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Abstract: The tracking of satellite signals with the passive linearly polarized embedded global navi-
gation satellite system (GNSS) antenna of smartphones in dynamic scenarios is susceptible to the
changing multipath and obstructions in urban environments, which lead to a significant decrease in
the availability and reliability of GNSS solutions. Accordingly, based on the characteristics of smart-
phone GNSS and inertial measurement unit (IMU) sensors data in GNSS-degraded environments,
we established an IMU-aided uncombined precise point positioning (PPP) mathematical model that
is suitable for smartphones. To enhance the reliability of initial alignment in dynamic mode, the step
function variances depending on carrier-to-noise density ratio were established with the variances of
GNSS measurements, and the inertial navigation system (INS) parameters were initialized while both
the velocity of smartphones and the position dilution of precision (PDOP) reached corresponding
thresholds. Considering the measurement noise and observations gaps of smartphones, the robust
Kalman filter (RKF) with equivalent variance matrix was used for parameter estimation to improve
the convergence efficiency of the coupled PPP/INS model. Experimental results indicated that the
proposed PPP/INS method can effectively improve the positioning performance of smartphones
in GNSS-degraded environments. Compared with the conventional smartphone PPP scheme, the
PPP/INS horizontal errors in the eastern and western areas of the long trajectory experiment de-
creased by 49.37% and 48.29%, respectively. Meanwhile, the trajectory deviation of smartphones can
remain stable in the tunnel where GNSS signals are blocked.

Keywords: precise point positioning; Android smartphone; inertial navigation system; GNSS-degraded
environment; robust Kalman filter

1. Introduction

For nearly a decade, as a convenient mobile terminal integrating various services such
as mobile communication and location-based, smartphones have rapidly spread among the
masses [1,2]. According to the GNSS market report, smartphones are now the dominant
installation base for GNSS devices [3]. Based on the precise location information of users
from smartphones, the mobile applications (APPs) can provide a variety of urban trans-
portation services including vehicle navigation and travel trajectory. In September 2017,
with the emergence of the world’s first dual-frequency GNSS chip GCM47755 [3] from
Broadcom corporation, the progress of precise point positioning technology in smartphones
was actively promoted. However, its stability and reliability are still restricted by the poor
multipath suppression capability of the passive linearly polarized embedded GNSS antenna
of smartphones in urban environments which are highly dynamic and complex [4]. Never-
theless, with the improved performance and decreased cost of micro-electro-mechanical
systems (MEMSs), it is feasible to use the measurement data from IMUs of smartphones to
aid the precise positioning under GNSS-degraded environments.

As early as 2012, Niu et al. [5] used the inertial sensors in the iPhone 4 from Apple Inc.
to make Global Positioning System (GPS)/INS loosely-coupled integration with 15-states

Remote Sens. 2022, 14, 4469. https://doi.org/10.3390/rs14184469 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184469
https://doi.org/10.3390/rs14184469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3955-8314
https://orcid.org/0000-0002-6091-3114
https://orcid.org/0000-0002-4394-6934
https://doi.org/10.3390/rs14184469
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184469?type=check_update&version=2


Remote Sens. 2022, 14, 4469 2 of 23

Kalman filter for car navigation, and verified that the MEMS sensors in smartphones
can enhance the GPS positioning effectively. In 2015, Elarabi et al. [6] also studied the
conjunction between GPS data and collected IMU data from smartphones such as iPhones
to estimate the missing GPS route even in the case of signal failures. Prior to Android
release N (“Nougat” = version 7) provided by Google Inc. in May 2016, the GNSS chipset
of Android smartphones could only output the position–velocity–time (PVT) and limited
satellites’ elevation and azimuth information [7]. Since then, the raw GNSS observations of
smartphones can be outputted in receiver-independent exchange (RENIX) format directly
from mobile APPs, which is convenient to analyze the characteristics of GNSS pseudorange,
carrier phase, doppler, and signal strength observations from smartphones [8].

In recent years, more modern smartphones are equipped with the dual-frequency
GNSS chip, and the precise point positioning technology is also widely used for smart-
phones’ precise positioning [9–11]. The PPP is a precision absolute point positioning
technology based on state space domain correction information by using GNSS pseudor-
ange and carrier phase observations along with international GNSS service (IGS) precise
orbit products [12,13]. In May 2018, Xiaomi corporation released Mi 8, the world’s first dual-
frequency GNSS smartphone. Subsequently, many researchers analyzed the characteristics
of dual-frequency GNSS signal observed by smartphones, and the adverse factors, such
as duty cycle [4,10,14], carrier-to-noise ratio [7,15], poor multipath suppression capabil-
ity [16,17], and gradual accumulation of phase error [11,17,18], which affect the positioning
performance of smartphones were found and improved.

The results of correlation studies on multi-GNSS PPP of smartphones indicated that
the static horizontal positioning accuracy attained dm level in the open area without
significant signal obstructions and strong multipath reflectors, and even can reach cm
level after a long time to convergence [8,10]. However, the kinematic positioning error of
smartphone PPP will increase to several meters in realistic urban environments, and even to
tens of meters under GNSS-degraded environments. Wu et al. [10] used the ionosphere-free
combined PPP mathematical model with GPS/Galileo pseudorange and carrier phase
observations L1/L5 and E1/E5 of Mi 8, and the kinematic positioning trajectory had
severe fluctuations within 4–5 m of the reference trajectory with extreme offsets over
20 m on the playground. Shinghal et al. [19] used the uncombined dual-frequency PPP
mathematical model with the prediction technique for data gaps and carrier-to-noise
power density ratio (C/N0) stochastic model, and the kinematic horizontal root mean
square (RMS) was approximately 7 m with the Mi 8 placed on the dashboard of the car in a
realistic environment, compared with the SwiftNav Piksi real-time kinematic (RTK) solution.
However, with the development of intelligent transportation system (ITS) [20] and location-
based service (LBS) [21,22], based on the requirements of applications such as augmented
reality [23] and seamless positioning [20,24], it is necessary to use some technologies such
as the IMU-aided smartphones PPP scheme to achieve continuous position output with
approximate positioning accuracy when GNSS signals are blocked.

Therefore, some researchers have suggested work on multi-sensor fusion such as
GNSS/MEMS to enable more accurate and continuous positioning in the GNSS-signal-
denied environment [25,26]. The characteristics of IMU data of some smartphones have
been studied in depth. Kaiser et al. [27] analyzed the quality of available IMU and GNSS
measurements provided by Mi 8 both in static and kinematic mode, respectively. The
experimental results showed that the high-precision IMU clearly outperforms Mi 8 in terms
of sensor noise, and the accelerometer data errors of the z-axis are higher than the x-axis
and y-axis, while the gyroscope measurements of the z-axis perform best followed by the
y-axis and finally the x-axis. Park et al. [28] investigated the effects of initial attitude estima-
tion errors on loosely coupled GPS/IMU of the Samsung Galaxy A5 with the parameter
estimation model based on extended Kalman filter (EKF), and the experimental results
showed that the estimated roll, pitch, and yaw angles tend to deviate rapidly with the
initial estimation errors increase. Yan et al. [29] processed the IMU data of Mi 8 and Honor
Play using a 15-state Kalman filter for a GNSS/INS coupled navigation model. Although
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the yaw estimation accuracy is only a few degrees and is significantly worse than that of the
other attitude parameters, the authors still believe that the IMUs of Mi 8 and Honor Play
have a good performance for three-dimensional (3D) positioning and the determination of
the velocity and attitude angles. Then, Yan et al. [30] proposed a modified Kalman filter
which was used in the GNSS/IMU coupled navigation to integrate the different rate data
of gyroscope and accelerometer in smartphones; the experimental results showed that the
attitude solution was improved obviously in the simulated GNSS-denied situation. Chiang
et al. [31] integrated the smartphone sensor data, including IMU, GNSS, and cameras using
the parameter estimation model based on EKF to enhance the navigation performance.
Although the location information of the smartphone GNSS/INS coupled model can be
obtained directly from the serial port or estimated by standard single point positioning
(SPP), the absolute positioning performance of the smartphone is also limited due to the
lack of GNSS carrier phase observations and the larger pseudorange measurement noise.
Meanwhile, in view of characteristics of smartphone GNSS and IMU sensors data, the
PPP/INS coupled model suitable for conventional geodetic receiver cannot directly be
used for GNSS and IMU sensors data from a smartphone. Therefore, the GNSS PPP/IMU
coupled mathematical model of smartphones with multiple parameters and variable signal
quality in GNSS-degraded environments still needs to be further studied and improved.

In this paper, we analyze in detail the characteristics of GNSS and IMU data from
smartphones in dynamic mode under GNSS-degraded environments. Accordingly, we
propose a comprehensive positioning model by fusing uncombined PPP and MEMS–IMU
mathematical models for smartphones. Meanwhile, combined with the C/N0-dependent
stochastic model and RKF parameter estimation model, the positioning performance of
smartphones in GNSS-degraded environments is effectively improved. In Section 2, we first
describe the experimental environments and devices; the number of visible GNSS satellites,
PDOP, and C/N0 observed by Huawei Mate 30 and Mate 10 on the playground and
sidewalk are compared and analyzed, and the IMU data of ADIS16405, Huawei Mate 30,
and Huawei Mate 10 are compared by cumulative distribution function combined with
the specifications of IMU. After that, in Section 3, based on the uncombined PPP model
and linearized state equation of INS, we establish a multi-GNSS uncombined PPP/INS
coupled model with the C/N0-dependent stochastic model and parameter estimation
model based on RKF. In Section 4, we show the PPP/INS dynamic experiments and results
in multiple GNSS-degraded environments, and the experimental results demonstrate that
the proposed PPP/INS mathematical model provides higher positioning accuracy and
continuous positioning solutions, compared with the conventional PPP method using
smartphones. Finally, we draw conclusions and add remarks in Section 5.

2. GNSS/IMU Sensors Data Characteristics Analysis

This study uses a dual-frequency smartphone Huawei Mate 30 with the Kirin 990 chip
developed by Huawei Technologies Co., Ltd., (Shenzhen, China), as the main experimental
object, and the integrated Hi1103 chip developed by Hisilicon corporation supports L1 and
L5 dual bands of GPS, B1 band of BeiDou (BDS), G1 band of GLONASS, and E1 and E5a
dual bands of Galileo. For comparison, the single-frequency smartphone Huawei Mate 10
with BCM47531 chip developed by Broadcom corporation, Analog Devices triaxial inertial
sensor ADIS16405, and South geodetic receiver are employed in these experiments, as
shown in Figure 1. The smartphones Huawei Mate 30, Mate 10, triaxial inertial sensor
ADIS16405, and South geodetic receiver are, respectively, fixed on the board, which can be
fixed with support on the vehicle during the experiment. In addition, it should be noted
that the distance between the two smartphones and the ADIS16405 is about 10 cm, while
the distance between the Mate 30 and the geodetic receiver is about 15 cm.
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Figure 1. View of the experiment devices. Left: Huawei Mate 10, triaxial inertial sensor ADIS16405,
Huawei Mate 30, and South geodetic receiver. Right: the reference station is placed in the open area
on the roof.

The experiments were conducted in the east campus of Sun Yat-sen University in
Guangzhou City, Guangdong. Considering that the experimental areas include a playground
and some narrow roads, the devices were fixed on a bicycle for testing. The first two experi-
ments were conducted on the playground and sidewalk, the third experiment was conducted
through the tunnel, and the final experiment is a long trajectory. The length of the dynamic
trajectories is approximate 6 km, with an average velocity of around 3.5 m/s and a maximum
velocity of around 5.2 m/s, and the whole trajectories are showed in Figure 2.

Figure 2. Dynamic trajectories of the whole experiments. The pictures named A1, A2, A3, and A4
show some realistic GNSS-degraded environments for each experiment, and the yellow box shows
the location of the reference station. A denotes the area.

The GNSS observation data of the Mate 30 and Mate 10 were collected by the Android
app GEO++ RINEX Logger V2.1.6 with RINEX version 3.03, while the IMU data of the
Mate 30 and Mate 10 were collected by the app named Ubi-Collector developed by our
group. The gyros and accelerometers data of triaxial inertial sensor ADIS16405 were
collected by the IMU Evaluation software. The coordinate value of the reference station
was calculated on the international terrestrial reference frame (ITRF) 14 in 2022 with an
accuracy of cm, and the position of the geodetic receiver with differential positioning was
taken as the reference to compare in subsequent experiments.
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2.1. GNSS Measurements

The position estimation accuracy of GNSS measurements depends on the geometry of
available GNSS satellite [32]. The PDOP is a factor which indicates the factor of precision
of the position with least square estimation (LSE). The Taylor’s series expansion method is
used to linearize the pseudorange equation at the approximate receiver position to obtain
the difference between the estimated and true receiver positions [33], and the dilution of
precision (DOP) measurement matrix can be written as:

QZ =
(

HT H
)−1

(1)

where QZ is a 4× 4 matrix; H is the Jacobian matrix formed with direction cosines from
receiver to the satellites. Without the time dilution of precision (TDOP), the PDOP factor is
defined as the square root of the trace of the measurement matrix [32]:

PDOP =
√

trace(QX) (2)

where QX can be expressed as:

QX =

q11 q12 q13
q21 q22 q23
q31 q32 q33

 (3)

The number of GPS and BDS satellites observed by Mate 30 and PDOP values calcu-
lated by the formula around the playground twice are shown in Figure 3a. The average
number of visible GPS satellites is about 8.1 while that of BDS satellites is about 16.6, and
the average PDOP values of GPS and BDS are 1.96 and 1.31, respectively. Although the
GNSS signals are slightly degraded due to the trees, the number of visible GPS satellites
observed by Mate 30 still fluctuate within a narrow range. For the geodetic receiver, as
shown in Figure 3b, it is easy to determine whether the GNSS signals are blocked with
the number of visible satellites observed by the geodetic receiver. Meanwhile, although
the average number of visible GPS satellites observed by Mate 10 is higher than that of
Mate 30, it can be found that the carrier phase measurements of more than half of the
visible satellites cannot be logged by Mate 10.

Figure 3. Number of GNSS satellites and PDOP values on the playground in area 1. (a) GPS and BDS
measurements observed by Mate 30; (b) GPS measurements observed by the geodetic receiver and
Mate 10.
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With the GNSS signals slightly degraded due to the trees, as shown in Figure 4b, there
are still more than four GPS satellites that can be observed by the Mate 30, as shown in
Figure 3a. However, the C/N0 values of some visible GNSS satellites decrease significantly,
as shown in Figure 4a, marked by the red boxes. The C/N0 is usually used to describe
signal noise level in a GNSS receiver, and the value is signal-to-noise ratio (SNR) in 1 Hz
width with the unit of dB-Hz.

Figure 4. Carrier-to-noise power density ratio values of GNSS satellites observed by the Huawei
Mate 30 on the playground. (a) Some GPS and BDS satellites whose signals are degraded due to
the trees, and the red box shows the C/N0 value in the area marked by the yellow box in Figure 4b.
(b) Left: reference trajectory and sky plot of GPS and BDS. Right: realistic environment marked by
the yellow box.

In Figure 4a, there are 9, 56, and 19 epochs for which the satellite signals of GPS
pseudorandom noise (PRN) 17, PRN 19, and PRN 21 cannot be detected in 300 epochs,
where the unlock rates are 3.00%, 18.67%, and 6.33%, respectively. The unlock rates of
BDS PRN 05, PRN 09, and PRN 21 are 28.00%, 13.33%, and 5.00%, respectively. Both the
C/N0 values of GPS and BDS decrease significantly around 50 epochs and 180 epochs. The
average C/N0 value of GPS in the first 50 epochs is 33.01 dB-Hz, and the average C/N0
value in the second 50 epochs is 27.20 dB-Hz, which decreases by 17.60%. The average
C/N0 value of BDS in the first 50 epochs is 32.25 dB-Hz, and the average C/N0 value in the
second 50 epochs is 24.67 dB-Hz, which decreases by 23.50%. The maximum C/N0 values
of GPS and BDS are 44 dB-Hz and 39 dB-Hz, while the minimum values are 11 dB-Hz and
9 dB-Hz, respectively.

The second experiment was conducted on the sidewalk where the GNSS signals are
significantly degraded due to the buildings and trees on both sides, as shown in Figure 5.
The standard deviation (STD) of PDOP values observed by Mate 30 on the sidewalk was
1.17, as shown in Figure 5a, which is 137.96% higher than that of Mate 30 observed on the
playground. Compared with the PDOP values observed on the playground in Figure 3b,
the STD of PDOP values observed by geodetic receiver and Mate 10 in Figure 5b increased
by 201.16% and 247.05%, respectively. Meanwhile, there are 148 and 285 epochs for which
the satellite signals of GPS PRN 19 and BDS PRN 05 cannot be detected in 500 epochs, with
unlock rates of up to 29.60% and 57.00%, respectively.
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Figure 5. Number of GNSS satellites and PDOP values on the sidewalk in area 2. (a) GPS and BDS
measurements observed by Mate 30; (b) GPS measurements observed by the geodetic receiver and
Mate 10.

In addition, the average C/N0 value of GPS PRN 19 in the first 50 epochs is 33.55 dB-Hz,
and the average C/N0 value in the second 50 epochs is 15.06 dB-Hz, which decreases by
55.11%. Some studies indicated that the number of carrier phase cycle slips increased
significantly with C/N0 below 30 dB-Hz [8], while some researchers even suggested that
the GNSS measurements with C/N0 below 30 dB-Hz observed by smartphone can be
rejected [7,25]. The cutoff C/N0 value is a convenient method that is suitable for static posi-
tioning using smartphones; however, it may not be directly applicable in dynamic mode.
In Figure 6a, the average C/N0 values of GPS and BDS are 28.53 dB-Hz and 27.55 dB-Hz
in 500 epochs, respectively, and more than 74.43% of the GPS PRN 19 observations had
the C/N0 below 30 dB-Hz in 500 epochs. Moreover, by comparing GPS PRN 19, PRN 17,
and BDS PRN 27, the GNSS satellites with low elevation are more affected by signals
being blocked.

Figure 6. The C/N0 values of GNSS satellites observed by the Huawei Mate 30 on the sidewalk in
area 2. (a) The same GPS and BDS satellites as in Figure 4a, and the red box shows the C/N0 values
of the satellites decrease significantly. (b) Reference trajectory and sky plot of GPS and BDS.
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2.2. IMU Data

The Huawei Mate 30 integrates an internal IMU chip ICM-20690 developed by In-
vensense corporation; it is a six-axis motion tracking device which combines a three-axis
gyroscope and a three-axis accelerometer in a small 2.5× 3× 0.91 mm package. The low-
cost device provides high robustness by supporting 20,000 g shock reliability, while it was
also widely used in other smartphones such as Xiaomi Mi 8 and Huawei P40 [29,30]. The
initial zero-rate output (ZRO) tolerance of the three-axis gyroscope is ±1◦/s and the rate
noise spectral density is 0.004◦/s/

√
Hz. The initial tolerance of the three-axis accelerometer

is ±40 mg, and the power spectral density is 0.1 mg/
√

Hz.
The specifications of Analog Devices ADIS16405 are shown in Table 1. As shown in

Figure 1 for device placement, it should be noted that the x-axis and z-axis of ADIS16405
point to the opposite direction to the y-axis and z-axis of Mate 30, respectively. The
ADIS16405 default sample rate setting of 819.2 samples per second (SPS) and the IMU raw
data of Mate 30 were recorded with sample rate of 100 SPS. The comparisons of the IMU
data from Mate 30 and ADIS16405 on the playground are shown in Figure 7.

Table 1. Specifications of Analog Devices ADIS16405. The σ is one sigma (confidence level).

Parameter Gyroscope Parameter Accelerometer

Initial Bias Error (◦/s) ±3 (1 σ) Initial Bias Error (mg) ±50 (1 σ)
In-Run Bias Stability (◦/s) 0.007 (1 σ) In-Run Bias Stability (mg) 0.2 (1 σ)

Angular Random Walk (◦/sqrt(h)) 2.0 (1 σ) Velocity Random Walk (m/s/sqrt(h)) 0.2 (1 σ)
Rate Noise Density (◦/s/sqrt(Hz)) 0.05 Noise Density (mg/sqrt(Hz)) 0.5

Figure 7. Comparisons of the IMU data from Mate 30 and ADIS16405. (a) Three-axis gyroscope;
(b) three-axis accelerometer.

Although the IMU data of three-axis gyroscope and three-axis accelerometer recorded
by the Mate 30 agree well with the data of ADIS16405, the IMU data of ADIS16405 are
smoother than those of Mate 30, which is in line with the comparisons of IMU data recorded
by the smartphone Honor Play and the commercial IMU STIM 300 [29]. The mean absolute
deviation (MAD) can describe the measuring spread of data, which can be written as:

MAD =
1
n

n

∑
i=1
|xi − x| (4)



Remote Sens. 2022, 14, 4469 9 of 23

where x is the average value of data. In Figure 7a, The MAD of pitch and roll recorded by
Mate 30 are 0.265 rad/s and 0.071 rad/s, which are 18.9% and 4.6% higher than those of
ADIS16405, respectively. The MAD of yaw from Mate 30 is 0.078 rad/s, which is almost the
same as that of ADIS16405. In Figure 7b, the MAD of x-, y-, and z-axis of the accelerometer
recorded by the Mate 30 were 21.1%, 1.2%, and 53.0% higher than those of ADIS16405,
respectively. Moreover, the IMU data from Mate 10 were used for comparison, as shown in
Figure 8.

Figure 8. Comparisons of the IMU data from Mate 30 and Mate 10. (a) Three-axis gyroscope;
(b) three-axis accelerometer.

The Euclidean metric measure is a widely used distance measure for determining the
distance between any two vectors, and the Euclidean distance η between two n-dimensional
vectors is given by:

η =

√
n

∑
i=1

(xi − yi)
2 (5)

The Euclidean distances of pitch, roll, and yaw between Mate 30 and ADIS16405 are
83.30, 20.66, and 20.40, respectively. However, in Figure 8a, the Euclidean distances between
Mate 30 and Mate 10 are 86.86, 25.69, and 24.16, respectively. Meanwhile, in Figure 8b, the
average Euclidean distance of the accelerometer between Mate 30 and Mate 10 is 632.05,
which is also higher than that between Mate 30 and ADIS16405.

The CDF of three-axis gyroscope and accelerometer differences are shown in Figure 9.
The pitch, roll, and yaw differences between Mate 30 and ADIS16405 are lower than those
between Mate 30 and Mate 10 within the same percentile in Figure 9a, and the differences
are 3.39, 0.95, and 0.54 rad/s within one sigma, respectively. Meanwhile, the CDF of
three-axis accelerometer differences between Mate 30 and ADIS16405 are also lower than
those between Mate 30 and Mate 10 within the same percentile in Figure 9b. Compared
with the gyroscope and accelerometer differences between Mate 30 and Mate 10, the IMU
measurements from Mate 30 match slightly better with those from ADIS16405.
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Figure 9. Comparison of cumulative distribution function (CDF) of three-axis gyroscope and ac-
celerometer differences from Mate 30, ADIS16405, and Mate 10. (a) Three-axis gyroscope; (b) three-
axis accelerometer. Mate 30–ADIS16405 denotes the CDF of gyroscope and accelerometer differences
between Mate 30 and ADIS16405, and Mate 30–Mate 10 denotes the CDF of gyroscope and accelerom-
eter differences between Mate 30 and Mate 10.

3. Multi-GNSS PPP/INS Mathematical Model

The researchers recorded that some smartphones such as Mi 8 received above four
satellites with L5/E5 band for only about 13 h over a 24 h collection [10], and there are
only a few Galileo satellites observed by smartphones such as Huawei Mate 30 that can
be logged with dual-frequency observations [8]. It is difficult to conduct dual-frequency
PPP with an ionosphere-free combined model [12,34] especially in the GNSS-degraded
environment. Therefore, the uncombined PPP model for dual-frequency GNSS observations
of smartphones was used in this experiment, and the flow chart of the GNSS PPP/INS
integrated navigation scheme is shown in Figure 10.

Figure 10. The flow chart of GNSS PPP/INS integrated navigation on smartphones.
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The PPP/INS integrated navigation scheme for smartphones mainly consists of un-
combined PPP model and INS model. The initial absolute position of the smartphone was
provided by GNSS PPP solutions, and the initial alignment of PPP/INS was conducted
in dynamic mode. Meanwhile, the stochastic model is composed of GNSS step function
variances depending on C/N0, and the RKF is applied to parameter estimation. The specific
mathematical models are as follows.

3.1. Uncombined PPP Model

The GNSS observation equations for pseudorange and carrier phase between receiver
and satellite are given by the following:

Ps
i = ρs + cdtr + cdts

D − cdts + Ts +
f 2
1

f 2
i

Is + Br,s
Pi
− Bs

Pi
+ ε

Pi
(6)

Ls
i = ρs + cdtr + cdts

D − cdts + Ts −
f 2
1

f 2
i

Is − λs
i Ns

i + Br,s
Li
− Bs

Li
+ εLi

(7)

where P is pseudorange measurements, and L is carrier phase measurements scaled to
distance; the superscript s denotes satellite system, and the subscript i denotes frequency; ρ
is the geometric range between the receiver and satellite; c is the speed of light in vacuum,
and dtr is receiver clock error; dts

D is the time bias between s satellite system and GPS;
dtQ is satellite clock error; T is tropospheric delay; fi is the frequency of Li, and I is
ionospheric delay of L1; λi is the wavelength of fi,Ni is the integer ambiguity of Li in
cycle; the symbols Br

Pi
, Br

Li
, Bs

Pi
, and Bs

Li
are code and phase hardware delay of receiver and

satellite, respectively, and the ε terms are unmodeled errors, including code and phase
multipath effect and measurement random noise.

According to the studies on GNSS signal characteristics of smartphones such as
Huawei P10, P20, and Mate 30, the carrier-to-noise weighting should be used for low-
cost GNSS receivers instead of elevation-dependent weighting [7,8,15]. Based on the
formula [35,36] that expresses the phase variance σ2

S in mm2 as a function of the measured
C/N0 values, and with reference to elevation-dependent weighting method, the GNSS step
function variance of smartphone can be given as:

σ2
s (C/N0) =

Cs · 10
−(C/N0measured)

10 C/N0 > α

Cs · 10
−(µ·C/N0measured)

10 C/N0 ≤ α, µ ∈ (0, 1)
(8)

and

Cs = Bs

[
λ

2π

]2
(9)

where α is the threshold value of C/N0; µ denotes coefficient of C/N0 which can be
determined by the gross GNSS measurements noise below the threshold value; BS is the
carrier tracking loop bandwidth (Hz), and the effect of the oscillator stability on the phase
variances is considered negligible. Due to the lack of bandwidth information, the constant
values obtained by fitting phase variance and C/N0 variance are usually used as the
parameters CS.

By using Equations (6) and (7), the error equation of GNSS observation is given
directly as:

V = H · X + l (10)

where V is measurement residual, and H is the coefficient matrix. The GNSS basic parame-
ters can be written as:

XGNSS =
[

x, y, z, cdtr, cdtB
D, T, Î1, N̂G

1 N̂G
5 N̂B

1

]
(11)
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where x, y, z denote three-dimensional coordinates of the receiver, dtB
D is BDS system

time bias, Î1 denotes ionospheric delay of L1, N̂G
1 , N̂G

5 , and N̂B
1 are the integer ambiguity

parameters of GPS and BDS, respectively.

3.2. MEMS–INS Model

Commonly used coordinate systems in inertial navigation mainly include inertial
frame (i-frame), Earth-centered Earth-fixed frame (e-frame), body frame (b-frame), and
navigation frame (n-frame). With the dead reckoning algorithm, the dynamic equation of
INS in e-frame can be summarized as [37]:

.
re

INS
.
ve

INS
.
C

e
b

 =


ve

INS

Ce
b f b

ib − 2Ωe
ieve

INS + ge

Ce
bΩb

eb

 (12)

where re
INS and ve

INS denote the position and velocity vectors of the IMU in the e-frame,
respectively; Ce

b denotes the direction cosine matrix from b-frame to e-frame, and f b
ib denotes

the specific force vector of e-frame with respect to i-frame in the e-frame; Ωe
ie denotes the

skew symmetric matrix of the earth rotation vector of ωe
ie relative to i-frame, expressed

in e-frame; ge denotes the gravity vector in the e-frame; Ωb
eb denotes the skew symmetric

matrix of ωb
eb, and ωb

eb can be written as:

ωb
eb = ωb

ei + ωb
ib = ωb

ib −ωb
ie = ωb

ib − Cb
e ωe

ie (13)

where ωb
ib denotes gyroscope angular velocity, Cb

e denotes the inverse matrix of Ce
b.

By using the dynamic equation, the error state model of INS can be expressed as [38]:
δ

.
re

INS

δ
.
ve

INS
.
ϕ

e

 =


δve

INS

−2Ωe
ieδve

INS +
[(

Ce
b f b

ib

)
×
]

ϕe − Ce
bδ f b

ib

−Ωe
ie ϕe + Ce

bδωb
ib

 (14)

where
[(

Ce
b f b

ib

)
×
]

denotes the skew symmetric matrix of
(

Ce
b f b

ib

)
. The errors of specific

force and gyroscope angular velocity can be written as follows:

δ f b
ib = δba + εa (15)

δωb
ib = δbg + εg (16)

Then, the linearized state equation of INS can be expressed as:

δ
.
re

INS

δ
.
ve

INS
.
ϕ

e

δ
.
ba

δ
.
bg


=



0 I 0 0 0

0 −2Ωe
ie

[(
Ce

b f b
ib

)
×
]
−Ce

b 0

0 0 −Ωe
ie 0 Ce

b

0 0 0 0 0

0 0 0 0 0





δre
INS

δve
INS

ϕe

δba

δbg


+



0 0

−Ce
b 0

0 Ce
b

0 0

0 0


[

εa

εb

]
(17)

where δre
INS, δve

INS, and ϕe denote the position, velocity, and attitude error vector in e-frame;
δba and δbg denote the bias errors of accelerometer and gyroscope, respectively; εa and εg
denote the processing noise vectors of accelerometer and gyroscope biases, respectively.
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3.3. Uncombined PPP/INS Coupled Model

Considering the bias error and noise of low-cost IMU, the initial alignment of INS
is usually conducted with dynamic mode. The pitch and roll angle are calculated by
accelerometer of IMU:

φ = −sign( f n
D)sin−1

(
f n
E
g

)
(18)

θ = sign( f n
D)sin−1

(
f n
N
g

)
(19)

where φ and θ are pitch and roll angle, respectively; f n is the specific force vector in the
n-frame; E, N, and D denote the east, north, and down directions, respectively; g is the
gravity vector. With the roll angle in the plane set to zero approximately, the approximate
pitch and yaw angle are solved by GNSS with the information of location and speed, which
can be expressed as [29]:

φ = tan−1

 vD√
v2

N + v2
E

 (20)

ψ = tan−1
(

vE
vN

)
(21)

Moreover, the PPP/INS model coupled with the data of the MEMS module, such as
ADIS16405 and the GNSS observations from smartphones, should unify the measurements
to the same reference frame using the level arm. The conversion relation with the level arm
correction vector lb calculated by the IMU geometrical center and the GNSS antenna phase
center can be expressed as [37]:

re
GNSS = re

INS + Ce
blb (22)

ve
GNSS = ve

INS + Ce
bΩb

iblb −Ωe
ieCe

blb (23)

where re
GNSS and ve

GNSS denote the position and velocity vectors of the GNSS antenna
phase center in the e-frame, respectively; Ωb

ib denotes the skew symmetric matrix of ωb
ib.

In addition, the state covariance matrix, system noise matrix and state transition matrix
should be adjusted. Combining state vector XGNSS in Equation (11), the dynamics model of
PPP/INS can be expressed as:[

ze
r

ze
v

]
=

[
re

GNSS

ve
GNSS

]
−
([

re
INS

ve
INS

]
+

[
Ce

blb

Ce
bΩb

eblb

])
(24)

and the basic parameters of PPP/INS dynamic equation can be written as:

XPPP/INS =
[
r̂, v̂, ϕ̂, b̂a, b̂g

]
(25)

while the coefficient matrix can be expressed as:

HPPP/INS =

[
−I3×3 0 Ce

blb 0 0

0 −I3×3 Ce
bΩb

eblb 0 0

]
(26)

3.4. Robust Kalman Filter Parameter Estimation Model

To reduce the effects of measurement outliers on smartphones positioning, the robust
Kalman filter method is used for parameter estimation to balance the contribution of
normal and abnormal observations with equivalent variance matrix. Based on the nonlinear
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extended Kalman filter dynamic and observation models, the formula of robust Kalman
gain matrix Kk can be written as [39]:

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1

(27)

where P−k denotes the state covariance matrix, and Hk denotes the coefficient matrix. With
the robust M estimation principle, the equivalent covariance matrix is Rk instead of the
original covariance Rk, which can be expressed as [40]:

Rk =
Rk
γi

(28)

where γi denotes the variance inflation factor. Based on the institute of geodesy and
geophysics (IGG) III weighting function, the reduction factor of the weight elements could
be chosen as [41]:

γi =


1 |vi| ≤ k0

k0
|vi |

(
k1−|vi |
k1−k0

)2

k0 < |vi| ≤ k1

0 |vi| > k1

(29)

where k0 and k1 are thresholds commonly used as 1.5–3.0 and 3.0–8.0, respectively; vi
denotes a standardized residual, as follows [42]:

vi =
vi√

σ̂2
0 Qvi

(30)

where vi denotes the residual of measurements, and Qvi denotes corresponding variance,
σ̂2

0 denotes the unit weight variance estimated by generalized least squares.

σ̂2
0 =

ξTQ−1
ξ ξ

n
(31)

where ξ denotes predicted residual vector (innovations), Qξ denotes the corresponding
covariance matrix as follows:

Qξ = Rk + HkP−k HT
k (32)

The updated state correction vector and error covariance of the robust Kalman filter
can be expressed as:

X̂k = X̂k + Kk(Lk − HkX̂k) (33)

Pk = [I − Kk Hk]P−k [I − Kk Hk]
T
+ KkRkKT

k (34)

4. Experiment and Result

The PPP/INS positioning experiments of smartphones were conducted using GNSS
observations including L1/L5 of GPS and B1 of BDS from smartphones and IMU data from
smartphones and triaxial inertial sensor ADIS16405. The products, such as precise satellite
orbit and clock, final global ionospheric map (GIM), and differential code bias (DCB), were
provided by the IGS data center. The hydrostatic troposphere error was corrected with the
Saastamoinen model [43], and the zenith delay of the wet troposphere was estimated as
a parameter. Moreover, the other effects, such as Earth tide, relativity, and Sagnac, were
modeled and corrected sufficiently. The cutoff elevation of satellites was 15 degrees, and the
position was initialized from standard single point positioning (SPP) using pseudorange
on the L1 frequency with a variance of 602 (m2). The receiver clock was initialized with a
variance of 602 (m2) per epoch, and other parameters, such as the integer ambiguities of
carrier phase, were usually initialized at the beginning and estimated as a float solution.
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4.1. PPP/INS Solutions on the Playground and Sidewalk

While the pitch and roll angle were calculated by accelerometer, the yaw angle of smart-
phones was estimated by position and speed provided by GNSS solutions for PPP/INS
initial alignment in dynamic mode. The INS parameters would be initialized while both
the velocity of the receiver and the PDOP of the GNSS reached corresponding thresholds.
Meanwhile, considering the convergence velocity and precision of smartphones PPP ini-
tialization, the yaw angle is directly estimated by the geodetic receiver with differential
positioning during INS initial alignment in the experiments. Moreover, some reference
coordinates which cannot be outputted by the geodetic receiver with GNSS integer ambigu-
ities estimated as a fix solution were estimated by the post-processing fitting method. The
conventional PPP method adopted the standard Kalman filter parameter estimation model
while the robust Kalman filter was used in the PPP/INS coupled model, and both adopted
the C/N0-dependent stochastic model. The PPP and PPP/INS positioning trajectories of
Huawei Mate 10 are shown in Figure 11a, and the corresponding positioning errors in
terms of east, north, and up directions are shown in Figure 11b.

Figure 11. GPS PPP and PPP/INS solutions from Huawei Mate 10 on the playground. (a) Trajectories
of GPS PPP and PPP/INS solutions. (b) Comparison of GPS PPP and PPP/INS solutions with
reference points. The E and N denote east and north direction, respectively.

In Figure 11a, the positioning errors of single-frequency GPS PPP of the Huawei Mate
10 show a significant fluctuation at the beginning even in the open area, and then the
smartphone enters the area marked by the yellow box successively in about 50 epochs
and 180 epochs. In Figure 11b, the RMS of GPS PPP/INS horizontal errors is 11.293 m,
which decreases by 32.24% compared with that of GPS PPP horizontal errors, and the RMS
of PPP/INS vertical errors is 23.717 m, which decreases by 19.63% compared with that
of GPS PPP vertical errors. However, although the positioning accuracy of the Huawei
Mate 10 is improved with INS, its absolute positioning accuracy is still closely related to
positioning accuracy of the smartphone PPP. For the early single-frequency smartphones
such as Mate 10, an amount of raw carrier phase measurements cannot be logged due to
many cycle slips in GNSS-degraded environments, and the weak positioning performance
makes it difficult to meet the requirements of a high-precision location service even in the
open area. In contrast, the dual-frequency smartphone Mate 30 has significantly better
positioning performance, as shown in Figure 12. The RMS of Mate 30 GPS PPP horizontal
errors can reach 5.996 m in the same environment.
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Figure 12. GPS PPP and PPP/INS solutions from Huawei Mate 30 on the playground. (a) Trajectories
of GPS PPP and PPP/INS solutions. (b) Comparison of GPS PPP and PPP/INS solutions with
reference points.

From Figure 12b, although the Mate 30 GPS PPP/INS maximum horizontal positioning
error decreases by 32.08% from 16.407 to 11.144 m, the horizontal positioning accuracy did
not improve significantly with INS, and the RMS of Mate 30 PPP/INS horizontal errors
is 6.033 m which is almost the same as that of PPP. Meanwhile, in Figure 12a, it can be
found that the trajectory of PPP/INS positioning is still flat while the smartphone is in
the area marked by the yellow box, but the offset is also increasing. However, the RMS of
GPS PPP/INS vertical positioning errors decreases by 39.80% from 12.274 to 7.389 m, and
the RMS of three-dimensional positioning errors is 9.539 m. Then, the BDS observations
of Mate 30 were used in the GNSS PPP/INS experiment, and the results are shown in
Figure 13.

Figure 13. GPS/BDS PPP and PPP/INS solutions from Huawei Mate 30 on the playground.
(a) Trajectories of GPS/BDS PPP and PPP/INS solutions. (b) Comparison of GPS/BDS PPP and
PPP/INS solutions with reference points.
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Compared with Figure 12a, the offset of trajectory was significantly improved in
Figure 13a. In Table 2, the RMS of Mate 30 GPS/BDS PPP/INS horizontal errors decreases
by 33.24% from 5.367 to 3.583 m, and the maximum horizontal positioning error decreases
from 15.041 to 7.294 m. The RMS of Mate 30 GPS/BDS PPP/INS vertical errors decreases
by 24.64% from 7.359 to 5.546 m. Previously, the average C/N0 value observed on the
west side of the playground was significantly lower than that on the east side, as shown
in Figure 4a. Comparing the PPP solutions on the west and east sides of the playground,
the RMS of Mate 30 GPS/BDS PPP horizontal errors on the west side is 6.515 m, which is
27.17% higher than the 5.123 m on the east side.

Table 2. RMS of GNSS PPP and PPP/INS positioning error using smartphones on the playground.
Dir denotes direction. G and B denote GPS and BDS, respectively. H, V, and 3D denote horizontal,
vertical, and three-dimensional.

Smartphone Kinematic Positioning Error RMS (m)

Dir Huawei Mate 10 Huawei Mate 30

G(PPP) G(PPP/INS) G(PPP) G(PPP/INS) GB(PPP) GB(PPP/INS)

E 12.157 8.112 4.732 5.318 3.666 2.546
N 11.403 8.304 3.682 2.849 3.920 2.521
H 16.668 11.293 5.996 6.033 5.367 3.583
V 29.509 23.717 12.274 7.389 7.359 5.546

3D 33.891 26.269 13.660 9.539 9.108 6.603

However, based on the INS-aided and RKF parameter estimation model, the RMS
of Mate 30 GPS/BDS positioning horizontal errors on the west side of the playground
decreases by 41.21% to 3.830 m, and the RMS of Mate 30 GPS/BDS positioning horizontal
errors on the east side of the playground can reach 3.073 m. Subsequently, the IMU data of
ADIS16405 were used with Huawei Mate 30 in the experiment on the sidewalk, and the
GNSS PPP and PPP/INS solutions are shown in Figure 14.

Figure 14. GPS/BDS PPP and PPP/INS solutions from Huawei Mate 30 on the sidewalk. (a) Trajec-
tories of GPS/BDS PPP and PPP/INS solutions. (b) Comparison of GPS/BDS PPP, PPP/INS, and
PPP/INS–ADIS solutions with reference points. PPP/INS–ADIS denotes that the data of ADIS16405
were used in the PPP/INS coupled model instead of the IMU data of smartphone.
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Although the GNSS signals are significantly degraded due to the buildings and trees
on both sides in Figure 14a, the PPP solutions of Mate 30 still can be outputted with GPS
and BDS. However, compared with the PPP solutions on the playground, the RMS of PPP
horizontal and vertical errors increases to 9.200 and 13.389 m, respectively. In Figure 14b,
the RMS of PPP/INS horizontal errors decreases by 29.53% to 6.483 m, and the RMS of
PPP/INS vertical errors decreases by 41.98% from 13.389 to 7.768 m. Meanwhile, compared
with the positioning trajectories between PPP/INS and PPP/INS–ADIS, it can be found
that the trajectory of PPP/INS–ADIS fits more closely to the reference trajectory, especially
on the northwest side. As shown in Table 3, the RMS of PPP/INS–ADIS horizontal errors
is 5.336 m, which is lower than that of PPP/INS, and the RMS of PPP/INS–ADIS vertical
errors is approximate to that of PPP/INS.

Table 3. RMS of GPS/BDS PPP and PPP/INS positioning errors using Huawei Mate 30 on the sidewalk.

Direction
Huawei Mate 30 Kinematic Positioning Error RMS (m)

GB(PPP) GB(PPP/INS) GB(PPP/INS–ADIS)

E 6.589 4.903 3.470
N 6.420 4.241 4.054
H 9.200 6.483 5.336
V 13.389 7.768 7.859

3D 16.245 10.118 9.499

4.2. PPP/INS Solutions for Tunnel and Long Trajectory

Considering that few GNSS satellites signals can be observed by smartphones in some
areas such as tunnels, the solutions of the current epoch would be output by INS when
the number of satellites could not meet the requirements of GNSS positioning, and other
parameters, such as ambiguity, are usually initialized at the beginning, which are the same
as before. As shown in Figure 15a, the experiment was conducted in a tunnel shown on the
right with a length of about 80 m, and the vertical drop is more than 10 m. The trajectories
of Mate 30 GPS/BDS PPP and PPP/INS solutions are shown on the left, and the gaps
between the positioning points are preserved in the trajectory.

Figure 15. GPS/BDS PPP and PPP/INS solutions from Huawei Mate 30 in the tunnel. (a) Left:
trajectories of GPS/BDS PPP and PPP/INS solutions. Right: the realistic environment marked in the
red box. (b) Comparison of GPS/BDS PPP and PPP/INS solutions with reference points, and the red
box shows the GPS/BDS PPP/INS solutions in the tunnel.
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In fact, the GNSS satellite signals were blocked gradually before the smartphone en-
tered the tunnel, the PDOP value of GNSS satellites increased gradually, and the horizontal
and vertical errors were shown to fluctuate significantly for 25 to 40 epochs in Figure 15b.
From 41 to 77 epochs, the number of GNSS satellites observed by Mate 30 was insufficient to
meet the requirement of the PPP method. Nevertheless, the position of the smartphone can
still be obtained continuously with the PPP/INS coupled method while inside the tunnel,
and the horizontal deviation from the reference point is more than 8 m at 29 epochs. Then,
the positioning points of PPP/INS gradually approach the reference trajectory after leaving
the tunnel. The RMS of horizontal deviation in the tunnel is 6.700 m, and the maximum
horizontal and vertical deviation are 8.139 and 7.996 m, respectively. Compared with the
RMS of PPP/INS horizontal errors from 1 to 40 epochs, the RMS of PPP/INS horizontal
errors in the tunnel increases only 21.99%. Meanwhile, it should be noted that the deviation
will increase significantly with the further increase of the length of tunnel. Finally, a long
trajectory experiment with PPP, PPP/INS, and PPP/INS–ADIS was conducted, and the
trajectories are shown in Figure 16.

Figure 16. The long trajectories of GPS/BDS PPP, PPP/INS, and PPP/INS–ADIS solutions using
Huawei Mate 30 and ADIS16405. Left: the realistic environment marked in the purple box 3. Right:
the realistic environment marked in the purple box 1. The areas where the number of satellites cannot
meet the requirements of GNSS positioning are marked by red boxes 2 and 4.

In the areas marked by purple boxes 1 and 3, it can be found that the trajectory of
GPS/BDS PPP is not smooth, and the maximum horizontal errors of GPS/BDS PPP in
the areas even reached 49.813 m and 27.627 m, respectively. This can be attributed to the
measurement residuals of some satellites with low signal quality, which belong to outliers
and are not eliminated in the process of iteration. With the INS-aided and RKF parameter
estimation model, as shown in Figure 17, the maximum horizontal errors of GPS/BDS
PPP/INS in the areas marked by purple boxes 1 and 3 are 20.662 and 8.933 m, which are
decreased by 58.52% and 67.67%, respectively.
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Figure 17. Comparison of Huawei Mate 30 GPS/BDS PPP, PPP/INS, and PPP/INS–ADIS solutions
with reference points. The boxes 1, 2, 3, and 4 corresponds to the boxes in Figure 16.

As shown in Table 4, compared with PPP solutions, the RMS of PPP/INS horizontal
errors in the area marked by purple box 1 decreases by 49.37% from 11.419 to 5.782 m,
and the RMS of PPP/INS horizontal errors in the area marked by purple box 3 decreases
by 48.29% from 11.618 to 6.008 m. Meanwhile, the RMS of PPP/INS vertical errors also
decreases significantly. In the area marked by red box 2, as shown in Figure 16, the devia-
tions on the south direction between the trajectories of PPP/INS and reference increased
rapidly after the GNSS signals were blocked, which can be caused by the scarcity of GNSS
satellites before. Meanwhile, it can be found that the southward error of PPP is higher
than 30 m in 373 epochs, as shown in Figure 17. However, compared with the trajectory
of PPP/INS, the deviations of trajectory between PPP/INS–ADIS and reference are lower.
In the area marked by red box 4, the deviations of trajectory of PPP/INS are approximate
to those of PPP/INS–ADIS. For the long trajectory experiment, the RMS of PPP/INS and
PPP/INS–ADIS horizontal errors are 6.01 and 5.73 m, respectively, which are significantly
lower than those of conventional PPP.

Table 4. The RMS of PPP, PPP/INS, and PPP/INS positioning errors using Huawei Mate 30 on the
areas marked by purple boxes 1 and 3.

Direction
Huawei Mate 30 GPS/BDS Kinematic Positioning Error RMS (m)

150–250 (Epochs) 650–750 (Epochs)

PPP PPP/INS PPP/INS–ADIS PPP PPP/INS PPP/INS–ADIS

E 9.837 5.252 2.267 9.072 3.532 3.788
N 5.799 2.417 5.998 7.258 4.860 6.574
H 11.419 5.782 6.412 11.618 6.008 7.587
V 23.190 4.507 5.083 19.446 2.784 7.498

3D 25.849 7.331 8.183 22.652 6.622 10.667

Therefore, with the higher reliability of initial alignment in dynamic mode and RKF
parameter estimation model with equivalent variance matrix, some adverse factors, such as
the effects of multipath, noise level, and observations gaps, related to GNSS signal quality
of smartphones under GNSS-degraded environments were overcome to some extent. The
convergence efficiency of the PPP/INS model is enhanced and the trajectory deviation of the
smartphone can remain stable in some areas, such as tunnels, when GNSS signals are blocked.



Remote Sens. 2022, 14, 4469 21 of 23

5. Conclusions

In this study, we proposed an IMU-aided uncombined PPP coupled mathematical
model that integrated IMU data and GNSS observations from smartphones to enhance the
positioning performance of smartphones under GNSS-degraded environments. The GNSS
measurements observed by the dual-frequency smartphone Huawei Mate 30 integrated
Hi1103 chipset and the single-frequency smartphone Huawei Mate 10 integrated BCM47531
chipset, and the data of IMU from the smartphones and triaxial inertial sensor ADIS16405,
were used in several experiments. The main conclusions are summarized as follows:

(1) More than half of the carrier phase measurements cannot be observed in dynamic
mode by the early single-frequency smartphones such as the Mate 10 in some areas
where GNSS signal degrades slightly. Although the positioning accuracy of the Mate
10 is improved with the PPP/INS coupled model, its absolute positioning accuracy
is still closely related to PPP accuracy. The weak positioning performance of single-
frequency smartphones makes it difficult to meet the requirements of a precision
location service, even in the open area.

(2) Unlike the geodetic receiver, the number of visible GNSS satellites observed by the
Mate 30 fluctuate within a narrow range, which is caused by the weak multipath
suppression ability of GNSS antenna of smartphones. In some areas where GNSS
signals are significantly degraded due to the buildings and trees on both sides, the
RMS of smartphone PPP horizontal positioning errors can even reach more than 10 m.

(3) With the proposed PPP/INS coupled method, the RMS of PPP horizontal and vertical
positioning errors on smartphone decreased significantly in various GNSS-degraded
environments, and long trajectory experimental results indicated that the RMS of
PPP/INS horizontal errors in the eastern and western areas decrease by 49.37% and
48.29%, respectively, compared with convention PPP solutions. Meanwhile, the results
of several experiments also show that the positioning accuracy of PPP/INS is roughly
equivalent to that of PPP/INS–ADIS.

(4) Moreover, the position of smartphone can be outputted continuously while moving
through the tunnel with a length of about 80 m; the PPP/INS trajectory deviation of
smartphone in the tunnel remained stable. The horizontal deviation from the reference
point is more than 8 m after 29 epochs, and the positioning points quickly approach
the reference trajectory after leaving the tunnel.

In summary, the proposed PPP/INS coupled model integrated dual-frequency GNSS
observations and IMU data from smartphones with C/N0-dependent stochastic model
and RKF model to improve the positioning performance in GNSS-degraded environments.
However, the absolute positioning accuracy of GNSS PPP/INS in the open area is still
closely related to PPP accuracy. Moreover, in the northern area of long trajectory experi-
ments, the deviation of PPP/INS positioning gradually increases when the GNSS signals
are blocked for a long time, which is related to the positioning error before entering the
GNSS-signals-blocked area and the drift of INS. Therefore, we will further integrate other
sensors such as cameras in smartphones for when the GNSS signals are blocked for long
period of time, and conduct the experiments with multiple modes of transportation. In ad-
dition, with the improved performance of GNSS and internal IMU chipset of smartphones
in the future, we can anticipate that high-precision position of smartphones will play a
significant part in various navigation applications such as ITS and LBS.
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