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Abstract: To solve the low accuracy of image feature matching in horticultural robot visual navigation,
an innovative and effective image feature matching algorithm was proposed combining the improved
Oriented FAST and Rotated BRIEF (ORB) and Lucas–Kanade (LK) optical flow algorithm. First, image
feature points were extracted according to the adaptive threshold calculated using the Michelson
contrast. Then, the extracted feature points were uniformed by the quadtree structure, which can
reduce the calculated amount of feature matching, and the uniform ORB feature points were roughly
matched to estimate the position of the feature points in the matched image using the improved
LK optical flow. Finally, the Hamming distance between rough matching points was calculated for
precise matching. Feature extraction and matching experiments were performed in four typical scenes:
normal light, low light, high texture, and low texture. Compared with the traditional algorithm, the
uniformity and accuracy of the feature points extracted by the proposed algorithm were enhanced
by 0.22 and 50.47%, respectively. Meanwhile, the results revealed that the matching accuracy of the
proposed algorithm increased by 14.59%, whereas the matching time and total time decreased by
39.18% and 44.79%, respectively. The proposed algorithm shows great potential for application in the
visual simultaneous localization and mapping (V-SLAM) of horticultural robots to achieve higher
accuracy of real-time positioning and map construction.

Keywords: feature matching algorithm; improved ORB algorithm; optical flow method; horticultural
image; horticultural robot

1. Introduction

Visual simultaneous localization and mapping (V-SLAM) technology is critical for
the visual navigation of horticultural robots [1,2]. However, owing to the poor uniformity
of feature point extraction and low matching accuracy of environmental images caused
by complex textures and similar feature information, its accuracy in real-time positioning
and scene reconstruction can be severely impeded [3]. Therefore, many studies have been
conducted on the optimization of feature matching. Generally, this type of research can be
divided into feature extraction and feature matching [4].

For feature extraction, Rublee et al. proposed a directional binary simple description
(i.e., Oriented FAST and Rotated BRIEF (ORB)) algorithm that significantly improves
the speed of feature extraction [5]. However, the image feature points extracted by this
algorithm are concentrated and do not exhibit scale invariance. Integrating scale-invariant
feature transform (SIFT) features with ORB features can effectively improve the scale
invariance and quality of the feature points [6,7]. However, this method increases the time
consumption of feature extraction. Xu et al. utilized an octagon filter bank (DFOB) to extract
feature points [8]. Cai et al. proposed an ORB method based on affine transformation [9].
Both algorithms contribute to improving the number and speed of feature point extraction.
The drawbacks of these algorithms include redundant feature points and additional time
required for feature matching.
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The purpose of feature matching is to find sufficient and accurate correspondences
from two or more overlapped images and a variety of studies have been conducted [10].
Zhang et al. presented a coarse-to-fine, large-size, high-resolution image registration
method for feature matching [11]. This approach uses a compute unified device architecture
(CUDA) to speed up image matching, which improves the speed of feature matching but
requires additional computing equipment. Shi et al. designed an accelerated matching
algorithm using network topology [12]. This algorithm exhibits poor robustness when the
feature points are repetitive. Chen et al. proposed a new low-complexity image-matching
algorithm that uses a local multi-feature hashing (LMFH) descriptor to simplify feature
comparison [13] to improve the efficiency of feature matching, but its performance is
poor in environments with a large number of dense features. Pang et al. presented an
image feature matching algorithm based on a weak supervised learning method using
graph convolutional MLPs and Siamese neural networks on unstructured geometric feature
points [14]. This algorithm improves the accuracy and robustness of feature matching,
but requires large amounts of data to train the model; therefore, it is not universal.

Traditional feature matching comprises three phases: feature extraction, feature point
description, and feature vector matching [15]. Usually, the random sample consensus
algorithm, relaxation iteration method, minimum median method and parallax-based
filtering algorithm are required to eliminate mismatches, which also reduces the real-time
performance of the feature-matching algorithm [16–18]. The feature matching algorithm
based on the optical flow technique can improve the efficiency of calculation speed and
high frequency [19]; however, it needs to meet the strong assumption of invariability of
grayscale, thus lacking robustness in practical applications.

In this study, we propose an innovative and effective horticultural image feature
matching algorithm based on improved ORB and LK optical flow techniques. The ex-
perimental results reveal that the proposed algorithm performs better than traditional
image feature matching techniques for various parameters. A significant increase in the
uniformity of feature points, accuracy, and robustness was observed in horticultural image
feature matching. This makes it suitable for horticultural robot navigation, which requires
stability and accuracy of real-time positioning and scene reconstruction.

2. Methodology
2.1. Algorithm Framework

As shown in Figure 1, the algorithm structure in this study consisted of two parts:
improved ORB feature point extraction and combined feature matching.

Figure 1. Proposed algorithm framework.
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2.2. Improved ORB Feature Point Extraction
2.2.1. Construct Gaussian Image Pyramid

The original image is the bottom layer (i.e., the 0th layer) of the Gaussian pyramid
(Figure 2). Every time the image moves to the upper layer, Gaussian filtering and fixed
magnification reduction are performed, and an image pyramid with an ascending resolu-
tion from high to low can be obtained, as shown in Figure 3. In feature matching, scale
invariance is achieved by matching the images of different layers of the image pyramid at
adjacent times.

Figure 2. Original image.

Figure 3. Gaussian image pyramid.

According to Mur-Artal et al. [1] and iterative test results of feature point quality at
different layer numbers, the total number of layers in the image pyramid is determined
to be m = 8, and the scaling factor is s = 1.2. The number of feature points in each layer of
the image pyramid is allocated according to the image area, which is prepared for uniform
feature points. If the total number of feature points in the image pyramid is N = 500,
the number of feature points assigned from layers 0 to 7 is 108, 91, 75, 63, 53, 44, 37, and
29, respectively.
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2.2.2. Adaptive Threshold Ta Based on the Mesh Region

To better extract the ORB feature points of the image as the points to be matched,
the image must be meshed (the mesh size is 30 × 30 pixels), and the adaptive threshold
Ta in each mesh must be obtained according to the Michelson contrast CM of the image.
The larger the CM, the more distinctive the texture features of the image in the current
mesh [20], and the following equation shows the corresponding relationship between Ta
and CM:

Ta = K× CM × Iavg (1)

where K is the proportional coefficient, 0 < K < 1; Iavg is the average gray value of the pixels
in the mesh, and the formula for CM is as follows:

CM =
Imax − Imin
Imax + Imin

(2)

where Imax and Imin are the maximum and minimum grey values of the pixels in the
mesh, respectively.

The fixed threshold (T = 40) determined by the test results of accuracy and aggregation
rate of extracted feature points under different thresholds and the adaptive threshold Ta in
this study are used to extract feature points from Figure 2. To better compare the effect of
extraction, Figure 2 is subjected to erosion treatment, and the feature points are presented
in the form of blue dots as shown in Figure 4.

Figure 4. Feature point extraction results under different methods: (a) Fixed threshold; (b) adaptive
threshold Ta.

The number of feature points in Figure 4a is 439 and that in Figure 4b is 861. It can
be seen that this method can make full use of the information of each region of the image
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to extract feature points and provide more abundant points to be matched for subsequent
image feature matching.

2.2.3. Uniform Feature Points Based on Quadtree

It can also be seen from Figure 4b that the feature points extracted by the adaptive
threshold Ta still have some problems, such as uneven distribution of feature points and
more redundant features. This will lead to a non-negligible error in the interframe position
and attitude calculation, which reduces the positioning accuracy. Therefore, the quadtree
structure is applied to further uniformize the extracted feature points [21].

As shown in Figure 5, the original image is divided into four subregions (i.e., n1–n4)
according to the area. Then the number of feature points contained in each region (Np)
is determined; if Np > 1, the region is further divided into four subregions (for example,
the n1 region, which contains five feature points, continues to be divided into n1−1–n1−4);
if Np = 1, the area is retained; if Np = 0, this area is deleted. When the total number of
regions is greater than the number of feature points to be extracted, or the total number
of region division (in Figure 5, the region is divided for a total of three times) is greater
than the threshold, no more new areas will be divided, which means that the feature points
are uniform.

Figure 5. Schematic of the quadtree structure.

In an actual division, there may still be multiple feature points in a certain region after
uniforming is completed. The Harris operator [22] is used to suppress multiple feature
points in the area [23], keeping only the feature points with the most significant Harris
response intensity, to make the distribution of feature points more uniform and reduce
feature redundancy. The effect of uniforming is shown in Figure 6.

The aggregation rate c is used to evaluate the accuracy of the feature point extraction,
which can be expressed as follows:

c =
Nc

Na
× 100% (3)

where Nc is the total number of aggregation points (if there are more than three feature
points in a certain range near a feature point, then it is defined as the aggregation point),
and Na is the total number of feature points extracted from the image. The closer c is to 0,
the better the accuracy of the feature extraction. In addition, the distribution uniformity ρ
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is used to evaluate the uniformity of feature point extraction, which can be described by
the following equation:

ρ =
P
M

(4)

where M is the total number of meshes obtained by meshing the image with a mesh size
of 30 × 30 pixels, and P is the total number of meshes with feature points in the mesh.
The closer ρ is to 1, the better the uniformity of the feature point extraction.

Figure 6. Extraction effect of uniform ORB feature points.

The above two indexes were used to quantify the feature point set of Figures 5b and 6,
and the results are shown in Table 1.

Table 1. Comparison of the aggregation rate and uniformity (c and ρ) of the nonuniformed and
uniformed feature point set.

Feature Point Set Aggregation Rate c (%) Uniformity ρ

Nonuniformed 60.42 0.08
Uniformed 21.42 0.44

Table 1 indicates that the method proposed in this study can effectively improve the
accuracy and uniformity of feature point extraction and eliminate redundant points to be
matched in a subsequent study.

2.3. Combined Feature Matching

Brute-force matching [24] is widely adopted in ORB feature matching by calculating
the Hamming distance [25] between the feature descriptors. However, when the number of
points to be matched is large, the time consumed by this method increases, thereby affecting
the matching efficiency. Therefore, a combined feature matching algorithm based on the
improved LK optical flow and feature descriptor is proposed to improve the efficiency and
accuracy of feature matching.

2.3.1. Improved LK Optical Flow Method

In computer vision, optical flow refers to the distance and direction of a pixel moving
between images over time and reflects the relationship between the changing information
of the image and the motion of the object. The traditional LK optical flow method is based
on the assumption of grayscale invariance and uses the brightness difference between
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two images to track the instantaneous velocity of feature points [26]. However, when the
motion of the two images is large or the brightness changes, the optical flow estimated by
this method is inaccurate, and the robustness is poor. In this study, the gradient calculation
method of the original algorithm was improved, and the number of self-changing iterations
was set according to the estimation of the reversible condition number of the Hessian
matrix to improve the robustness and efficiency of the algorithm. The specific concepts are
as follows.

The coordinates of the feature point set to be matched are reduced to each image
layer according to the image pyramid scaling factor. When calculating the optical flow of a
feature point, the calculation starts from the top layer of the images, and then the optical
flow result of the previous layer is taken as the initial optical flow of the next layer so that
the calculation of the entire optical flow is completed step-by-step from coarse to fine. gggi,j
is the initial optical flow of the j feature point of the layer i image of the image pyramid,
which can be represented as follows:

gggi,j =

{
0, i = n− 1
2
(

gggi+1,j + dddi+1,j

)
, 0 ≤ i ≤ n− 1

(5)

where dddi,j denotes the residual optical flow. As shown in Figure 7, gggi,j determines the initial
position of the point to be matched in the matching image, and dddi,j estimates the exact
position of the matching point based on the assumption of grayscale invariance on the basis
of gggi,j.

Figure 7. Schematic of optical flow.

In this study, dddi,j was calculated using iterative optimization. The optimal pixel offset
was estimated by minimizing the square difference of the neighborhood window pixel gray
values in the image to match I and the matching image J. When an iteration satisfies the
iterative condition (i.e., the step size of the iteration is less than a certain threshold or the
number of iterations is greater than the set value), an accurate residual optical flow dddi,j is
assumed as having been obtained.

Suppose that the coordinates of the point to be matched are (x, y), the size of the
neighborhood window is w × h, and the residual optical flow of the point is ddd(dx, dy). Then,
the pixel square difference E of the neighborhood window can be expressed as follows:

E(ddd) =
x+w

∑
x=x−w

y+h

∑
y=y−h

(
I(x, y)− J

(
x + dx, y + dy

))2 (6)

The partial derivative of ddd can be obtained from Equation (6):

∂E
∂ddd

= −2
x+w

∑
x=x−w

y+h

∑
y=y−h

(
I(x, y)− J

(
x + dx, y + dy

))[ ∂J
∂x

∂J
∂y

]
(7)

Because the difference between the frames in the optical flow hypothesis is small,
a Taylor series expansion is performed for J(x + dx, y + dy) in Equation (7) and the first-
order term is retained as follow:
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J
(

x + dx, y + dy
)
≈ J(x, y) +

[
∂J
∂x

∂J
∂y

]
ddd (8)

Substituting Equation (8) into Equation (7) yields:

∂E
∂d

= −2
x+w

∑
x=x−w

y+h

∑
y=y−h

(
I(x, y)− J(x, y)−

[
∂J
∂x

∂J
∂y

]
ddd
)[

∂J
∂x

∂J
∂y

]
(9)

Suppose:
δI = I(x, y)− J(x, y) (10)

∇III =
[

∂J
∂x

∂J
∂y

]
≈
[

∂I
∂x

∂I
∂y

]
(11)

It can be seen from Equation (11) that in the traditional optical flow algorithm, to reduce
the calculation time, the gradient of the points on the image to be matched is used instead
of the gradient of the points on the matching image. However, when the motion offset
between the image to be matched and matching image is large, this approximation method
leads to a decrease in the matching effect. In this study, the gradient of the neighborhood
window of the matching point was calculated, as shown as follows:

∇III =
[

Ix Iy
]
=
[

∂J
∂(x+dx)

∂J
∂(y+dy)

]
(12)

In addition, suppose:

GGG =
x+w

∑
x=x−w

y+h

∑
y=y−h

[
Ix

2 Ix Iy
Ix Iy Iy

2

]
(13)

bbb =
x+w

∑
x=x−w

y+h

∑
y=y−h

[
δI · Ix
δI · Iy

]
(14)

Substituting Equations (13) and (14) into Equation (9) and making Equation (9) equal to
0, that is, finding the minimum value of Equation (6), the following formula can be obtained:

ddd = GGG−1bbb (15)

If the matching point is moved along ddd, the residual optical flow at the new position of
the matching point is calculated, and iterations are performed until the iteration condition
is met, the optimal estimated optical flow can be obtained.

Because the number of iterations has a significant influence on the quality of the final
remaining optical flow and the time consumed by the algorithm, the Hessian matrix GGG
is used to set the number of self-changing iterations. The self-changing iteration number
takes the Hessian matrix GGG as an evaluation coefficient. If the change in the evaluation
coefficient of an iteration is less than the threshold, the iteration is considered to be over.
In addition, the maximum number of iterations and minimum step size are still limited to
prevent the condition from failing. The entire iteration ends when the following condition
is met:

rcond(GGGk)− rcond(GGGk−1) < 10−5 or ‖ddd‖2 < 0.03 (16)

where k is the current number of iterations, and the function rcond returns the estimation
of the condition number of the invertible matrix. By self-changing the number of iterations,
when the results are almost the same as the optimal results, the iteration ends by compar-
ing the changes in the iterative evaluation coefficient, reducing the number of iterations,
and time required by the algorithm.

2.3.2. Feature Rough Matching Based on Improved ORB-LK Optical Flow

The improved LK optical flow proposed in this paper was used to trace the uniform ORB
feature points in Figure 6 and to estimate the position of the matching points on the matching
image (Figure 8a), thus completing the feature rough matching, as shown in Figure 8b.
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Figure 8. Feature rough matching. (a) Matching image; (b) results of feature matching.

There were 194 matching pairs in Figure 8b, 42 pairs of which were mismatched,
and the matching accuracy was only 78.35%, owing to the limitations of the LK optical flow
method in estimating the pixel moving optical flow through the pixel grayscale. When
the difference between the image to be matched and the matching image is significant,
the strong assumption based on grayscale invariance is challenging to satisfy, resulting in a
certain number of misestimates.

2.3.3. Feature Precise Matching Based on Feature Descriptor

To further eliminate the mismatches in feature rough matching, a precise feature
matching method based on feature descriptors is proposed in this paper. The specific
concepts are as follows:

First, the direction of the feature points is calculated using the grayscale centroid
method [27] for pairs of matching points obtained by rough matching. Second, using the
direction information, the rotated descriptor (i.e., Steer BRIEF) is calculated [28]. The de-
scriptor is a one-dimensional vector of size 256, which has elements of 0 or 1, and the binary
piecewise function τ is defined as follows:

τ(I; u, v) =
{

1, I(u) < I(v)
0, else

(17)

where I(u) and I(v) are the gray values of pixels u and v in the image I, respectively.
The descriptor vector of the point pair is then used to calculate the Hamming distance

between the two vectors to measure the similarity between the two points. Let the feature
point descriptor vector to be matched be Vp, and let the descriptor vector of the matching
point be Vc, then the Hamming distance H of the two descriptors is as follows:

H =

√√√√ 256

∑
d=1

(
Vp,d −Vc,d

)2
(18)

where d denotes the current dimension of the descriptor vector.
Finally, we consider twice the minimum Hamming distance Hmin as the threshold Tham.

If the Hamming distance of the matching point pair is greater than Tham, it is considered
to be a mismatch and is eliminated. As shown in Figure 9, 99 pairs were obtained using
feature precise matching based on feature rough matching, of which only seven pairs were
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mismatched, and the matching accuracy was 92.93%, which was 14.58% higher than that of
rough matching. This method effectively improves the accuracy of feature matching.

Figure 9. Results of feature precise matching.

3. Experimental Results and Discussion

To verify the effectiveness of the proposed algorithm, two experiments were designed
for feature point extraction and feature matching. In addition, the corresponding existing
algorithms were selected to compare with the proposed algorithm in each experiment.
The experimental site was selected at the educational teaching practice base of Zhejiang
A&F University (119◦44′17′′N, 30◦15′42′′E), which mainly grows ornamental flowers such
as tulips and lilies, and its satellite image is shown in Figure 10. A four-wheel-independent-
drive and steering (4WID-4WIS) mobile platform was used as an experimental platform.
An Intel RealSense D435i camera with an image resolution of 640 × 480 pixels was installed
on the experimental platform to collect the experimental image data. The experiments were
performed on the Ubuntu18.04 operating system. The CPU model of the computer was
AMD R7 4800H, with a memory capacity of 16 GB. The experimental setup is shown in
Figure 11.

Figure 10. The satellite image of the experimental site.

3.1. Quality and Analysis of Feature Point Extraction
3.1.1. Results

Four types of typical working scene images of a horticultural robot were collected
for the feature extraction experiment: normal light, weak light, high texture, and low
texture scenes (Figure 12). In the contrast experiment, the traditional ORB feature extraction
algorithm was used, the extraction threshold of this algorithm was set to 30, and the number
of feature points was 500. The result of the feature point extraction is shown in Figure 13.
In addition, to verify the improved accuracy and uniformity of the ORB feature extraction
algorithm proposed in this paper, starting from the time consumption of the algorithm,
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the uniformity of the feature point distribution, and the accuracy of feature point extraction,
the above two algorithms were tested three times in four scenes, and the average results
are shown in Table 2.

Figure 11. Experimental environment. 1. PC; 2. experimental platform; 3. flowers; 4. Intel RealSense
D435i; and 5. unstructured path.

Figure 12. Original images from four different scenes: (a) Normal light scene; (b) weak light scene;
(c) high texture scene; (d) low texture scene.

Figure 13. Cont.
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Figure 13. Comparison of feature extraction results of the two algorithms. (a) Traditional ORB
algorithm; (b) proposed algorithm.

Table 2. Comparison of algorithm data indicators in different scenes: N f is the number of feature
points; t is the time consumption of the algorithm; ρ is the uniformity; and c is the aggregation rate.

Scene
Traditional ORB Algorithm Proposed Algorithm

N f t/ms ρ c/% N f t/ms ρ c/%

Normal light 500 7.74 0.15 74.80 251 3.72 0.40 23.36
Weak light 500 7.34 0.16 69.43 250 3.13 0.40 12.02
High texture 500 12.53 0.29 61.46 249 7.22 0.47 14.28
low texture 500 11.92 0.31 57.39 250 5.03 0.51 11.56

3.1.2. Discussion

According to Figure 13, most of the feature points extracted by the traditional ORB
algorithm are concentrated in areas with a high edge texture in the image. However,
in areas with weak textures, such as roads, the ability of this algorithm to extract feature
points is weak. Therefore, the feature points obtained using this method can not sufficiently
reflect the overall changes in the image. By contrast, the feature points extracted by the
improved ORB extraction algorithm proposed in this study had a good distribution in the
entire image, and the extraction effect was less affected by the change in illumination.

Table 2 indicates that, compared with the traditional ORB algorithm, the algorithm
proposed in this paper improved the uniformity by an average of 0.22 and reduced the
aggregation rate by 50.47% on average, so it had better uniformity and accuracy. In addition,
the average time consumption of this algorithm was 4.78 ms, which was 5.10 ms shorter
than the 9.88 ms of the traditional ORB algorithm, which improved the efficiency of feature
extraction. Simultaneously, the algorithm in this study eliminated many redundant feature
points, which reduced the amount of computation required for feature matching.

3.2. Accuracy and Analysis of Feature Matching
3.2.1. Results

Images from four scenes (Figure 14) were collected for the feature matching experi-
ment. The comparison algorithm used the brute force (BF) and LK optical flow methods.
For example, the matching results of a normal light scene obtained using the three algo-
rithms are shown in Figure 15. Experiments were carried out three times in four scenes
using three algorithms, and the average values of the matching number, matching time,
total time, and matching accuracy were calculated. The results are shown in Figure 16.
In addition, Figure 17 shows the effect of the feature matching of images in the other three
scenes using the proposed algorithm.
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Figure 14. Experimental images under different scenes: (a) Normal light scene; (b) weak light scene;
(c) high texture scene; (d) low texture scene.

Figure 15. Cont.
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Figure 15. Experimental results of a normal light scene under different algorithms: (a) BF matching;
(b) LK optical flow; (c) proposed algorithm.

Figure 16. Cont.
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Figure 16. Statistical results of matching under three algorithms: (a) matching number; (b) time
consumption of matching; (c) total time consumption; (d) accuracy of matching.

Figure 17. Cont.
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Figure 17. Results of feature matching using the proposed algorithm under three other scenes:
(a) weak light scene; (b) high texture scene; and (c) low texture scene.

3.2.2. Discussion

As shown in Figures 15 and 16a, the algorithm proposed in this study removes re-
dundant feature points through improved feature extraction, thus reducing invalid feature
matching. In addition, this algorithm uses feature precise matching to eliminate mismatch-
ing on the basis of improved LK optical flow. Although it was inferior to, the traditional
BF matching method and LK optical flow method with regard to matching numbers,
the distribution of feature matching was more uniform and could better cover the change
information of the entire image.

According to Figure 16b,c, the average time consumption of matching and total time
consumption of the proposed algorithm were 7.50 and 12.27 ms, respectively, 39.18%
and 44.79% shorter than those of the traditional BF matching algorithm, and the real-
time performance was greatly improved. However, to achieve more accurate feature
matching, the time consumption of feature matching and the total time consumption of
feature extraction and feature matching were slightly higher than those of the LK optical
flow method.

From Figure 16d, the matching accuracy of the proposed algorithm was 93.24% on
average while that of LK optical flow was 81.37%. Thus, matching accuracy was improved
by 14.59% on average. Moreover, the difference between the highest matching accuracy
and the lowest matching accuracy of the LK optical flow and the BF matching method in
the four scenes was 18.65% and 19.8%, respectively, while the proposed algorithm was only
7.53%. the accuracy performance in various scenes was more stable and robust than that of
the other two algorithms.

Figure 17 indicates that the algorithm in this study could obtain a good matching
quality in the other three scenes, which shows that it can adapt to image matching tasks in
various scenes.

4. Conclusions

In this paper, a novel horticultural image feature matching algorithm based on im-
proved ORB and LK optical flow is proposed. The proposed algorithm combines the high
accuracy of the feature point method and the high efficiency of the LK optical flow method,
and exhibits good robustness in various horticultural environments. The comparison results
reveal that this algorithm improves the uniformity and accuracy of feature point extraction
by 0.22 and 50.47%, respectively. In addition, in comparison to the LK optical flow method,
this algorithm has a 14.59% higher accuracy with regard to feature matching, and the
average matching time consumption and total time consumption are lower by 39.18% and
44.79%, respectively. In different scenes, the average of feature matching accuracy obtained
by the proposed algorithm can reach 93.24%. These results make the algorithm suitable for
use in the V-SLAM process of horticultural robots, where it could improve the accuracy of
the robot’s real-time positioning and map construction. In addition, this study shows great
potential for applications in the fields of target recognition in industrial logistics and image
stitching for pest and disease detection.
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