
Citation: Zhao, L.; Xu, S.; Liu, L.;

Ming, D.; Tao, W. SVASeg: Sparse

Voxel-Based Attention for 3D LiDAR

Point Cloud Semantic Segmentation.

Remote Sens. 2022, 14, 4471. https://

doi.org/10.3390/rs14184471

Academic Editors: Martin Weinmann,

Florent Poux and Eleonora Grilli

Received: 4 August 2022

Accepted: 6 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

SVASeg: Sparse Voxel-Based Attention for 3D LiDAR Point
Cloud Semantic Segmentation
Lin Zhao 1, Siyuan Xu 1, Liman Liu 2,* , Delie Ming 1 and Wenbing Tao 1

1 National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,
Wuhan 430074, China

2 School of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, China
* Correspondence: limanliu@mail.scuec.edu.cn

Abstract: 3D LiDAR has become an indispensable sensor in autonomous driving vehicles. In LiDAR-
based 3D point cloud semantic segmentation, most voxel-based 3D segmentors cannot efficiently
capture large amounts of context information, resulting in limited receptive fields and limiting their
performance. To address this problem, a sparse voxel-based attention network is introduced for
3D LiDAR point cloud semantic segmentation, termed SVASeg, which captures large amounts of
context information between voxels through sparse voxel-based multi-head attention (SMHA). The
traditional multi-head attention cannot directly be applied to the non-empty sparse voxels. To this
end, a hash table is built according to the incrementation of voxel coordinates to lookup the non-empty
neighboring voxels of each sparse voxel. Then, the sparse voxels are grouped into different groups,
and each group corresponds to a local region. Afterwards, position embedding, multi-head attention
and feature fusion are performed for each group to capture and aggregate the context information.
Based on the SMHA module, the SVASeg can directly operate on the non-empty voxels, maintaining
a comparable computational overhead to the convolutional method. Extensive experimental results
on the SemanticKITTI and nuScenes datasets show the superiority of SVASeg.

Keywords: sparse voxel-based attention; LiDAR point cloud; semantic segmentation; SVASeg

1. Introduction

Scene perception is a very crucial task in computer vision which has a wide range of
applications (e.g., autonomous driving and robotics). LiDAR is an indispensable device in
modern autonomous driving vehicles. It captures precise and far distance measurements of
the environments surrounding conventional visual cameras. The obtained measurements
naturally form a 3D point cloud, which can be used to identify and locate dynamic objects
and drivable areas. Therefore, LiDAR point cloud semantic segmentation is a crucial task
for autonomous driving, which assigns a special semantic label for each point and provides
point-wise perception information of the overall scene.

Previous LiDAR segmentation approaches can be roughly grouped into four main cat-
egories: point-based, projection-based, voxel-based and multi-view fusion-based methods.
Point-based approaches [1–6] directly operate on point clouds and predict the semantic
label of each point. Those methods generally apply point-based operators [5,7–9] (e.g., sam-
pling, grouping and ordering) to extract semantic features from raw point clouds, but they
are limited to adapting to the outdoor point cloud under the property of varying density
and large range of scenes, and the large number of points also results in computational
difficulties. Projection-based methods [10–13] project the LiDAR point clouds into a 2D
space (e.g., range image and bird-eye-view images) so that 2D convolutions can be used
to process them. However, those projection-based methods cannot completely model
the geometric information because the original topology will inevitably be lost or altered
during the 3D-to-2D projection process.
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Voxel-based methods [14,15] rasterize LiDAR point clouds into voxels and then apply
3D convolutions to extract features. Those methods are computational expensive and entail
high memory consumption. Recently, more efficient sparse convolutions [16–18] have
been proposed to accelerate 3D convolution and can achieve state-of-the-art segmentation
performance. Multi-view fusion-based methods [17,19,20] combine multiple different
operations (i.e., voxel-based, projection-based and/or point-wise operations) to segment
point clouds, and show promising results.

Sparse convolution is a crucial operation in most segmentation models [20,21] that
include voxel-based operation. Although these models have the advantage of efficiency,
they cannot efficiently capture large amounts of context information, resulting in limited
receptive fields and unsatisfactory performance. The receptive field of sparse convolution
is related to voxel size, kernel size, stride size and layers. When trading off performance
and resource consumption, it is difficult to directly increase these parameters to obtain
larger receptive fields. Compared with convolutional neural networks, the transformer
has showed its superiority and achieved promising results in most 2D vision tasks [22,23]
and 3D object detection [24,25], because it can model the long-range relationships between
pixels by self-attention and multi-head attention.

Motivated by above findings and inspired by VoTr [24] for 3D object detection, a sparse
voxel-based attention network is proposed for LiDAR semantic segmentation (SVASeg).
The SVASeg is mainly composed of multiple submanifold sparse convolution layers, mul-
tiple sparse inverse convolution layers and a sparse, voxel-based multi-head attention
module (SMHA). For the key component, SMHA, according to the increment of voxel
coordinates, a hash table is built to lookup the non-empty neighbor voxels for each voxel.
Then, all sparse voxels can be grouped into different local groups. For each group, we
perform position embedding, multi-head attention and feature fusion to capture the context
information and enlarge the receptive fields. The SMHA only focuses on the non-empty
voxels in a local region and maintains a comparable computational overhead to the convo-
lutional method. Experimental results on SemanticKITTI and nuScenes datasets showed
the superiority of SVASeg.

2. Related Work

In this section, we briefly review existing works related to our approach: LiDAR
semantic segmentation and the transformer for point clouds. We mainly focus on the
LiDAR-only methods.

2.1. LiDAR Semantic Segmentation

As the public datasets [26,27] of outdoor scenes increase in size and number, LiDAR
semantic segmentation research is developing. These methods are grouped into four
categories, including point-based, projection-based, voxel-based and multi-view fusion-
based methods.

Point-based methods directly learn the point features based on the raw point clouds
through point-based operators [5,7–9] (e.g., sampling, grouping and ordering). KPConv [5]
uses kernel point convolution which utilizes kernel-points to convolve local point sets.
ASAP-Net [28] designs a flexible module as soon as possible to improve spatio-temporal
point cloud feature learning by considering both attention and structure information across
frames. PointASNL [29] proposes an adaptive sampling module to re-weight the neighbors
around the initial sampled points via farthest point sampling. S-BKI [30] develops a
Bayesian, continuous 3D semantic occupancy map of point clouds by generalizing the
Bayesian kernel inference model. PointNL [31] aims to build the long-range dependencies
of point clouds from the neighborhood-level, superpoint-level and global-level. To capture
and represent implicit geometric structures of point cloud, STPC [32] introduces a spatial
direction dictionary to learn those latent geometric components and designs a sparse
deformer to transform unordered neighbor points into the canonical ordered dictionary
space by using direction dictionary learning. RandLA-Net [1] introduces a lightweight
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architecture for large-scale point clouds by using random sampling instead of complex
sampling approaches. Based on RandLA-Net, MSAAN [33] proposes a multi-scale attentive
aggregation network to achieve the global consistency of point cloud feature representation.
However, these methods which mainly focus on indoor point cloud are limited to adapting
to the outdoor point cloud under the conditions of varying density and a large range of
scenes, and the large number of points also results in the computational difficulties for
these methods when shifting from indoor to outdoor settings.

Projection-based methods project the input point clouds to a 2D pseudo-image. Then,
a 2D convolutional neural network is used to process the pseudo-image. RangeNet++ [34],
SqueezeSegV3 [11], TemporalLidarSeg [35], SalsaNext [10], KPRNet [12] and Lite-HDSeg [36]
utilize the spherical projection mechanism to map the raw point clouds into a range image,
and an encoder–decoder network is applied to the range image to obtain semantic infor-
mation. For instance, to tackle the feature distribution of drastic LiDAR image changes
at different image locations, SqueezeSegV3 [11] uses spatially-adaptive convolution to
adopt different filters for different locations according to the input image. SalsaNext [10]
introduces a new context module, consisting of a residual dilated convolution stack fusing
receptive fields at various scales, for the uncertainty-aware semantic segmentation of a
LiDAR point cloud. Lite-HDSeg [36] is a new encoder–decoder architecture with light-
weight harmonic dense convolutions as its core. PolarNet [13] projects the raw point cloud
into a polar bird’s-eye view (BEV). However, the original topology of point clouds will
inevitably be lost or altered during projection, resulting in projection-based methods failing
to completely model the geometric information.

Voxel-based methods rasterize the raw point clouds into voxels, and then apply
vanilla 2D or 3D convolutions to generate LiDAR semantic segmentation results. Recently,
more efficient works [16,17] have been proposed to accelerate the 3D convolution and
reduce the memory consumption. Following the previous works [16,17], MinkNet42 [21]
and PCSCNet [37] achieved better semantic segmentation results on outdoor scenarios.
Among them, PCSCNet [37] is a fast semantic segmentation model based on the voxel-
based point convolution and 3D sparse convolution. Furthermore, Cylinder3D [18] groups
the raw point cloud into the cylindrical partitions and designs an asymmetrical residual
block to further reduce computation and improve the segmentation performance.

Multi-view fusion-based methods construct the LiDAR segmentation model by using
the combination of voxel-based, projection-based and/or point-wise operations. To capture
richer semantic information, some methods [15,19,38–42] fuse two or more different views
together. For instance, [39,40] fused the point-wise semantic information from a bird’s-eye
view and a range image in the early stage, and then fed it into a 3D detector to obtain
the detection results. AMVNet [38] fuses the outputs of different views in a late stage.
PVCNN [15] and FusionNet [41] utilize point–voxel fusion strategies to achieve better
LiDAR segmentation performance. However, the performances of these methods are also
limited due to the lack of rich contextual information.

2.2. Transformer in Point Cloud

A transformer can model the long-range relationships between pixels by self-attention
and multi-head attention. It has achieved promising results in most 2D vision tasks [22,23,43]
and in 3D object detection [24,25]. As for 3D semantic segmentation, some works [44–47]
applied the point-based transformer to point clouds for indoor scene semantic segmentation.
However, these methods cannot be used for outdoor LiDAR segmentation due to the
inherent properties of LiDAR points (e.g., sparsity and varying density). STPC [32] uses
spatial transformer point convolution to tackle the semantic segmentation of both indoor
and outdoor scenes, but its segmentation performance is unsatisfactory.
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3. Proposed Method
3.1. Network Architecture

In this section, we describe the whole network architecture of SVASeg for LiDAR
point cloud semantic segmentation. As illustrated in Figure 1, the whole network is an
encoder–decoder architecture which mainly contains four encoding layers, four decoding
layers and a sparse voxel-based multi-head attention module. For each encoding layer,
four submanifold sparse convolution layers are used to encode and down-sample the input
sparse features. For the decoding layer, we firstly use four sparse inverse convolution
layers to recover the spatial resolutions of the sparse features. The decoded features and
corresponding encoded features are fused together by concatenation to further refine the
fused features and improve its discrimination. Specially, after two successive decoding lay-
ers, a sparse voxel-based multi-head attention module (described in Section 3.2) is applied
to the sparse features to capture the contextual information and enlarge the receptive fields
for better LiDAR semantic segmentation.

Cylindrical PartitionPoint Clouds Semantic Segmentaion

Submanifold Sparse Convolution Layers. Sparse Inverse Convolution Layers.

Sparse Multi-
head Attention

Figure 1. The network architecture overview of our SVASeg. LiDAR point clouds are firstly voxelized
into cylindrical partitions as sparse features. Then, multiple submanifold sparse convoluation layers,
sparse inverse convolution layers and a sparse multi-head attention module are used to process the
sparse features and generate the point-wise semantic predictions. The voxel-based sparse multi-head
attention is described in Section 3.2.

For the whole pipeline, our SVASeg takes a LiDAR point cloud as input. Then, fol-
lowing the studies [18,20], the raw point clouds are transformed into a cylinder coordinate
system and further voxelized into the cylindrical partitions as the input sparse features.
Subsequently, the feature encoder and decoder are used to process the sparse features and
generate sparse semantic features. Then, those sparse semantic features are converted to a
dense cylindrical representation Fdense ∈ RB×C×H×W×L, where B is batch size; C denotes
the number of feature dimensions; and H, W and L indicate the radius, angle and height,
respectively. Finally, the point-wise semantic predictions can be obtained by applying a
simple argmax operation and the voxelized inverse indexes to the dense semantic features.

During training, the classical cross-entropy loss function Lce is used to supervise the
learning of our network, SVASeg. The Lce is a voxel-wise loss and used to maximize the
point accuracy. Following previous works [18,20], the lovasz–softmax loss function [48] is
also taken as an auxiliary loss Laux to maximize the intersection-over-union score. There-
fore, the total training loss of our network is

Lloss = Lce + Laux. (1)

3.2. Sparse Voxel-Based Multi-Head Attention

The transformer has been widely used in various 2D vision tasks and achieves promis-
ing results, because it can build the long-range relationships between pixels by self-attention
and multi-head attention. However, it is difficult to directly apply a standard tranformer
module to non-empty voxels due to its sparsity. Inspired by VoTr [24] for 3D object detec-
tion, a multi-head attention module (depicted in Figure 2) is adapted to sparse non-empty
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voxels to capture the contextual information and enlarge the receptive fields for better
LiDAR semantic segmentation.

Grouping. Given a voxel set V = {vi | i = 1, 2, . . . , N} with N non-empty voxels and
its indices I and spatial shape S, we firstly build a hash table for each querying voxel vi
according to the incrementation of voxel coordinate (4vi,x,4vi,y,4vi,z) and a specific hash
size K. For example, given the incrementation of voxel coordinate
(4vi,x,4vi,y,4vi,z) = {(0, 0, 0), (1, 0, 0), . . . , (5, 5, 4), (5, 5, 5)}, we can search K non-empty
neighbor voxel indices for vi. The new indices can be obtained by (vi,x ±4vi,x, vi,y ±
4vi,y, vi,z±4vi,z), and the indices of K non-empty neighbor voxels are added into the hash
table. In addition, the dimension K is also used for the position embedding. Afterwards,
we can lookup the non-empty neighbor voxels Vi = {vij | j = 1, 2, . . . , K} from the hash
table. Thus, the geometry coordinates Gsparse ∈ RN×3 and the features Fsparse ∈ RN×C of
the sparse voxels can be divided into different groups and generate Gg

sparse ∈ RN×3×K and
F g

sparse ∈ RN×C×K, respectively. Each group corresponds to a local region, and K is the
number of non-empty voxels in the neighborhood of centroid voxels.

Position Embedding. In a transformer, position embedding can effectively capture
the position information of each element. In this work, the relative position embedding
is used because the multi-head attention will be performed in a local region. Specifically,
the relative geometry coordiantes can be obtained as follows:

Gr
sparse = G

g
sparse − φ

(
Gsparse

)
, (2)

where φ(·) extends an axis in the last of Gsparse. Afterwards, a linear projection function
ϕ(·) is applied to the relative coordiantes Gr

sparse to generate high-dimensional embedding
features. The embedding features are further fused with the grouped sparse features:

F g,e
sparse = F

g
sparse + ϕ

(
Gr

sparse

)
. (3)

 n

n

n





n-head

Grouping

Position
Embedding Concat

Li
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arN x C x 1

N x C x K

Multi-head Attention

Trans.
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s.

δ（·）
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Linear
Add
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Add

Feature Fusion
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Figure 2. The sparse voxel-based multi-head attention. Q, K and V indicate the query features,
key features and value features, respectively. N × C × K is the shape of K and V , where N, C
and K indicate the number of all non-empty voxels, the feature dimension and the number of
local non-empty neighbor voxels, respectively. δ(·) is the softmax normalization function. Trans.
represents the transpose operation of a tensor in the last two dimensions. The n-head is a parameter
of multi-head attention.
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Multi-head Attention. The multi-head attention is responsible for modeling the long-
range relationships between non-empty voxels and aggregating the context information
in a local region for better segmentation, which is a key component of the sparse voxel-
based multi-head attention module. After getting the query features Q = ϕ

(
Fsparse

)
, key

features K = F g,e
sparse and value features V = F g,e

sparse,Q, K and V are projected and generate
corresponding multi-head features:

Qn = ϕq(Q), Kn = ϕk(K), Vn = ϕv(V), (4)

where ϕq, ϕk and ϕv are the linear projection functions. n is the number of multi-head.
Following the work [49], the voxel-based multi-head attention can by formulated as:

Fn
att =

δ(Qn)√
d

(
δ(Kn)

T
√

d
Vn), (5)

where δ(·) is the softmax normalization function. d is the number of query feature channels.
The features of all heads are fused together by using a concatenation operation and a linear
fusion function ϕ f :

Fatt = ϕ f

([
F 1

att,F 2
att, . . . ,Fn

att

])
, (6)

where [·] is the concatenation operation. The sparse voxel-based multi-head attention is
directly performed on sparse non-empty voxels, which is an efficient attention mechanism
due to its extension from an approximate linear 2D transformer [49].

Feature Fusion. After aggregating the contextual information of sparse voxels by
using the voxel-based multi-head attention, two shortcut connections are used to speed up
the convergence of our segmentation network. Specifically, the attention features Fatt are
firstly fused with the sparse features Fsparse by element-wise addition. Then, two linear
fusion functions are applied to the fused features to refine it:

F att
sparse = ϕ f

(
ϕ f
(
Fatt +Fsparse

))
. (7)

Afterwards, the sparse features Fsparse are added with the F att
sparse, and a linear fusion

function is applied to the fused features to further refine it once again and generate the
final attention features F att

out:

F att
out = ϕ f

(
F att

sparse +Fsparse

)
. (8)

The obtained attention features F att
out will be further processed by the following sparse

inverse convolution layers in the decoder structure.

4. Experiments

Our proposed SVASeg was evaluated on the large-scale LiDAR semantic segmentation
datasets SemanticKITTI [26] and nuScenes [27] to demonstrate its effectiveness. We firstly
provide a brief introduction to the dataset and evaluation metrics in Section 4.1. Then,
Section 4.2 presents the implementation details of our method. Subsequently, we exhibit
the detailed experiments and the comparisons with other methods on the SemanticKITTI
and nuScense datasets in Sections 4.3 and 4.4. Finally, we show ablation study experiments
with various numbers of hash size in Section 4.5.

4.1. Datasets and Evaluation Metrics

The SemanticKITTI [26] dataset was collected from the KITTI Vision Benchmark and
contains 22 sequences involving autonomous driving scenarios. According to the official
settings, sequences from 00 to 10 should be used for training (19,130 frames) and validation
(sequence 08, 4071 frames), and sequences from 11 to 21 are the test split (20,351 frames). All
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semantic labels on the testing split are unavailable. Each scan in the dataset contains more
than 100,000 points with pointwise semantic labels of 28 classes. After merging similar
categories and ignoring rare classes, a total of 19 classes remained for the task of LiDAR
point cloud semantic segmentation.

The nuScenes [27] dataset is another large-scale dataset for autonomous driving which
contains more than 1000 scenes collected from different areas of Boston and Singapore.
This dataset has 28,130 training frames and 6019 validation frames. nuScenes provides up
to 32 classes of annotations. After merging similar classes, a total of 16 classes remained
for the LiDAR semantic segmentation. Furthermore, this dataset has the property of class
imbalance. Specifically, cars and pedestrians are the most frequent categories, whereas
bicycles and construction vehicles have limited training data. Moreover, the challenge of
the nuScenes dataset also comes from the fact that it was collected at different locations
and with different diverse weather conditions. Compared to the SemanticKITTI dataset,
the point clouds of nuScenes are also less dense, because its sensor (Velodyne HDL-32E)
has fewer beams and lower horizontal angular resolution.

Mean intersection over union (mIoU) is a standard evaluation metric for semantic
segmentation tasks. In this work, the mIoU over all classes was taken as the evaluation
metric to evaluate the LiDAR segmentation performance of our proposed approach. It can
be formulated as

mIoU =
1
C

C

∑
i=1

IoUi, (9)

IoUi =
pii

pii + ∑j 6=i pij + ∑k 6=i pki
, (10)

where pij is the number of points that belong to class i and are predicted to be class j, and C
is the number of classes.

4.2. Implementation Details

For the SemanticKITTI [26] and nuScenes [27] datasets, following the works [18,20],
the LiDAR point clouds were split into cylindrical partitions with the size 480× 360× 32,
where three dimensions are the radius, angle and height, respectively. Then, we followed
the procedure of [18] to construct a UNet-like structure [50] with submanifold sparse con-
volution and sparse inverse convolution. Considering the balance between segmentation
performance and computation and memory consumption, we only utilized a sparse voxel-
based multi-head attention module after the second decoding layer. The number of specific
hash size K was set to 32, the number of n-heads was set to 4, and 256 input channels were
used for the sparse multi-head attention. During the training, the proposed SVASeg was
trained along with the whole framework with the ADAM optimizer with initial learning
rate set to 0.001, and batch size was set to 2 for 40 epochs on a single NVIDIA RTX3090 GPU.
Our proposed SVASeg was implemented based on the deep learning framework PyTorch.

4.3. Evaluation on the SemanticKITTI Dataset

Following most previous works, we conducted experiments on SemanticKITTI [26] to
evaluate the performance of our SVASeg. Table 1 reports the segmentation results of our
SVASeg and other LiDAR segmentation methods on the validation set of the SemanticKITTI
dataset. From Table 1, we can see that our proposed method outperforms the point-based
methods (e.g., RandLANet [1]) and projection-based methods (e.g., SqueezeSegV3 [11] and
SalsaNext [10]) with a large margin. Compared to the voxel-based method Cylinder3D [18],
the multi-view fusion-based method AMVNet [38] and the multi-modality fusion-based
method PMF [51], our approach achieved better segmentation results. Qualitative results
of LiDAR segmentation are presented in Figure 3.
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Ground TruthOursCylinder3D

Figure 3. Compared to Cylinder3D, our method had less error (shown in red) when recognizing
the surface region on the SemanticKITTI dataset’s validation set, thanks to the voxel-based sparse
multi-head attention module. Best viewed in color.

We also submit our segmentation results on the SemanticKITTI evaluation server.
Table 2 provides the detailed class-wise quantitative results of our SVASeg and other
state-of-the-art methods on the SemanticKITTI LiDAR semantic segmentation challenge.
From Table 2, we can see that our proposed SVASeg achieved better segmentation per-
formance than most state-of-the-art methods and dominated greatly in many categories.
Specifically, compared to the point-based methods, including PointNL [31], STPC [32],
RandLANet [1] and KPConv [5], our method outperformed the point-based methods and
significantly improved the performances of LiDAR semantic segmentation. Compared
to the projection-based methods, including RangeNet++ [34], SqueezeSegV3 [11], KPR-
Net [12], SalsaNext [10] and Lite-HDSeg [36], our proposed SVASeg achieved an about
1.4∼13.0% performance gain in terms of mIoU due to the 3D geometric information lost in
projection-based methods. Compared to some voxel-based methods (e.g., PolarNet [13],
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MinkNet42 [21] and PCSCNet [37]) and multi-view fusion-based methods (e.g., Fusion-
Net [41], TORANDONet [19] and SPVCNN [17]), the proposed method also performs better
than these LiDAR semantic segmentation methods. The sparse voxel-based multi-head
attention module is a plug-and-play module, which could be applied to other voxel-based
methods to achieve further performance improvements. These results demonstrate the
effectiveness and superiority of our proposed SVASeg.

Table 1. Experimental results of our proposed SVASeg and other LiDAR segmentation methods on
the SemanticKITTI dataset validation set. All results were obtained from the literature. Best and
second best results are bolded and underlined.
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RandLANet [1] 50.0 92.0 8.0 12.8 74.8 46.7 52.3 46.0 0.0 93.4 32.7 73.4 0.1 84.0 43.5 83.7 57.3 73.1 48.0 27.3
RangeNet++ [34] 51.2 89.4 26.5 48.4 33.9 26.7 54.8 69.4 0.0 92.9 37.0 69.9 0.0 83.4 51.0 83.3 54.0 68.1 49.8 34.0

SequeezeSegV3 [11] 53.3 87.1 34.3 48.6 47.5 47.1 58.1 53.8 0.0 95.3 43.1 78.2 0.3 78.9 53.2 82.3 55.5 70.4 46.3 33.2
MinkowskiNet [21] 58.5 95.0 23.9 50.4 55.3 45.9 65.6 82.2 0.0 94.3 43.7 76.4 0.0 87.9 57.6 87.4 67.7 71.5 63.5 43.6

SalsaNext [10] 59.4 90.5 44.6 49.6 86.3 54.6 74.0 81.4 0.0 93.4 40.6 69.1 0.0 84.6 53.0 83.6 64.3 64.2 54.4 39.8
SPVNAS [17] 62.3 96.5 44.8 63.1 59.9 64.3 72.0 86.0 0.0 93.9 42.4 75.9 0.0 88.8 59.1 88.0 67.5 73.0 63.5 44.3

PMF [51] 63.9 95.4 47.8 62.9 68.4 75.2 78.9 71.6 0.0 96.4 43.5 80.5 0.1 88.7 60.1 88.6 72.7 75.3 65.5 43.0
Cylinder3D [18] 64.9 96.4 61.5 78.2 66.3 69.8 80.8 93.3 0.0 94.9 41.5 78.0 1.4 87.5 50.0 86.7 72.2 68.8 63.0 42.1

AMVNet [38] 65.2 95.6 48.8 65.4 88.7 54.8 70.8 86.2 0.0 95.5 53.9 83.2 0.15 90.9 62.1 87.9 66.8 74.2 64.7 49.3

SVASeg (Ours) 66.1 96.8 53.0 80.2 88.9 62.8 78.1 91.4 1.1 93.7 41.0 78.7 0.1 89.7 55.1 89.2 65.8 76.7 65.1 49.0

Table 2. Experimental results of our proposed SVASeg and state-of-the-art LiDAR segmentation
methods on the SemanticKITTI dataset’s official leaderboard. All results were obtained from the
literature or leaderboard.
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S-BKI [30] 51.3 83.8 30.6 43.0 26.0 19.6 8.5 3.4 0.0 92.6 65.3 77.4 30.1 89.7 63.7 83.4 64.3 67.4 58.6 67.1
PointNL [31] 52.2 92.1 42.6 37.4 9.8 20.0 49.2 57.8 28.3 90.5 48.3 72.5 19.0 81.6 50.2 78.5 54.5 62.7 41.7 55.8

RangeNet++ [34] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
LatticeNet [52] 52.9 92.9 16.6 22.2 26.6 21.4 35.6 43.0 46.0 90.0 59.4 74.1 22.0 88.2 58.8 81.7 63.6 63.1 51.9 48.4
RandLANet [1] 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
PolarNet [13] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5

MinkNet42 [21] 54.3 94.3 23.1 26.2 26.1 36.7 43.1 36.4 7.9 91.1 63.8 69.7 29.3 92.7 57.1 83.7 68.4 64.7 57.3 60.1
STPC [32] 54.6 94.7 31.1 39.7 34.4 24.5 51.1 48.9 15.3 90.8 63.6 74.1 5.3 90.7 61.5 82.7 62.1 67.5 51.4 47.9
MINet [53] 55.2 90.1 41.8 34.0 29.9 23.6 51.4 52.4 25.0 90.5 59.0 72.6 25.8 85.6 52.3 81.1 58.1 66.1 49.0 59.9

3D-MiniNet [54] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6
SqueezeSegV3 [11] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9

TemporalLidarSeg [35] 58.2 94.1 50.0 45.7 28.1 37.1 56.8 47.3 9.2 91.7 60.1 75.9 27.0 89.4 63.3 83.9 64.6 66.8 53.6 60.5
KPConv [5] 58.8 96.0 32.0 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 95.0 64.2 84.8 69.2 69.1 56.4 47.4

SalsaNext [10] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
FusionNet [41] 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
PCSCNet [37] 62.7 95.7 48.8 46.2 36.4 40.6 55.5 68.4 55.9 89.1 60.2 72.4 23.7 89.3 64.3 84.2 68.2 68.1 60.5 63.9
KPRNet [12] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

TORANDONet [19] 63.1 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9
SPVCNN [17] 63.8 - - - - - - - - - - - - - - - - - - -

Lite-HDSeg [36] 63.8 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7

SVASeg (Ours) 65.2 96.7 56.4 57.0 49.1 56.3 70.6 67.0 15.4 92.3 65.9 76.5 23.6 91.4 66.1 85.2 72.9 67.8 63.9 65.2

4.4. Evaluation on the nuScenes Dataset

Besides evaluation on the large scale outdoor dataset SemanticKITTI [26], we also
conducted experiments on another large-scale autonomous driving dataset, nuScenes [27],
to further evaluate the performance of our method. Table 3 reports the LiDAR semantic
segmentation results on the validation set of nuScenes. RangeNet++ [34] and Salsanext [10]
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use KNN as post-processing to further improve the LiDAR segmentation performance.
From Table 3, we can see that our SVASeg achieves better performance than other LiDAR
segmentation methods. Specifically, the proposed method outperforms the state-of-the-art
projection-based methods (e.g., RangeNet++ and Salsanext) by about 6∼12% mIoU. Com-
pared to (AF)2-S3Net [55], PolarNet [13] and Cylinder3D [18], SVASeg achieved 11.5 mIoU,
2.7 mIoU and 1.1 mIoU performance gains, respectively. Compared to the SemanticKITTI
dataset, the points in the nuScenes dataset are very sparse (35k points/frame), especially
bicycles, traffic-cones, etc. Therefore, the LiDAR segmentation task is more challenging.
From Table 3, we can see that our proposed SVASeg also shows its effectiveness in those
sparse categories.

Table 3. Experimental results of our method and other methods on the nuScenes validation set. * is
our reproduced Cylinder3D.
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#Points (k) - 1629 21 851 6130 194 81 417 112 370 2560 56048 1972 12631 13620 31667 21948

(AF)2-S3Net [55] 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [34] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [13] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
PCSCNet [37] 72.0 73.3 42.2 87.8 86.1 44.9 82.2 76.1 62.9 49.3 77.3 95.2 66.9 69.5 72.3 83.7 82.5
Salsanext [10] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4

Cylinder3D * [18] 74.0 74.5 36.6 89.5 88.0 47.9 76.5 78.1 63.0 59.7 80.3 96.3 70.8 74.5 75.0 87.5 86.7
SVASeg (Ours) 74.7 73.1 44.5 88.4 86.6 48.2 80.5 77.7 65.6 57.5 82.1 96.5 70.5 74.7 74.6 87.3 86.9

4.5. Ablation Studies

In this sub-section, we show ablation experiments on the validation set of SemanticKITTI [26]
to investigate the effect of different hash size K for grouping in the sparse voxel-based multi-
head attention (SMHA) module. For a fairer and clearer comparison, we used the same
configuration as in Section 4.2 for all models. Detailed experiment results are presented in
Table 4. We first removed the SMHA module from SVASeg, which was taken as our baseline
method. It achieved 65.2 mIoU on the validation set of SemanticKITTI. From Table 4,
we can see that increasing the specific hash size K can improve the LiDAR segmentation
performance, which indicates the SMHA can capture richer context information and enlarge
the receptive fields for better segmentation. We also incorporated the proposed SMHA with
Cylinder3D for LiDAR semantic segmentation. From Table 4, it can be observed that SMHA
can effectively improve the segmentation performance, demonstrating the effectiveness of
our SMHA.

Table 4. Ablation results on the validation set of SemanticKITTI.

Baseline
Hash Size K Cylinder3D

16 24 32 Original +SHMA

mIoU 65.2 65.7 66.0 66.1 64.9 65.6

Table 5 illustrates a comparison of the memory consumption, model size, time perfor-
mance and performance on the validation set of the SemanticKITTI dataset. All experiments
were conducted on a single GTX 3090Ti GPU with the same environment. Note that the
time unit is milliseconds, and the memory and model size units are MB. Compared with
the baseline model, the SHMA module only added 108 M memory consumption, 2 M
parameters and 8 ms running time, which shows the SMHA maintains a comparable
computational overhead to the convolutional method.
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Table 5. Results of model complexity. The units for memory, model size and time are MB, MB and
milliseconds.

Method Memory Model Size Time mIoU

Baseline 3041 214 102 65.2
Baseline + SHMA 3149 216 110 66.1

5. Conclusions

In this paper, a sparse voxel-based attention network was proposed for 3D LiDAR
point cloud semantic segmentation (SVASeg). SVASeg mainly consists of four encoding
layers, four decoding layers and a sparse voxel-based multi-head attention module. The en-
coding and decoding layers are implemented by using the submanifold sparse convolution
and sparse inverse convolution, respectively, which are used to learn high-level semantic
features from the input sparse voxels. The sparse voxel-based multi-head attention module
is used to enlarge the receptive fields and capture rich contextual information for better
segmentation, which only focuses on the non-empty voxel positions in a given local region.
Extensive experimental results on the SemanticKITTI and nuScenes datasets showed the
effectiveness and superiority of our SVASeg. In the future, the shift window-based trans-
former can be applied to SVASeg to further reduce the computational consumption and
improve the performance of LiDAR semantic segmentation.
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