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Abstract: Forest ecosystems strongly contribute to the mitigation of climate change impacts through
the carbon stored in forests and through harvested wood products, such as sawed wood and furniture,
which are obtained from many types of timber assortments. Timber assortments are defined as log
sections of specific dimensions (log length and maximum/minimum end diameters), gathered from
felled trunks, that have both specific commercial timber utilisation and economic value. However, it
is challenging to discriminate and assess timber assortment types, especially within a forest stand
before the forest has been harvested. Accurate estimations of timber assortments are a fundamental
prerequisite in supporting forest holdings and assisting practitioners in the optimisation of harvesting
activities and promoting forest wood chains, in addition to forest policy and planning. Based on the
georeferenced points cloud tool, light detection and ranging (LiDAR) is a powerful technology for
rapidly and accurately depicting forest structure, even if the use of LiDAR for timber assortments
estimation is lacking and poorly explored. This systematic literature review aimed to highlight
the state-of-the-art applications of the LiDAR systems (spaceborne; airborne, including unmanned
aerial UASs; and terrestrial) to quantify and classify different timber assortment types. A total of
304 peer-reviewed papers were examined. The results highlight a constant increment of published
articles using LiDAR systems for forest-related aspects in the period between 2000 and 2021. The
most recurring investigation topics in LiDAR studies were forest inventory and forest productivity.
No studies were found that used spaceborne LiDAR systems for timber assortment assessments, as
these were conditioned by the time and sample size (sample size = ~12 m/~25 m of laser footprint
and 0.7 m/60 m of space along the track for ICESat-2, GEDI and time = since 2018). Terrestrial LiDAR
systems demonstrated a higher performance in successfully characterising the trees belonging to an
understory layer. Combining airborne/UAS systems with terrestrial LiDAR systems is a promising
approach to obtain detailed data concerning the timber assortments of large forest covers. Overall,
our results reveal that the interest of scientists in using machine and deep learning algorithms for
LiDAR processes is steadily increasing.

Keywords: remote sensing; roundwood; point cloud; tree architecture; forest; wood resources

1. Introduction
Background

Forest ecosystems provide many benefits to society, including economic and environ-
mental benefits; thus, they improve human welfare. Timber is one of the most important
products offered by forests and represents 0.7% of the gross domestic product in Europe [1].
Moreover, forests and harvest wood products (i.e., a variety of wood-based products, such
as furniture and plywood) are crucial for mitigating climate change due to their carbon
content. Exploiting the availability of high-quality timber assortments to supply the forest
industry is essential for promoting forest mitigation strategies against climate change.
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Despite the forest inventory activities providing information about timber production (e.g.,
aboveground biomass, forest cover, and forest types), the accurate assessment of timber
assortment types is challenging and time consuming, and the assessment can often only be
carried out using destructive approaches, namely after harvesting operations.

Traditional forest inventory is based on sampling approaches within which certain
biometric variables, namely diameter at breast height and tree height, are collected for the
sample, which is then processed to predict the timber volume at a larger scale [2]; there is a
lack of information about the quality and merchantable use of the available timber, which
is barely considered in inventory activities.

Typically, the discrimination, classification, and assessment of timber assortment
types through destructive approaches imply: (i) the felling of trees, (ii) the division of
each felled tree into log segments, and (iii) the classification of such segments based on
geometrical characteristics (i.e., log length, log diameter, and log straightness) and defects
(i.e., bark defects) in at least one type of timber assortment (i.e., sawlog, pulpwood, veneer,
and fuelwood) [3–6]. Because it is time consuming and requires qualified staff, alternative
remote sensing methods may be helpful for supporting the assessment of timber assortment
types, allowing for an accurate estimation of standing trees and a more optimal allocation
of revenue for forest owners.

Light detection and ranging (LiDAR) is an active remote sensing technology widely
used for depicting forest stand structures (the vertical and horizontal profiles of trees)
and other forest inventory variables (Table 1) through georeferenced point clouds. The
point cloud is generated by LiDAR sensors, which measure the distance of emitted light
to a target [7,8]. In recent decades, LiDAR systems have become crucial and have become
increasingly applied in forest inventory activities [9,10]. Additionally, LiDAR systems
have been used to assess many aspects of sustainable forest management (SFM), especially
forest provision, forest health, forest damage, and forest diversity. The higher accuracy of
estimates through LiDAR data collection methods strongly support the development and
implementation of SFM and climate-smart forestry strategies [11–13].

LiDAR systems can be classified according to three types of scanning, namely satellite,
airborne, and terrestrial laser scanning [14,15]. Satellite LiDAR systems are widely used
for assessing global forest cover at regional, national, and international scales through
widespread measurements [14,16,17]. Spaceborne LiDAR systems allow for the mapping
of the aboveground biomass at a global level [18], thus detecting the changes in the forest
biomass over time [13]. These systems are found in different LiDAR NASA missions, such
as ICESat (Ice, Cloud, and land Elevation Satellite; 2003–2010), ICESat-2 (since 2018), and
GEDI (Global Ecosystem Dynamics Investigation; in effect since 2018). The ICESat and
GEDI missions record full-waveform LiDAR data, while the ICESat-2 mission records
photon-counting LiDAR data. The circular footprint sample size of ICESat and GEDI is
~65 and ~25 m, spaced at ~170 and 60 m intervals along a track, respectively. By contrast,
ICESat-2 samples laser footprint segments of ~12 m in diameter, spaced at 0.7 m intervals
along a track. ICESat data have allowed remote sensing to determine forest heights and
topographic characteristics (https://attic.gsfc.nasa.gov/glas/ (accessed on 10 March 2022)).
The combination of ICESat with optical data have also allowed for the estimation of the
forest volume and aboveground biomass of different forest types [19,20]. The potential of
the ICESat-2 and GEDI missions for determining an assessment of canopy tree height (TH),
aboveground biomass (AGB), topography, and carbon cycle has been demonstrated [10,16].
Combining ICESat-2 and GEDI with optical and/or SAR (synthetic aperture radar) allows
for the mapping of aboveground biomass at the national level [17], and it also detects
the occurrence of disturbance events [13]. A recent study, however, revealed that the
ICESat-2 data provided more accurate treetop measurements than GEDI, especially for
closed canopy forests. In addition, the calibration and slope of the territory play a crucial
role in determining the mensuration accuracy of the ICESat-2 and GEDI data [18,21].

Airborne laser scanning (ALS) is the most suitable group of airborne LiDAR systems
for forest inventory and research purposes at local, regional, and national levels [7,9,22,23].

https://attic.gsfc.nasa.gov/glas/
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Airborne LiDAR systems also play a key role in forest disturbance detection, where they are
able to specifically recognise the symptoms or damage caused by diseases, insects, pests,
and fire events [22,23]. The ALS system allows for the remote sensing of tree variables
from forests covers at the plot level, supporting both national and international forest
inventory and planning activities [7,9,22,23]. Such information, complemented by tree
types, was used to assess the habitat quality of large riparian forests [24] and map the tree
species composition of mixed forests at the single-tree level [25]. Airborne LiDAR systems
have also been used to detect long-term changes in the savanna vegetation of African
tropical forests [26] and to evaluate the occurrence of microhabitats in standing trees in
multi-layered Mediterranean forests [27]. Terrestrial LiDAR systems, e.g., terrestrial laser
scanning (TLS), have allowed for the characterisation of tree health, quantification of forest
surface fuel loads, and scheduling of silvicultural activities [28]. Among the ALS systems
used for monitoring forest-related aspects at the stand or local level, UAS systems have
been one of the most recently used methods [15].

In addition to satellite and airborne LiDAR systems, the interest in using TLS for
research has grown due to its automatic, rapid, and realistic representation of a tree
structure (i.e., a trunk and branches) at the millimetre level, despite the fact that data
collection is time consuming, expensive, and requires well-trained technicians [29–32]. To
facilitate the handling of TLS systems, recent studies have employed alternative terrestrial
LiDAR systems, e.g., portable laser scanning (PLS, i.e., using a handheld laser scanner) and
mobile laser scanning (MLS, i.e., using a backpack laser scanner). However, compared with
TLS systems, the accuracy for these methods are slightly lower with respect to the obtained
tree measurements [33,34]. In fact, recent studies [28,35–37] have stated that a more detailed
reconstruction of deciduous trees (diameter at breast height (DBH) = 61.3–97 cm) using
TLS can be carried out through architectural-based methods (i.e., allometric scaling and
stem form), which ensure an accurate and realistic quantification of the trunk and branches,
supported by tapering curve, branch radii and lengths, and log measurements.

Some studies have employed UAS for forestry applications to collect high-resolution
point clouds using aerial vehicles. There has been increased interest in the usage of UAS
for research for many reasons, including its high-resolution point density (i.e., detailed
description of trees) comparable to TLS point clouds, portability (i.e., being miniaturised
airborne equipment), suitability for hosting optical sensors in addition to LiDAR, collection
of data in-real time, and limited costs for the operational activities [38–40]. However,
several researchers have stated that the application of UAS is currently more appropriate
for small forest covers and for specific aims (i.e., storm or forest fire events) rather than as
a means to support regional and national inventories [30,41,42]. We propose that out of
all LiDAR systems, those that are airborne, especially UAS, as well as terrestrial, are most
suitable for timber assortment assessment; the acquisition of data using satellite LiDAR
systems, despite their potential to cover global forests, is mainly suitable when there are
specific time requirements and, moreover, when the sample size is limited [10,14,43–47].

Forest inventory variables (FIVs) and forest productivity variables (FPVs) can be mea-
sured using airborne LiDAR systems (i.e., ALS) through two main approaches, namely the
area-based approach (ABA) and individual tree detection (ITD) approach [48]. ABA is the
most common approach for forest inventory as it provides valid statistical tree measure-
ments (i.e., the diameter at breast height (DBH), TH, basal area (BA), stem volume, AGB,
leaf area index (LAI), and plant area index (PAI)) at the plot and stand levels [44,49–51].
Unlike the ABA, the ITD approach includes tree measurements (i.e., the taper curve) at
a single-tree level, with higher accuracy [52]. ITD-based studies tend to examine pure
forest stands rather than mixed forest stands due to the implementation of the approach
being affected by occlusion factors from branches to trunks, which are typical of mixed and
stratified forests and dense stands [53]. To bypass hindering factors such as canopy closure,
recent ITD-based studies have highlighted that this challenge can be tackled through use of
a high-resolution point cloud, one that follows a stratification approach, and by utilising
unsupervised algorithms for tree detection [54–56].
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Accurate tree measurements using terrestrial LiDAR systems can be acquired us-
ing automatic and semi-automatic 2D layer and 3D methodologies [32]. Some of the
algorithms that are most used for modelling tree measurements are embedded in the
quantitative structure modelling (QSM), Computree, 3D FOREST, CloudCompare, and
OPALS (Orientation and Processing of Airborne Laser Scanning; data available from
https://opals.geo.tuwien.ac.at, accessed on 15 July 2022) software [28,47], as well as in the
recent LiDAR R packages (i.e., FORTLS) [57]. Considering the high versatility of LiDAR
systems, we propose that a well-detailed review based on the progress made in forestry
applications using the ALS and TLS systems can support accurate and efficient forest man-
agement and planning, with a focus on the most common systems, methods, approaches,
algorithms, and forest-related conditions used for the assessment of timber assortment.
Furthermore, it can be used for the management of forests under SFM policies at local and
landscape level [58].

This systematic literature review aims to describe and discuss what the current state-
of-the-art is concerning LiDAR system usage, with respect to quantifying and classifying
timber assortments; this review highlights the performance of LiDAR tools and techniques
in assessing timber assortments. More precisely, the literature review focuses on describing
the LiDAR platforms and systems that are most suitable for assessing timber assortments,
highlighting the limitations and performances of the most common methodological ap-
proaches (e.g., algorithms and models) from 2000 to 2021. With this study, we attempted to
answer these three questions: (i) What is the tendency concerning the use of LiDAR systems
for the assessment of timber assortments in the last two decades? (ii) Which forest-related
topics are most commonly faced by LiDAR systems worldwide? (iii) Which LiDAR systems
can be used for the monitoring of timber assortments?

The methodological approach used to implement the literature review is explained in
Section 2, while the results, discussion, and conclusion are presented in Sections 3–5, respectively.

Table 1. A description of tree components from the LiDAR (light detection and ranging) systems:
ALS (airborne laser scanning), ULS (unmanned laser systems), TLS (terrestrial laser scanning), PLS
(portable laser scanning), and GEDI (global ecosystem dynamics investigation). (*) and (**) indicate
variables performed while using airborne LiDAR systems studies that use an area-based approach or
individual tree approach, respectively [14,28,32,43–45,53,57].

LiDAR Systems

Tree Measurements Airborne (i.e., ALS, ULS) Terrestrial (i.e., TLS, PLS) Satellite (i.e., GEDI)

1 Diameter at breast height * x x -

2 Tree height * x x x

3 Basal area * x x -

4 Tree position and tree crown delineation ** x x -

5 Tree crown measurements and tree density ** x x -

6 Tree species composition ** x x -

7 Stem volume and growing stock volume * x x x

8 Aboveground biomass and carbon stock * x x x

9 Timber-leaf discrimination - x -

10 Stem curve and taper curve ** x x -

11 Timber assortments (i.e., pulpwood) * x x -

12 Stem straightness and stem diameters - x -

13 Some vegetation indices (i.e., leaf area index) * x x x

14 Leaf area distribution * x x x

15 Percent cover and gap fraction * x x x

16 Log geometry and wood quality - x -

17 Downed dead wood * x x -

18 Branch sizes, positions, and orientations - x -

19 Harvested trees detection ** x x x

https://opals.geo.tuwien.ac.at
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2. Methodological Approach

To achieve the aim of this literature review, we implemented a methodological ap-
proach based on two steps: paper collection and paper analysis (Figure 1). All papers
were stored in a database and subsequently analysed to better describe and discuss the
current state-of-the-art usage of LiDAR systems for the quantification and classification of
timber assortments.

Figure 1. The workflow of the methodological approach implemented in this literature review. LiDAR
is light detection and ranging. One search string consists of four single or composite keywords.

2.1. Paper Collection

To collect peer-reviewed papers focused on the use of LiDAR systems to assess timber
assortments, we used ten keywords (Table 2) organised in 12 different search strings
(hereafter referred to as codes), within which single (i.e., ‘remote sensing’ and ‘LiDAR’)
and composite (i.e., ‘forest* OR woodland’) fixed keywords were considered (Table 3).
The items that were considered when searching for papers were ‘article title’, ‘abstract’,
and ‘keywords’, stored in Elsevier’s Scopus® engine; we only selected papers written in
‘English’. The time frame of the literature review was customised to range from the early
2000s, when the first studies dealing with LiDAR obtained in this literature review were
published [59], to 2021.
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Table 2. Descriptions of the keywords used to search through the LiDAR literature. The terms
and definitions were found in two sources: (a) https://www.sciencedirect.com/topics (accessed
on 15 January 2022) and (b) http://www.fao.org/forestry/FRA2015/ (accessed on 15 January 2022).
The asterisk symbol * was added to search word that has multiple spelling variations, allowed to
search for different word endings (e.g., Merchant or Merchantable).

Description of the Keywords

N◦ Keyword Description Source

1 Remote sensing (RS) It is the science that remotely captures information from the Earth’s surface for
many scopes (i.e., forest monitoring). (a)

2 LiDAR
It is a technology suitable for depicting vertical and horizontal canopy profiles

through georeferenced points, performed by measuring the distance of an emitted
and backscattered light from the LiDAR sensor and tree.

(a)

3 Forest or Woodland

‘Forest’ is land covered by more than 0.5 ha of trees that can reach a minimum of
5 m of height, and land which possesses a canopy cover of more than 10%.

‘Woodland’ is land covered by more than 0.5 ha of trees that can reach 5 m of
height at maturity, which also possess a canopy cover of 5–10%; or land covered by

a combined cover of shrubs, bushes, and trees with a canopy cover above 10%.

(b)

4 Timber or Wood ‘Timber’ and ‘wood’ are some of the most important goods provided by forests,
and they play an important role in the wood supply chain. (a)

5 Stem or Branch ‘Stem’ is the aboveground trunk of a vascular plant with similar anatomical
properties, while ‘branch’ is the woody part of the tree arising from a trunk. [5]

6 Hardwood or Softwood ‘Hardwood’ is commonly associated with deciduous stands (denser wood), while
‘softwood’ is often associated with coniferous stands (less dense wood). (a)

7 Tree It indicates a tall plant that is composed of a trunk and branches. Moreover, it is a
principal component of both forest and woodland areas. (b)

8 Quality or Assortment
‘Quality’ groups physical and chemical characteristics widely used for classifying

wood based on specific wood features; the ‘assortment’ term is often used to
characterize the log of trees according to a merchantable approach.

(b)

9 Morphology
This represents the physical form and external structure of trees. This word

allowed us to collect papers that considered the morphology of the
tree as objective.

(a)

10 Volume or Merchant * These words allowed us to collect papers that considered the wood in forest
productivity and the commercial terms as the target. [5]

Table 3. Literature review codes. The advanced description of codes (SC) used to search the LiDAR
(Light Detection and Ranging) literature. Fixed keywords are indicated in italics. The asterisk symbol
* was added to search word that has multiple spelling variations, allowed to search for different word
endings (e.g., forest or forestry).

Abbreviation Code

SC1 remote AND sensing *; lidar; forest * OR woodland; timber OR wood AND quality

SC2 remote AND sensing *; lidar; forest * OR woodland; timber OR wood AND assortment *

SC3 remote AND sensing *; lidar; forest * OR woodland; timber OR wood AND morphology

SC4 remote AND sensing *; lidar; forest * OR woodland; timber OR wood AND volume

SC5 remote AND sensing *; lidar; forest * OR woodland; stem OR branch AND volume

SC6 remote AND sensing *; lidar; forest * OR woodland; stem OR branch AND morphology

SC7 remote AND sensing *; lidar; forest * OR woodland; hardwood OR softwood AND merchant *

SC8 remote AND sensing *; lidar; forest * OR woodland; tree AND morphology

SC9 remote AND sensing *; lidar; forest * OR woodland; tree AND merchant *

SC10 remote AND sensing *; lidar; forest * OR woodland; tree AND assortment *

SC11 remote AND sensing *; lidar; forest * OR woodland; tree AND quality

SC12 remote AND sensing *; lidar; forest * OR woodland; tree AND volume

2.2. Paper Analysis

We analysed the collected papers to explore: (i) the augmented use of LiDAR systems
in forest monitoring and planning worldwide; (ii) the most common forest-related aspects

https://www.sciencedirect.com/topics
http://www.fao.org/forestry/FRA2015/
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investigated through the use of LiDAR systems; (iii) the estimated performances obtained
from different LiDAR systems in terms of their accuracy and standard error, highlighting
the most suitable approaches, processes, models, and algorithms.

2.2.1. LiDAR Systems Implementation

For each paper, we extracted the location of the study area to map the geographical
distribution of the studies retrieved by the literature review. Moreover, we explored the
type of LiDAR system used to carry out the research (e.g., terrestrial, airborne, and satellite),
highlighting how the LIDAR data were used in combination with other remote sensing
data (Table 4).

Table 4. Twenty types of combinations involving LiDAR (light detection and ranging) systems for
forest monitoring. (*) represents studies without a system mentioned within their ‘Materials and
Methods’ sections. ID indicates the progressive number of LiDAR system combinations.

LiDAR Systems

ID Descriptions

1 No specified systems *
2 Only terrestrial LiDAR systems
3 Only airborne LiDAR systems
4 Only satellite LiDAR systems
5 Only terrestrial images
6 Only airborne images
7 Only satellite images
8 Combination of terrestrial with airborne LiDAR systems
9 Combination of terrestrial with satellite LiDAR systems

10 Combination of terrestrial LiDAR systems with airborne images
11 Combination of airborne LiDAR systems with airborne images
12 Combination of airborne LiDAR systems with satellite images
13 Combination of satellite LiDAR systems with satellite images
14 Combination of terrestrial LiDAR systems with terrestrial images
15 Combination of airborne LiDAR systems with terrestrial images
16 Combination of terrestrial LiDAR systems with satellite images
17 Combination of airborne LiDAR systems with airborne and satellite images
18 Combination of satellite images with airborne and satellite LiDAR systems
19 Combination of airborne images with terrestrial and airborne LiDAR systems
20 Combination of terrestrial images with terrestrial and airborne LiDAR systems

2.2.2. What Are the Main Uses of LiDAR for Forest Estimates?

The aims of each paper were precisely determined and classified into six topics:

â Inventory (I) includes the papers that used satellite, airborne, and terrestrial LiDAR
systems for the estimation of the most common forest inventory variables (e.g., DBH,
TH, and BA) over distinct forest types to support forest statistics, reports, and moni-
toring activities.

â Productivity (P) includes the papers that dealt with the assessment of timber pro-
ductivity in terms of stem volume, AGB, carbon stock, sawlog volume, and pulp-
wood volume.

â Accuracy (A) includes the papers that tested and compared different algorithms,
methods, or approaches for improving either the pre-processing or processing of
point clouds acquired by LiDAR systems.

â Biodiversity (B) includes the papers that used the forest structure reconstructed by
LiDAR systems to assess indicators of biodiversity, e.g., the occurrence of bird species,
tree species composition, and habitat quality.

â Climate change (C) includes the papers that assessed the climate change effects on
forest stands, evaluated the health status of forests using LiDAR systems, or mapped
the occurrence of disturbing events (i.e., fire, pests, landslides, and drought events).
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â Review (R) includes the paper reviews found in the database.

2.2.3. Advances in the Methods and Outputs of LiDAR Systems

Finally, we accurately examined all the papers, except those belonging to the ‘R’
cluster, to compare the methodology and the outputs obtained in different forest types
and structures (i.e., coniferous, deciduous, and mixed forests). In order to go into depth
on the timber assortment evaluation using LiDAR systems, we examined the progress
made in LiDAR system applications through a chronological description of the papers from
the ‘P’ cluster, paying particular attention to the paper’s aims and methods, approaches,
or algorithms.

3. How Are Forest Monitoring and Management Supported by LiDAR Systems?

In this section, we describe the main outputs determined from the literature review,
highlighting the advances in the LiDAR system applications, methods, and forest-related
topics investigated worldwide.

3.1. Literature Review

The 12 codes resulted in the collection of 491 papers, and after a first round of screening,
we identified 187 papers that were replicated because of the different codes used for
collection. After removing these replicates such that the included papers would only be
considered once, we were left with a total of 304 papers that successfully satisfied our
queries and were used in this literature review. From the results of the literature review, it
can be seen that the number of published papers steadily increased from 2000 to 2021, with
a slight decline in publications in the years 2012 and 2013 (Figure 2).

Figure 2. The trend of the published papers in the timeframe 2000–2021. The labels above the bars
indicate the number of papers per year.

The results highlighted that a more general term, such as ‘forest volume’, was more
frequently explored, and one such as ‘timber assortments’ was rarely studied. We observed
that six out of twelve codes (i.e., SC2, SC3, SC6, SC7, SC9, and SC10) allowed for the collec-
tion of a low number of papers (Table 5), indicating the lack of LiDAR system applications
in the assessment of timber assortments. Concerning the most successful codes, namely
those that focused on volume estimation, SC12 allowed us to collect 167 papers, followed
by the SC11, SC5, and SC4 codes, which identified 84, 82, and 76 papers, respectively.
Overall, the keywords that allowed us to obtain a higher number of papers were ‘tree’ and
‘volume’, while ‘assortment*’ and ‘morphology’ led to the least number of papers.
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Table 5. Paper collection. The selected papers (304) are referred to as unduplicated papers.

Paper Collection

Abbreviation N◦ collected papers
SC1 22
SC2 3
SC3 6
SC4 76
SC5 82

SC6 11
SC7 6
SC8 29
SC9 2
SC10 3
SC11 84
SC12 167

Sub-total 491
N◦ duplicated papers 187

Total 304

3.2. Advances in LiDAR System Implementations

From a geographical point of view, most of the LiDAR studies were carried out in
countries within North America, Europe, and Asia, with the United States accounting
for 20.39% (63 studies), Canada accounting for 9.54% (29 studies), Finland accounting
for 7.57% (23 studies), and China accounting for 5.92% (18 studies). After Finland, the
representation of the five most investigated European countries (i.e., United Kingdom, Italy,
Spain, Germany, and France) ranged between 3.29% (10 studies) and 5.59% (17 studies). The
most important South American and Oceanian countries chosen by researchers to explore
forest productivity topics were Brazil (2.96%; 9 studies) and Australia (3.29%; 10 studies),
respectively (Figure 3).

Figure 3. The LiDAR (light detection and ranging) studies. The figure shows the geographical
distribution on a worldwide scale of the studies (expressed in absolute number) that focused on
forest ecosystems.

We found that about half of studies combined LiDAR systems with other RS systems
(50.9%), while the remaining studies (49.1%) used only LiDAR systems, of which most
used airborne LiDAR systems (39.8%), and a lower number of studies focused on terrestrial
(8.6%) and satellite (0.7%) LiDAR systems (Figure 4).
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Figure 4. The frequency of papers based on the LiDAR (light detection and ranging) systems and on
the integrated use of LiDAR with other remote sensing applications.

The combined use of LiDAR systems and imagery from both airborne and satellite
systems (15.8% and 12.8% of the collected studies, respectively) appears to have been very
successful in assessing SFM indicators, forest accessibility, and forest health, contributing
to fire detection or pest events and supporting forest management and planning.

The results revealed that the GLAS (Geoscience Laser Altimeter System), which is
mounted on NASA’s ICESat satellite, and the GEDI were the only two satellite LiDAR
systems used for forest monitoring and assessment. Moreover, they were used in combina-
tion with satellite images as multispectral bands (i.e., Landsat TM/ETM+, Sentinel-2A),
panchromatic bands (e.g., WorldView-2 and WorldView-3), and synthetic aperture radar
(i.e., ALOS-2) [60,61].

The literature review highlighted that only in the last few years (2018–2021) has there
been an increment in studies (10% ≡ 12 out of 122 papers) focused on the use of UASs for
forest inventory issues at the plot level.

Examining the sensors, we found that the most common sensors mounted on the
airborne LiDAR systems were from the ‘Leica’, ‘Optech’, and ‘Riegl’ companies, and fewer
sensors were from the ‘TopEye’, ‘TopoSys’, ‘SLICER’, and ‘YellowScan’ Mapper companies.

For most studies where terrestrial LiDAR systems were implemented, the most com-
monly used sensor were ‘Leica’, ‘Ilris-3D’, ‘Optech’, and ‘FARO’, while ‘Zoller + Fröhlich
GmbH’, ‘Echidna validation instrument’ (EVI), ‘Trimble TX8’, and ‘ZEB-REVO’, were
barely used.
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3.3. Forest-Related Topics Explored Using LiDAR Systems

The literature review highlighted that forest inventory and forest productivity topics
accounted for more than half of the total published papers, at 32.9% (I) and 23.7% (P),
respectively (Figure 5). A considerable number of papers (19.4%; A) focused on the
development and testing of novel and robust methods for the handling the data from
LiDAR systems through models and statistic fundamentals.

Figure 5. The frequency of papers according to the six explored clusters.

A limited number of studies investigated specific forest-related aspects, such as the
habitat quality of individual birds (11.5%; B), the health status of the forest, pre- and post-
fire events, and pest/disease recognition (5.6%; C). Finally, narrative studies accounted for
one of the less-explored clusters (6.9%).

3.4. Advances in the Methods and Outputs of LiDAR Systems

Regarding the tree species composition, we found that more studies that used LiDAR
systems for forest monitoring activities were implemented in mixed forest stands rather
than pure forest stands, numbering 155 vs. 128, respectively (Table 6). The studies that
focused on pure stands were mainly carried out within conifer stands (86 out of the
128 papers) rather than deciduous forests (42 out of the 128).

Table 6. Forest type. The papers from cluster ‘R’ (paper review) were excluded from this analysis.

Forest Type N◦ Papers Total

Pure Coniferous 86
128Pure Deciduous 42

Mixed 155 155

Total 283

More precisely, the studies from clusters ‘A’, ‘B’, ‘C’, and ‘I’ were mainly carried out in
mixed forest stands (Figure 6). Contrarily, studies that focused on forest productivity (i.e.,
the assortment estimation) were mainly carried out within pure forest stands, particularly
in conifer forest stands.
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Figure 6. LiDAR studies and the mixture of forest stand. The stacked bar graph shows the forest type
within each topic. ‘A’, ‘C’, ‘B’, ‘I’, and ‘P’ are the accuracy, climate change, biodiversity, inventory,
and productivity clusters, respectively.

3.5. Diachronic Analysis of LiDAR Implementation

Over the years, significant advancements have facilitated the use of LiDAR systems
and data for the assessment of forest-related aspects, particularly for the assessment of
forest structure and for the investigation of several tree biometric variables. Overall,
from the millimetre to metre scale of detail, the architecture of standing trees can rapidly,
automatically, and non destructively be characterised by all three types of LiDAR systems:
satellite (i.e., GEDI), airborne (i.e., UAS), and terrestrial (i.e., TLS). Nevertheless, despite
satellite LIDAR systems covering a higher surface of forest, airborne LiDAR systems are the
most appropriate for assessing forest inventory variables (i.e., TH, AGB, and forest cover)
due to the higher accuracy and versatility (i.e., data were used for the assessment of many
aspects) at both the local and tree levels. Nonetheless, very accurate information at the
tree level—such as stem curve, stem diameters, and stem taper—for which it is essential in
order to know the stem form and therefore to support the estimation of timber assortments,
can only be obtained through the use of terrestrial LiDAR systems.

Moreover, the integration of data from different LiDAR systems is greatly important,
as well as integrating these systems with active/passive remote sensing systems; this
integration allows for the enlargement of the range of applicability for LiDAR systems to
also cover the evaluation of ecological indicators (i.e., tree species classification), which is
otherwise impossible through the use of LiDAR systems only.

One of the most important steps in LiDAR implementation was achieved in the early
2000s when, for the first time, two studies [62,63] developed two robust methods for
detecting single trees and demonstrated a higher accuracy than what was obtained through
an ABA approach. Both methods used a local maxima filter with a variable window size
(LMWS) for detecting dominant trees (~37% of detection rate ‘DR’), and the region growing
algorithm and Arboreal Forest Inventory Tools software were used to segment the crown
shape of trees [62,63]. In 2007, Chen et al. [64] defined ‘watershed segmentation’ as a
promising method that allowed for a more realistic delineation of the tree crown feature
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and promoted the use of ALS metrics to capture more details of the tree crowns, e.g.,
‘canopy geometric volume’.

In 2009, Antonarakis et al. [65] used, for the first time, terrestrial LiDAR systems,
namely TLS, to characterise the vertical and horizontal tree canopy structure at a high
resolution. The potential for collecting points of the Leica TLS system was 300 m, with a
point accuracy equal to 2–4 mm.

Meanwhile, Kim et al. [66] recommended the use of ALS’s intensity as a driver to
separate live/dead trees and estimate the AGBs for both. The predicted AGB values for
living and dead trees were calculated using ALS intensity metrics through a stepwise regres-
sion approach. The results were more accurate for living trees (AGB; R-squared value = 0.76;
RMSE’ = 46.1 Mg ha−1) as opposed to dead trees (AGB; R-squared value = 0.62;
RMSE = 37.09 Mg ha−1). Meanwhile, Nelson et al. [19] introduced an innovative approach
for estimating the stem volume of mixed-species stands, combining the data of the satel-
lite LiDAR system and ICESat/GLAS (i.e., GLA01 and GLA14 GLAS standard products)
with MODIS images. The accuracy obtained, which was determined from comparing the
predicted stem volume with the observed stem volume from GLAS/MODIS, was 1.1%.

In 2010, machine learning algorithms (i.e., nearest neighbours (NN) and random forest
(RF)) were used, for the first time, to estimate the stem volume and AGB of a large managed
forest area using data from ALS systems combined with multispectral images [67]. In this
study, the modelling approach followed by the NN algorithm used the metrics of ALS
systems selected from the genetic algorithm (GA) and stepwise linear regression approach.
In 2011, researchers introduced different automatic algorithms to analyse the point clouds
acquired by TLS systems in the characterisation of standing trees and to discriminate the
timber from leaf points. In particular, Yao et al. [68] introduced an algorithm known as
‘find trunks’, which allowed for the automatic detection and reconstruction of the stem
diameter ‘DBH’ and tree position. Moorthy et al. [69] introduced an approach known as
‘cross-sectional slicing’, which is suitable for the characterisation of the tree crown profiles
through the division of point clouds into several horizontal slices to predict the TH, stem
crown width/height, and stem crown volume. Næsset et al. [50] defined the strengths and
weaknesses associated with the use of interferometric synthetic aperture radar (InSAR) as
auxiliary data to data derived from ALS systems for AGB estimation at the local level.

Between 2012 and 2013, studies tested the potential of the ALS and PLS systems for
different forestry applications, even in tropical forests. For instance, d’Oliveira et al. [49]
stated that ALS systems could allow for the tracing of harvesting activities in tropical
forests and could assess the impacts of scheduled logging and deforestation activities.
Allouis et al. [70] compared the results obtained in predicting the AGB and used both
discrete return and full-waveform airborne LiDAR data. The results of the full-waveform
data were more accurate than those obtained by discrete return (discrete return: adjusted
R-squared = 0.88, mean error = −15% ± 49%, compared with full-waveform: adjusted
R-squared = 0.91, mean error = −12% ± 54%). Hosoi et al. [71] highlighted a voxel-based
approach (voxel size of 0.13 cm3) which could facilitate the reconstruction of the tree
architecture using a PLS system. The stem volume accuracy that was obtained was higher
for the stem and large branches (error = 0.5%) than for small branches (error = 34%).

Between 2014 and 2015, Vastaranta et al. [72] demonstrated that modern synthetic
aperture radar ‘SAR’ products from the TerraSAR-X mission (~1 m of high-resolution)
could be considered as powerful auxiliary data to integrate and support low-resolution
ALS systems (~0.5 points per m2 and grid size of 2 m) in the mapping of AGBs at the
regional level. Lang et al. [73] ensured that, through machine learning analysis (i.e., the k-
NN algorithm), it was possible to assess the timber provision of managed mixed forests by
combining ALS systems with low-resolution images (i.e., Landsat-8 OLI). Miller et al. [74]
highlighted that the use of hyperspectral images (Nikon D5000, Lens: AF-S NIKKOR
35 mm) represented a suitable and friendly low-cost source to produce 3D tree models,
enabling the prediction of stem and branch volumes. Nevertheless, Miller et al. [74] also
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highlighted that the models failed for very small branches (<0.5 cm), e.g., those located
between 20 and 30 cm from the final part of the branches.

Between 2016 and 2017, some studies endeavoured to gain in-depth knowledge on
the utility of implementing an ITD approach in different forest stands. In particular,
Sačkov et al. [54] proposed an algorithm known as ‘reFLex’ to detect the trees belonging
to the understory and overstory layers, which were determined using a stratification
approach of the point cloud (average of 30 points m−2). This algorithm was more accurate
for dominant (DR = 66%) and codominant (DR = 48%) trees as opposed to intermediate
(DR = 18%) and suppressed (DR = 5%) trees. Shinzato et al. [75] that the ITD approach
offered a more realistic and accurate prediction of the stem volume than that which was
obtained following the application of an ABA approach in plantation stands.

Meanwhile, other studies published their progress in deriving commercial timber
products using LiDAR systems. Particularly, Silva et al. [45] stated that the metrics derived
from ALS systems could be used to quantify the volume of some assortments from standing
pine trees at the plot level through machine learning analysis (i.e., RF), especially with
respect to sawlog (adjusted R-squared = 0.95 ± 0.02 and bias = −0.82% ± 2.45%) and
pulpwood (adjusted R-squared = 0.91 ± 0.04 and bias = −0.49% ± 2.73%). Yoga et al. [76]
confirmed that the combined use of ALS systems with panchromatic images (10 cm of pixel
resolution), rather than using only ALS systems, has become crucial for the classification
of dead/live trees as well as for the prediction of the merchantable timber volume of
dead/live trees.

In 2018, Wilkes et al. [77] studied the key role of the urban forest in fighting climate
change and proposed an unsupervised process for detecting trees within urban areas, guar-
anteeing a better surveillance and combining ALS systems with TLS systems. Meanwhile,
Côté et al. [78] introduced an algorithm that was developed in the early 2010s known as
‘L-Architect’, which is suitable for producing surrogate FIVs data from sampling sites using
TLS systems with poor reference data. For this algorithm, it is suitable to use the TLS
systems’ output data for training purposes to produce surrogate data for ALS systems (the
upscaling of TLS using ALS systems).

In 2019, Weinstein et al. [79] proposed a novel approach, based on a deep learning
neural networks algorithm, for the detection of deciduous trees (stem position: sensitivity
measurement = 0.81, tree crown overlap ‘>50%’: recall = 0.69, precision = 0.61). Meanwhile,
Cao et al. [80] was the first to use a UAV LiDAR device, and described it as an interesting
tool allowing for the collection of high-resolution data with a reasonable expenditure. On
the other hand, Chen et al. [81] revealed that the use of PLS systems could be advantageous,
particularly because the collection of data is faster than for other tools, even if the resulting
accuracy is slightly lower compared with TLS systems.

In 2020, Socha et al. [82] evaluated the forest site productive index based on metrics
derived from ALS systems. However, da Silva et al. [83] suggested that better accuracy
could be obtained by particular modelling approaches, such as machine learning, regardless
of the quality of the raw LiDAR data.

In 2021, Sanz et al. [84] introduced a stepwise approach to assess the provisioning of
timber assortments and their economic value through the combined use of ALS systems
with multispectral images. Meanwhile, Li et al. [85] introduced a robust approach to derive
stem taper functions for a Larix olgensis forest stand; here, they used a least squares cylinder
fitting approach for the detection and measurement of diameters along the stem axis, which
represent the input data for calculating the stem tapering of trees. Thereafter, the output
stem taper was used for customising stem taper functions.

3.6. The Development of Methods for Assessing Timber Assortments Using LiDAR Systems

In this literature review, we assumed that LiDAR data, particularly data derived from
airborne and terrestrial LiDAR systems, could accurately depict the architecture of trees
and therefore be used to virtually calculate timber assortment types and volumes. Most of
the explored methodological approaches are organised into pre- and post-processing steps.
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The pre-processing algorithms include: (i) open-source algorithms (i.e., CloudCompare
software, R packages, FUSION v3.50, and Computree®), (ii) commercial software (i.e.,
LiDAR360, Cyclone 5.5, TerraScan®, and LASTools®), and (iii) open-source software for
scientific purposes, i.e., OPALS (the Opals Orientation and Processing of Airborne Laser
Scanning data software). However, several LiDAR systems’ companies have already
included the pre-processing software in their systems, fostering the implementation of the
methodological approach.

Regarding post-processing, the literature review highlights that several algorithms
and models can be applied (Table 7). In summary, for post-processing airborne LiDAR
data, the methodological approach includes (i) stem detection, (ii) predictor metric selec-
tion, and (iii) timber assortment modelling in the case of airborne LiDAR data, while for
terrestrial LiDAR data, it includes (i) timber-leaf discrimination, (ii) stem detection, (iii)
stem reconstruction, and (iv) assessment of timber assortments.

Table 7. The list of potential methodologies for the assessment of timber assortments using LiDAR
(light detection and ranging) systems: ALS (airborne laser scanning); UAS (unmanned aerial systems);
TLS (terrestrial laser scanning); PLS (portable laser scanning); ABA (area-based approach); ITD
(individual tree approach); FIVs (forest inventory variables); DBH (diameter at breast height); TH
(tree height); and 2-dimensional or 3-dimensional methodologies (2D and 3D methodologies).

Literature Review

LiDAR Systems Type of Approach Tree Measurements Modelling Reference

ALS ABA

Timber assortments volume
(i.e., sawlogs, pulpwood,

grade A butt logs, and
small-diameter logs)

k-most similar neighbour (K-MSN), species-specific
taper curve models [84]

ALS ABA Timber merchantable volume
(i.e., sawlogs, and pulpwood) ‘randomForest’ R package [44,45]

ALS ITD FIVs (i.e., TH, DBH, AGB)

Ordinary linear fixed-effects models (‘lme4’ R
package); ‘FindTreeCHM’, ‘ForestCAS’ and

‘CrownMetrics’ functions embedded in
‘rLiDAR’ packages

[86]

ALS ABA vs. ITD FIVs (i.e., stem volume)
Artificial neural network, random forest, support
vector machine, linear and Gompertz models, and

recursive feature elimination.
[87]

ALS ABA FIVs (i.e., stem volume)

FUSION/LDV, principal component analysis (PCA),
multiple linear regression, machine learning

algorithms (‘randomForest’, ‘yaImpute’, ‘e1071’,
‘nnet’ R packages)

[83]

ALS ITD FIVs (i.e., stem volume
and BA) Multiple linear regression model [64]

ALS ITD Single tree branch biomass Random Forests and Linear least squares in stepwise
linear regression [88]

UAS ITD FIVs (i.e., AGB) ‘grid_metrics’ and ‘find_trees’ functions embedded
in the ‘lidR’ R package [89]

UAS ITD Tree detection Method developed by Lim et al. ([90]), peak
detection on 2D layers [90]

TLS 2D and 3D methodologies Stem position and FIVs
(i.e., DBH) ‘find trunks’ algorithm [68]

TLS 2D and 3D methodologies

FIVs (i.e., DBH) for surrogate
plots, number of branches,
tree crown measurements,

total knot surface, and
stem taper

‘L-Architect’ algorithm, PlantGL
python-based library [78]

TLS 2D and 3D methodologies Tree crown measurements
and FIVs (i.e., TH) cross-sectional slicing [69]

TLS 2D and 3D methodologies Stem volume, stem curve,
and FIVs (i.e., TH) Cylinder-fitting algorithm, Huber’s formula [31]

TLS and PLS 2D and 3D methodologies
Stem curve and stem volume,

stem position, and FIVs
(i.e., DBH)

LiDAR360 software and six different taper equations,
processed by nonlinear mixed models [81,85]

PLS 2D and 3D methodologies
Timber volume for stems and

small/large branches
(±1 cm of φ)

Voxel-based approach (0.5 m3 of threshold) [71]
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4. Discussion
4.1. Advances in the Implementation of LiDAR Systems

As expected, most of the studies have been carried out in developed countries, even
if a general increase in recent years was observed worldwide. One of the driving factors
justifying the wider use of LiDAR systems for the monitoring of forest-related aspects can
be found in the huge quantity of data provided by LiDAR sensors, high versatility of data
for many usages (i.e., assessing forest cover, forest productivity, and forest structure), and
higher accuracy, particularly through the integrated use of LiDAR sensors with other remote
sensing products. For these reasons, LiDAR systems have found a large application not
only among forest researchers but also among forest owners and technicians, contributing
to continuous and improved practicability and accuracy. In fact, purely from the evaluation
of forest inventory variables (i.e., TH, DBH, AGB, and timber volume), LiDAR studies
have become helpful in assessing ecological indicators (e.g., wooded habitats for birds [91]
and tree species composition [25,92]), climate change-related issues (i.e., fire/pest event
detection and the loss/gain of forests after windstorm/deforestation events [48,93]) in
addition to timber assortments (e.g., [85]).

Moreover, this increase in usage is also supported by the fact that LiDAR systems
provide statistically validated and representative tree measurements to support local,
regional, and national forest inventories and management alike [9,14,41,94]. Moreover, we
observed continuous progress in cost-effectiveness and efficiency in time spent collecting
data over the years, and the results further support LiDAR applications. For example,
airborne LiDAR systems were two times more profitable than traditional surveys in terms
of cost [93], and terrestrial LiDAR (i.e., PLS) systems were less time-consuming than
traditional surveys were in collecting data [81]. Nevertheless, the implementation of the
systems still require consistent funds, justifying a wider implementation in developed
countries or in countries with large forest covers or within a well-established forest chain
and timber industry [3,95]. Regarding the funding that was received for the usage of
LiDAR systems in forestry applications, the literature review highlighted that most of
the explored studies (72.6%) received public funding, of which 29.8% came from national
funding, 7.1% and 3.4% came from research institutes and universities, respectively, and
2.1% were funded by Europe. No information about the funders for the remaining 30.2% of
the studies was available.

Despite the numerous efforts to simplify the management of the enormous quantity of
LiDAR data, a highly specialised staff is still required to take advantage of different LiDAR
and remote sensing systems and in handling raw data. This aspect is particularly important
for fully exploiting the raw data and for integrating LiDAR data with other remote sensing
systems in order to retrieve accurate information from forest stands when LiDAR systems
collect low-resolution point clouds [96], for example, when LiDAR systems collect low-
density point clouds (<10 points/m2). Often, the integration of data from different RS
sensors results in higher accuracy and is particularly advantageous for some forest health-
related aspects or upscaling information collected at the local scale (i.e., [97,98]). Moreover,
the assessment of assortment variables through the combined use of remote sensing devices
has barely been explored. Conversely, the combined use of ALS systems with TLS systems
offers an accurate estimation of timber assortments, as well as stem density and distribution
within forests [99].

The crucial role played by machine and deep learning algorithms will, over the
years, foster the transition from an ABA approach to an ITD approach, thus ensuring the
use of LiDAR systems in the qualification and classification of different types of timber
assortments of standing trees. The higher versatility of these algorithms has allowed for
the implementation of several functions that cover many aspects of timber assortment
evaluations (i.e., predicting, upscaling, modelling, classifying, and processing a huge
quantity of points).

The advancements in learning algorithms lie in the strategies used for handling LiDAR
data. For example, the Random Forest algorithm is a nonparametric approach suitable for
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processing a huge quantity of LiDAR points through a decision tree approach and select
the most explicative LiDAR metrics through a variable importance approach [100]. The
k-NN algorithm is also a nonparametric method that assigns an environmental parameter
value to every pixel by applying the weighted average of the nearest ‘k’ that is observing
parameter values [101]. Despite the countless benefits provided by machine and deep
learning algorithms, their use in the estimation of timber assortments is still limited,
especially in forests that are characterised by mixed species and a multi-layered canopy
structure [45,94]. For this reason, studies using learning algorithms for the assessment of
timber assortments have become crucial in calibrating their potential, as they can ensure
timely and optimal decisions in forestry applications.

4.2. Advances in LiDAR Methods and Outputs

The data acquired by LiDAR systems provide a non-destructive and immediate means
for the reconstruction of forest stands and a three-dimensional reconstruction of trees. From
the literature review, we determined that among the three platforms (i.e., satellite, airborne,
and terrestrial) that can mount LiDAR sensors, airborne LiDAR sensors were the most
used. Overall, the UAS method remains the best system to implement the ABA approach,
as it allows for a relatively faster collection of high-resolution point clouds at a low cost
and at a local level, even in inaccessible/abandoned forest covers [41,42,92]. In contrast,
for the ITD approach, terrestrial laser scanning is the most appropriate tool for deriving
accurate information about tree densities and dimensions. Despite the satisfying accuracy
highlighted in studies focusing on the assessment of timber assortments, contrasting results
are present between pure and mixed tree species stands, as well as between mono-layer and
multi-layer stands. The most promising methods for detecting trees in mixed and multi-
layered stands (the most challenging types of stands) have used a stratifying approach to
divide the point cloud into several layers [54–56] and have used machine or deep learning
algorithms [56,79]. In addition to detecting trees, the extraction and analysis of metrics
derived from airborne LiDAR systems were recently handled by machine and deep learning
algorithms (i.e., SVR, Bayesian algorithm, k-NN, and RF) [102]. Compared with airborne
LiDAR systems, terrestrial LiDAR systems can produce a detailed tree reconstruction,
particularly for trees from the lowest layers (intermediate and suppressed trees). Among
the terrestrial LiDAR systems, TLS has become essential for trunk and branch architecture
reconstruction [35,36] because it is rarely affected by point positioning errors, unlike PLS
and MLS. This issue can be overcome by fusing TLS with MLS/PLS [69]. Nevertheless,
the usability of TLS technology is contingent on several aspects, e.g., technical (i.e., point
density and spacing), operational (i.e., scan mode), forest structure (i.e., stem density),
naturalness elements (i.e., presence of lianas), weather conditions, and terrain conditions
(i.e., slope) [31,47,81]. For example, before collecting data, the appropriate depiction of
standing trees is ensured by considering the distance between the LiDAR sensor positions
and the reference trees, canopy leaf conditions (leaf-off for deciduous trees), and placement
of co-registered targets. Moreover, some studies have revealed that the automation of the
TLS algorithm and forest structure play an important role in the processing phase [32],
even if numerous efforts are still necessary to optimise the accuracy for the quantification
of timber assortments.

The current approach for quantifying and classifying the logs from standing trees (us-
ing a virtual bucking approach) consists of: (i) timber-leaf discrimination, (ii) stem detection,
(iii) stem reconstruction, and (iv) quantification and classification of assortments [47]. Even
if several methods for timber-leaf discrimination using geometry-based/intensity princi-
ples show high performance, most studies have been carried out in temperate forests rather
than Mediterranean or tropical forests [28]. For the detection of trees in 3D points and 2D
layers, several powerful approaches are currently available, e.g., cylinder/circle fitting, clus-
tering, and voxel approaches, while for the reconstruction of the stem form, cylinder/circle
fitting approaches are being increasingly used [32,75], followed by skeletonisation [103] and
voxel-based [71] approaches. Even though few studies offer a comprehensive approach for
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the deriving of timber assortment data through LiDAR technology, especially in mixed and
multi-layered forests, commercial assortment assessments can be obtained using the output
from stem reconstruction [45,46,48]. Nevertheless, some studies have proposed novel and
manageable terrestrial devices for the assessment of timber assortments, e.g., reconstructing
the architecture of one standing tree at a low-cost was possible using numerous photos
from a hyperspectral camera [74]; and depicting one part of a tree was possible using an
iPhone (<5 m of distance between the device and target surface) [104], even if their use
depends on the accuracy level required.

5. Conclusions

This systematic literature review discusses the current state of LiDAR system applica-
tions in the assessment of timber assortments. This study outlines the evolution of LiDAR
system applications in forest monitoring-related aspects, with a particular focus on the
discrimination and quantification of timber assortments. Although most studies have
focused on forest inventory and forest productivity aspects, there has been an increasing
trend of studies assessing forest ecology aspects such as biodiversity and climate change.
Some of the most important hindering factors affecting the use of LiDAR systems in timber
assortments were identified as implementation costs, the need for well-trained operators,
the lack of standard methodologies, and the availability of funding in some parts or entire
continents, e.g., Oceania, South America, and Africa.

We conclude that ALS and UAS are the most appropriate LiDAR systems for the
assessment of timber assortments at the plot, local, and regional levels through an area-
based approach, while TLS, PLS, and MLS are more appropriate for assessing timber
assortments at the plot and tree level, also providing very good accuracy for trees belonging
to the understory layers. The main challenge affecting the ALS and UAS systems, as
highlighted in the literature review, is tree detection, especially in mixed and heterogeneous
forest structures, while the upscaling of measures from TLS, PLS, and MLS represents the
main hindering factor, for which further investigations are necessary. To overcome the
issue of the applicability of terrestrial LiDAR systems at local and regional levels, there are
studies combining airborne with terrestrial LiDAR systems, but standardized approaches to
perform this combination are still needed. Since 2010, the use of machine and deep learning
algorithms for the processing a huge quantity of points acquired by LiDAR systems has
strongly increased.

To date, quantifying and classifying logs using TLS and ALS systems has already been
directly tested; however, these studies mostly tested these systems only in pure stands, and
have only been recently published [47]. We encourage researchers to investigate this topic
using alternative LiDAR systems (i.e., PLS, MLS, and UAS) to fill the gap concerning the
monitoring of assortment types, which are very important practices that support national
and international policies, such as the Forest Strategy and European Green Deal, as well as
optimise the supply for forest chains and renewable energy.
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