least significant causative factor was the distance from faults, and this result
corresponded to some earlier research studies [59]. According to the recorded sites, more
than 100 km away from faults, no debris flow occurred (Table 1). In general, there was no
doubt that the impacts of the distance from faults was confined to a certain range [62], and
this could be the reason the occurrence of debris flows did not show a strong relationship
with the distance to faults.

Although the dominant factor was often the actual cause of debris flows in a specific
area, all the causative factors were not independent. The importance of a certain factor
could be weakened or strengthened by other related factors [63,64]. As given by the RF
model and as shown in Figure 5 for the whole of China, the impact law and importance
ranking of the 12 causative factors is an integrated result and a comprehensive process of
checks and balances. Hence, specific to a particular area, such as a river basin or a village
domain, it was essential to gain a thorough overview of the entire causative factor system
even though determining dominant factors could indeed decrease the correlation between
causative factors.

Much research has been concentrated on comparisons among and the application of
susceptibility evaluation models (including between or within various types of methods).
For example, Dash et al. (2022) implemented three traditional statistical models involv-
ing the frequency ratio, information value and certainty factor concepts to generate DFS
zonation maps in parts of the Northwest Indian Himalayas and found that the IV model
performed the worst [11]. Zhang et al. (2019) compared the accuracy of five machine learn-
ing methods, namely the backpropagation neural network (BPNN), the one-dimensional
convolutional neural network (1D-CNN), the decision tree (DT), the random forest (RF)
and extreme gradient boosting (XG-Boost) for DFS maps, and their experiments showed the
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XG-Boost had the best score [26]. A comparison between statistical and machine learning
methods for DFS mapping indicated that the RF model, compared with the LR model and
Bayes discriminant analysis, obtained a more reasonable DFS zoning map [6]. In addition,
other studies have shown that the RF classifier could produce greater accuracy than that of
the other models, which agreed with our results [45,56,65,66].

Generally, machine learning techniques are relatively better in their prediction accuracy
than traditional statistical models. Statistical approaches can be broadly divided into two
types: bivariate and multivariate [67]. In this study, the IV method belonged to the former,
whereas the latter covered the LR method. In a bivariate analysis, debris-flow density
determines the weighted value of each category of causative factors, and the deviation
appears in the process of weight assignment owing to a certain degree of subjectivity.
Multivariate approaches, as represented by multiple regression, consider the relative
contribution of each factor to the total susceptibility in a certain space [67]. One of the
disadvantages of most of these approaches is that normally distributed data are required.
Moreover, the influence of multicollinearity cannot be completely overcome, and the
combination of such factors may generate inexplicable results. However, the machine
learning technique, as an ensemble-learning method, not only makes no prior assumption
about data quality but also preserves the original information on each causative factor
well [68]. For example, through their relative importance, the RF model provides a means
for interpretation to estimate the influence of each factor. Hence, compared with the IV or
LR model, the RF model achieved greater prediction accuracy and a superior goodness
of fit.

However, several limitations of this research still need to be addressed in future
research. Firstly, due to the lack of accurate occurrence time of debris flows, we did not
analyze the spatiotemporal distribution of existing flows. Moreover, there is no denying
that the model design, in which all debris flows occurring in different times were regarded
as the same points and all the causative factors were reclassified by different classification
methods, will affect the accuracy in the analysis of influencing mechanism [37]. Secondly,
although 12 causative factors were considered in this study, more potential drivers of debris-
flow such as flash floods, abrupt earthquakes, and continuous deforestation, if conditions
permit, deserve to be incorporated in the DFS assessment. Thirdly, despite the substantial
improvement in accuracy, RF algorithm requires more time and higher costs than other
simpler methods. More importantly, machine learning methods emphasize optimization
and performance rather than the inference [69], so they roughly consider the physics of the
hydrological processes occurring within slopes in the DFS assessment. Hence, as process
understanding is not the primary target of RF algorithm being a black-box, misleading
interpretations might arise. Fourthly, more case studies and more cutting-edge tools should
be conducted. For example, the maximum entropy model has been applied widely and
proven effective in hazard risk assessment [32,33], and one of the advantages of this model
is to avoid the error caused by random selection of negative samples. Finally, restricted
in data availability, we applied land use data in 2015 and village settlement data in 2012
to generate the causative factors, which might affect the reliability of model results and
should be improved in our future research.

5. Conclusions

In this study, two traditional statistical models and a machine learning model of DFS
evaluation were proposed after a set of 12 causative factors were considered. China, as
a typical country prone to debris flows with numerous mountainous areas, was taken
as an example for application analysis, and the mechanism and importance ranking of
the causative factors were analyzed. We found that areas with high susceptibility were
mostly concentrated in hilly and mountainous areas in central China, whereas regions of
low susceptibility were mainly distributed in the vast interior of northwestern China, as
well as in basins and plains in the eastern part, which was highly consistent with existing
debris-flow occurrences. A comparison of the prediction accuracy for the three evaluation
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models showed that the AUC values of ROC curves for the IV model, LR model and RF
model were 0.8198, 0.7996 and 0.9738, respectively, suggesting better performance of the
RF model. The results of the statistical analysis also revealed that for each model, most
of the historical debris flows fell in regions of very high susceptibility, with the highest
debris-flow densities among all the grades. The RF model showed a great capability of
identifying areas highly prone to debris flows, and this model had the greatest reliability
and stability. Further analysis of influencing factors shows that the distance to roads,
which acted as a proxy for human engineering activities, was the most important causative
factor in DFS. Slope and rainfall were also significant triggering conditions that should
not be ignored, whereas landform, village density and distance to faults were relatively
insignificant. Hence, detailed risk-prevention measures targeting the dominant factors and
local field observations in high hazard regions are strongly recommended.
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