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Abstract: A macro-vertical structure is closely related to weather evolution and the energy budget
balance of the atmospheric system of the Earth. In this study, radiosonde data were used to identify a
cloud vertical structure (CVS) using the adjusted relative humidity threshold method. To evaluate
the reliability and stability of this method, the results obtained based on the spatiotemporal matching
criteria established in this study were compared with Ka-band millimetre-wave cloud radar (MMCR)
observation data. This comparison showed that both devices exhibit high consistency in low-level
cloud detection. With the increase in the cloud height, the frequency of the cloud appearance
detection by the radiosonde became higher than that by the MMCR. In spring, the results of the CVS
detection by the two devices were in good agreement. Specifically, the determination coefficients of
the modified degrees of freedom (adjusted R-square) of the cloud base height (CBH) and cloud top
height (CTH) detected by the two devices were 0.934 and 0.879, respectively. The horizontal drift of
the radiosonde was the smallest in summer, and the adj. R-square values of the CBH and CTH were
0.814 and 0.852, respectively. The CVS observation results by the radiosonde and the MMCR were
significantly different in autumn (the adj. R-Square values of the CBH and CTH were 0.715 and 0.629,
respectively). In winter, the adj. R-Square values of the CBH and CTH observed by the radiosonde
and the MMCR were 0.958 and 0.710, respectively. The statistics and analysis of the results of the
distribution characteristics of the CVSs using radiosonde data from 2019 to 2021 from Xi’an showed
that the average CTH and CBH were at 7–10 km and 3–5 km, respectively. The frequencies of the
cloud absence, rainfall, and two- and three-layer clouds were the highest in the winter (34.36%),
autumn (12.99%), and summer, respectively.

Keywords: radiosonde; Ka-band millimetre-wave cloud radar; cloud vertical structure; relative
humidity (RH) threshold method

1. Introduction

Clouds are related to the density of atmospheric dynamic processes, thermal processes,
the water vapor cycle, and energy budgets [1,2]. Cloud vertical structures (CVSs, including
the cloud base height, cloud top height, cloud layer number, and cloud types) and the
distribution of multi-layer clouds in the atmosphere affect atmospheric dynamics, thermo-
dynamics, and the hydrological cycle. They also impact large-scale atmospheric circulation
via radiative heating/cooling and latent heat release [3,4]. Cloud information changes
rapidly across space and time, which makes their observation challenging. This, in turn, leads
to considerable uncertainty in cloud-related climate forecasts [5]. To understand cloud physical
processes and improve the prediction ability of large-scale climate models (including global
circulation models), it is necessary to observe the CVS in a highly accurate manner.

Types of ground-based active remote sensing detection equipment, such as lidar, Ka-
band millimetre-wave cloud radar (MMCRs), and cloud altimeters, are powerful tools for
automatic cloud observation [6–9]. Lidars and cloud altimeters have been extensively used
to determine the cloud base height (CBH); however, owing to the attenuation of beam

Remote Sens. 2022, 14, 4462. https://doi.org/10.3390/rs14184462 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14184462
https://doi.org/10.3390/rs14184462
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14184462
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14184462?type=check_update&version=2


Remote Sens. 2022, 14, 4462 2 of 20

energy in a cloud [10,11], accurately detecting the cloud top height (CTH) is impossible.
In contrast, an MMCR can continuously observe CVSs with high accuracy. However, it is
subject to serious attenuation when encountering precipitation clouds [12]. Radiosondes
can directly penetrate clouds and provide wind direction, wind speed, temperature, pres-
sure, and humidity data from ground level up to an altitude of 30 km [13–15]. Radiosondes
have many emission points worldwide and can realise the large-scale observation of clouds
via networking. At present, the methods using radiosondes to observe CVSs include the
temperature dew point difference [16], relative humidity (RH) threshold [17], and second
derivative methods [18]. Wang and Rossow [12] found that the RH change in a radiosonde
is closely related to cloud information. Based on the frequency statistics of the RH values
within the CBH range observed from the ground by a radiosonde over one year, they pro-
posed 84–87% as the threshold value. Moreover, they detected a CVS under the condition
of a negative positive change in the RH generated by CTH and the CBH, which is called the
RH threshold method (WR95 method). However, the WR95 method tended to misclassify
moist cloudless atmospheric layers as clouds, and both radiosonde techniques reported higher
cloud tops than those observed using the cloud radar. Zhang et al. [19] used radiosonde data
(Vaisala radiosonde-RS92) obtained by the Atmospheric Radiation Measurement Mobile Facility
at Shouxian, Anhui Province, China (116◦27′–117◦04′E, 31◦54′–32◦40′N, subtropical northern
monsoon humid climate). They combined these data with the observation results of an
MMCR and a cloud altimeter to improve the WR95 method. Although the influence of the
horizontal drift of the radiosonde was considered, the reliability of the radiosonde detection
under different weather conditions and different cloud types was not analysed. Therefore,
when analysing the accuracy and reliability of the radiosonde in detecting the CVS, it is
necessary to comprehensively consider the horizontal drift caused by the wind speed and
wind direction of the radiosonde and the changes in different weather and different cloud
types, so as to comprehensively evaluate the performance of the radiosonde in detecting
the CVS.

Owing to global climate change, Xi’an, in China (a large inland city, 107◦40′–109◦49′E,
33◦42′–34◦45′N, warm temperate climate), frequently experiences high-temperature weather [20–22],
which poses a threat to human security and economic growth. Although studies have exam-
ined the use of different detection equipment to evaluate the changes in the CBHs and the
CTHs of clouds over Xi’an, analyses of the distribution and change characteristics of CVSs
are still lacking, mainly because of the absence of long-term observation data and reliable
CVS recognition algorithms. In this study, CVSs over Xi’an were studied using radiosonde
and MMCR data from the Jinghe Meteorological Station. The effects of the cloud type,
cloud height, drift, and other factors on the CVS observations by the radiosonde in different
weather conditions were comprehensively analysed. By comparing and analysing the
radiosonde results with those of the MMCR (from December 2020 to November 2021), the
reliability of using a radiosonde to detect a CVS was evaluated. The change characteristics
of the CVSs over Xi’an were analysed based on the radiosonde data from 2019 to 2021.
Thus, this study provides relevant information about the cloud measurement ability of
radiosondes and MMCRs, joint observations, and research on the characteristics of climate
change in Xi’an.

2. Method
2.1. Cloud Detection by Radiosonde

The WR95 method uses rawinsonde data to estimate the cloud vertical structure,
including the cloud top and cloud base heights, cloud layer thickness, and the characteristics
of multi-layered clouds. At the cloud layer base, a minimum relative humidity of at least
84% has been observed, with relative humidity increases exceeding 3% at the cloud layer top
and base, where the relative humidity varies with respect to the liquid water at temperatures
greater than or equal to 0 ◦C and with respect to ice at temperatures less than 0 ◦C [1]. In
2010, Zhang et al. [19] improved the WR95 method (i.e., to ZHA10 method) and established
linear RH thresholds (min-RH, Max-RH, and inter-RH) by varying the height. They
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analysed the CVS detection by the Vaisala radiosonde (model is RS92) in Shouxian, China,
and established the ‘inter-RH’ threshold as the condition for merging two adjacent humidity
layers. The performance parameters of the CTS11 radiosonde at the Jinghe Meteorological
Station (Station No. 57131, longitude: 108◦58′E, latitude: 34◦26′N, altitude: 411 m) are listed
in Table 1. Considering the difference between the CTS11 and RS92 radiosondes, in this study
we adjusted the RH threshold in ZHA10 to detect a CVS using the radiosonde in Xi’an. The
adjusted cloud detection algorithm is presented in Table 2.

Table 1. Performance parameters of the GTS11 radiosonde.

Measuring Performance Temperature (◦C) Pressure (hPa) Relative Humidity (%)

Measurement span −90–50 1060–5 0–100
Effective measurement span −80–50 1050–10 10–90

allowance error ∆(T) ≤ 0.3 Pressure ≥ 500 ∆(P) ≤ 2
Pressure < 500 ∆(P) ≤ 1 ∆(RH) ≤ 5

Table 2. Height-resolving RH thresholds.

Height Range (km)
Relative Humidity Threshold (%)

Min RH Max RH Inter-RH

0–2 92–90 95–93 84–82
2–6 90–88 93–90 82–78

6–12 86.2–72.5 87.5–77.5 75.5–67.5

Note: the cloud height over Xi’an does not exceed the stratospheric bottom height.

Before conducting the tests, the RH was first transformed with respect to the ice
instead of liquid water for all levels with temperatures below 0 ◦C [23]. Subsequently, we
performed examinations to identify the cloud layers in eight steps: (1) From the bottom
to the top of an RH profile, if the RH was > min RH, the corresponding cloud height was
regarded as the base height of the wet layer. (2) If the RH corresponding to the height
above a wet layer was continuously greater than the min RH, that part was regarded as
the same layer. (3) If the RH dropped below the min RH or exceeded it in the top layer of
a profile, this layer was regarded as the top height of the wet layer. (4) A wet layer with
a base height of less than 300 m and a thickness of less than 400 m was discarded. (5) If
the distance between two wet layers was less than 300 m, or the minimum RH over this
distance was more than the inter-RH in these two layers, the two layers were merged into
one layer. (6) If the maximum RH in a wet layer was greater than the corresponding max
RH at the base of the wet layer, the wet layer was identified as a cloud layer.

2.2. Cloud Detection by MMCR

The MMCR used in this study is located at the Jinghe Meteorological Station, which
is equipped with various meteorological observation instruments (e.g., rain gauges, mi-
crowave radiometers, and lidars). The MMCR can output primary properties, such as the
reflectivity factor, radial velocity, and velocity spectrum width. It has a vertical resolu-
tion of 30 m, temporal resolution of 5s for a single profile, maximum detection height of
15 km, and detection ability ranging from −40 dBZ to +40 dBZ. We used the reflectivity
factor recorded by the MMCR to obtain the CTH, CBH, cloud thickness, and number of
cloud layers. Ideally, the echo information of an MMCR only reflects the changes in the
cloud information. However, owing to the stability of the working state of a radar, a
signal-processing algorithm is required. Moreover, non-cloud targets produce interference
and clutter, generating non-cloud echo interference signals [24,25]. Owing to the high
space–time resolution of an MMCR, a single-layer cloud with a loose structure is misiden-
tified as a multi-layer cloud. The interference of the MMCR implementation introduces
considerable uncertainty to the determination of a CVS. Therefore, the quality control of
cloud information must be performed as the last step, so as to improve the accuracy of the
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cloud boundary determination. This includes two main aspects. The first is the elimination
of interference signals. Based on the one-year observation data of the MMCR, this study
determined the data quality control threshold by analysing the characteristic changes in
the floating echo in the boundary layer under non-cloud conditions. Subjectively, when
the echo intensity was Z < −20 dBZ, the absolute value of the radial velocity of <0.2 m·s−1

and spectral width of >0.3 m·s−1 were used as the threshold to eliminate the non-cloud
information and interference signals. The second aspect was the merging and removal
of loosely structured clouds and the calculation of the thickness of each cloud layer and
the distance intervals between adjacent clouds. For clouds with thicknesses of less than
210 m, it was determined whether the distance between this cloud layer and its upper
and lower cloud layers exceeded 720 m [26]. Clouds that satisfied these conditions were
not considered in this study. Alternatively, a cloud layer meeting these conditions was
combined with the nearest adjacent layer.

2.3. Spatiotemporal Matching Criteria

The spatial distribution of clouds is non-uniform, and the vertical velocityn fluctu-
ates at the base and top of a cloud. Even for the same cloud, the CVS detection differs
significantly at different locations. To compare the CVS detection by the radiosonde, whose
rising track is affected by the wind speed and direction, with that by the fixed-point vertical
observations using the MMCR, the data were configured in time and space. This config-
uration was estimated according to the rising time of the radiosonde so as to reduce the
impact of the track change in the rising process of the radiosonde on the CVS detection.
The average CBH and CTH during the rising period of the radiosonde were calculated as a
result of the MMCR detecting the cloud base and top. The spatiotemporal matching criteria
were as follows: a height range of 0–2500 m and the average cloud boundary height within
2 min before and after the launch time of the radiosonde (07:13–7:17 China Standard Time
(CST) or 19:13–19:17 CST), which were used as the CBH and CTH detected by the MMCR.
Similarly, within 2500–6000 m, the average cloud boundary height within 7 min before and
after the launch time (07:08–7:22 CST or 19:08–19:22 CST) was used as the detection result
of the MMCR. Above 6000 m, the average CBH and CTH obtained from the reflectivity
factor at the cloud boundary during 7:00–7:59 CST or 19:00–19:59 CST were used as the
MCCR detection results.

3. Typical Case Analysis

From the samples observed by the radiosonde and the MMCR in the same period,
typical cases were selected according to the cloud type (low, middle, and high clouds, with
500 m ≤ CBH < 2000 m, 2000 m ≤ CBH < 6000 m, and CBH ≥ 6000 m, respectively) [27],
the number of layers (two- and three-layer clouds), and precipitation. The rationality and
reliability of the adjusted radiosonde RH thresholds were verified by analysing the results
of the CVS detection by the two devices.

3.1. Case 1: CVSs of Low, Middle, and High Clouds

Figure 1 shows the RH profiles obtained by the radiosonde and the time-series intensity
information (THI) of the reflectivity factor recorded by the MMCR on 13 October 2021.
Using the RH threshold method to identify clouds based on the RH information obtained
by the radiosonde, the estimated CBH, CTH, and cloud layer thickness were approximately
1058 m, 1923 m, and 865 m, respectively. The reflectivity factor observed by the MMCR
showed that the cloud layer during the observation period was a low-level stratiform cloud
with a smooth boundary. The height of the cloud layer was 1030–1830 m, and the cloud
thickness was approximately 800 m. Comparing the two detection results, the low-level
CVSs observed by the radiosonde and the MMCR were similar.
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Figure 1. Low cloud detected by the radiosonde and MMCR on 13 October 2021 (radiosonde
temperature and RH profile (left), reflectance factor THI from the MMCR (right)).

On 28 April 2021, the radiosonde and MMCR detected a middle cloud simultaneously,
and the results are shown in Figure 2. The RH profiles obtained by the radiosonde show
that the cloud was located between 4124 m and 6060 m, and its thickness was approximately
1936 m. The recorded reflectivity factor shows that the cloud boundary underwent signifi-
cant changes with the increasing observation time. These changes were also accompanied
by a continuous change in the cloud thickness from 400 m to 2600 m. Based on the spa-
tiotemporal matching criteria, the cloud height observed by the MMCR was 3800–5400 m
and the thickness was 1600 m. The CTH determined by the radiosonde based on the RH
threshold method was higher than that determined by the MMCR detection.
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Figure 2. Middle cloud detected by the radiosonde and MMCR on 28 April 2021 (radiosonde
temperature and RH profile (left), reflectivity factor THI from the MMCR (right)).

Figures 3 and 4 show two different types of high clouds observed by the radiosonde
and the MMCR. The reflectance factor observed by the MMCR shows that, from 07:00 CST to
07:59 CST, on 24 January 2021, the clouds were stratiform clouds with flat cloud boundaries
and a thickness of approximately 3900 m, within a range of 7200–11,070 m. During the same
period, the cloud detected by the radiosonde was located between 7596 m and 11,290 m. For
this high-level cloud, the cloud information observed by the radiosonde was significantly
greater than that observed by the MMCR. The difference between the CBHs observed by
the radiosonde and the MMCR may be caused by the response of the radiosonde after
entering the cloud layer, resulting in a 426 m deviation in the CBH. The difference in the
CTH may be due to the small particle size of the cloud top and the failure of the MMCR
detection [28], resulting in the MMCR underestimating the CTH by 220 m. The temperature
above the cloud top may have also been extremely low (<−50 ◦C), and the response lag of
the humidity sensor on the radiosonde could have led to the CTH overestimation by 220 m.
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Figure 3. High cloud detected by the radiosonde and MMCR on 24 January 2021 (radiosonde
temperature and RH profile (left), reflectivity factor THI from the MMCR (right)).

Based on the cloud reflectance factor observed by the MMCR, as shown in Figure 4,
initially, the CBH was 8460 m and the CTH was 10,350 m. With the increasing observation
time, a remarkable phenomenon involving the airflow convection in the environment was
observed at the cloud top, which caused the cloud to gradually become thicker, and the
highest part of the cloud top was 11,520 m. The cloud subsequently dissipated rapidly, and
its thickness was only 600 m at the end of the observation period. However, the RH change
obtained by the radiosonde cannot show any information about the cloud changes in this
period. It is speculated that the radiosonde failed to observe the cloud information mainly
because of its horizontal drift in the rising process (the cloud dissipated rapidly from
7:39 CST to 7:59 CST). This would have allowed the radiosonde to pass through the gap in
the dissipated cloud and, therefore, it would not have detected any cloud information.
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Figure 4. High cloud detected by the radiosonde and MMCR on 13 July 2021 (radiosonde temperature
and RH profile (left), reflectivity factor THI from the MMCR (right)).

3.2. Case 2: Two-Layer Cloud

Figure 5 shows the results for a two-layer cloud structure observed by the MMCR and
the radiosonde. The CBH and CTH of the lower layer (located between 1020 m and 3060 m)
obtained by the radiosonde and the MMCR show good agreement. For the high-level
cloud, based on the detection results of the radiosonde and the MMCR, the CBHs were
similar (the CBH was approximately 5060 m), and the CTHs were 9735 m and 8867 m,
respectively. Specifically, the deviation between the CTHs detected by the two devices
was 868 m. The MMCR showed that the echo reflectivity factor around the cloud top was
approximately −27 dBZ. We speculate that small ice particles may have been located on
the cloud top, which cannot be detected by the MMCR, resulting in the underestimation
of the CTH. Simultaneously, the humidity sensor of the radiosonde has a certain response
delay above 7440 m (the height corresponding temperature is <−50 ◦C). Thus, it recorded
an RH of approximately 88–80% within the range of 7440–9735 m, which was incorrectly
recognised as cloud information.
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3.3. Case 3: Three-Layer Cloud

Multi-layer clouds have a significant impact on the radiant heating or cooling of
the atmosphere and the surface of the Earth [29]. Furthermore, they are useful cases for
verifying the use of the RH threshold method to identify a CVS from RH profiles recorded
by a radiosonde. As shown in Figure 6, from 07:00 CST to 07:59 CST, both the radiosonde
and MMCR detected a three-layer cloud structure. The cloud structure information detected
by the radiosonde was as follows: low-, middle-, and high-level clouds were located in
the ranges of 3258–4900 m, 6363–6990 m, and 8624–10,460 m, respectively. The MMCR
observation results show that the average heights of the low-, middle-, and high-level clouds
were 3000–4800 m, 6210–6850 m, and 8494–9600 m, respectively. From the observation
results of the radiosonde and the MMCR, the two devices showed strong consistency in
detecting the CVSs of the low- and middle-level clouds, whereas the observation difference
in the CTHs of the high-level cloud was still similar to that discussed in Section 3.2.
However, in this case, the reflectivity factors of the small particles on the top of the high-
level cirrus were smaller than −25 dBZ. The CTH overestimation due to the delayed
response of the humidity sensor of the radiosonde was preliminarily eliminated (−50 ◦C
corresponds to a height of 11,500 m). Consequently, the difference in the CTHs of the high-
level cloud was underestimated by the MMCR, owing to its limited detection sensitivity.
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Figure 6. Three-layer cloud detected by the radiosonde and MMCR on 5 April 2021 (radiosonde
temperature and RH profile (left), reflectivity factor THI from the MMCR (right)).

3.4. Case 4: Precipitation Cloud

On 19 April 2021, the weather changed from overcast sky to light rain, and precipita-
tion occurred during the observation period from 19:00 CST to 19:59 CST. Figure 7 shows
that the reflectivity factor observed by the MMCR reached 10 dBZ, and the echo signal
touched the ground. These phenomena reflect the occurrence of precipitation. Based on
the reflectivity factor, the CBH and the CTH were 270 m and 6990 m, respectively. The RH
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change obtained by the radiosonde showed a large amount of water vapour from 2000 m to
12,000 m, and the water vapour layer was extremely thick in the same period. Based on the
cloud information obtained using the RH threshold, the cloud was located between 2188 m
and 11,000 m. Precipitation clouds have a significant attenuative effect on MMCRs [30,31].
Therefore, the MMCR in this study could not obtain the actual CTH. However, the presence
of a large amount of water vapour at high altitudes due to precipitation cannot be ignored.
Over an area of 6999–11,000 m, the RH was greater than the RH threshold, resulting in its
incorrect identification as cloud information. Compared with the MMCR, the radiosonde
can provide an effective CBH in this case.
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Figure 7. Precipitation cloud detected by the radiosonde and MMCR on 19 April 2021 (radiosonde
temperature and RH profile (left), reflectivity factor THI from the MMCR (right)).

3.5. Case 5: Non-Precipitation Cloud

A light rainy weather changed to overcast conditions on 20 April 2021. As shown
in Figure 8, the reflectivity factor obtained by the MMCR reached approximately ground
level, most of the echo signal strengths were in the range of −30–−15 dBZ, and the average
CTH was approximately 5670 m (the cloud top boundary was relatively flat). The CBH
and CTH detected by the radiosonde were 500 m and 10,300 m, respectively. Combined
with the reflectivity factor from 18:00 to 18:59 CST (checking the rainfall time recorded by
a microwave radiometer at the same site, we observed that rainfall occurred from 18:00
to 18:39 CST), rainfall occurred before the launch of the radiosonde (19:15 CST). It can be
inferred that the CTH detected by the MMCR was lower than that by the radiosonde mainly
because of the large amount of water vapour within the height range of 5670–11,300 m. This
led to a continuous response of the humidity sensor and, therefore, to the overestimation of
the CTH by 1000 m.
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4. Analysis and Discussion of CVS Results
4.1. Observation Sample Statistics

We used the observation data of the radiosonde and the MMCR recorded from De-
cember 2020 to November 2021 (a total of 365 days) to calculate the CVS information,
and we compared and analysed the detection results of the two devices. The radiosonde
was launched twice a day at 07:15 a.m. and 19:15 p.m., with a sampling period of 1 s
and a rising speed of 6–7 m·s−1. Before comparing the CVSs detected by the radiosonde
and the MMCR, we selected the observation data taken when the rising height of the
radiosonde was ≥ 12 km and recorded the wind speed and direction. The MMCR data
from 7:00–07:59 CST and 19:00–19:59 CST were selected to obtain the CBH and the CTH
(the radiosonde was able to rise above 20 km in this period). Ideally, there should have been
730 groups of data for 365 days. However, owing to certain conditions of the equipment,
the invalid data of the MMCR and the radiosonde produced 194 and 22 groups, respectively.
Finally, 514 groups of effective data were obtained for the same period.

Based on the spatiotemporal matching criteria in Section 2.3, among the 514 observa-
tion samples, 395 were ‘completely consistent’ (76.84%), 38 samples were ‘approximately
consistent’ (7.39%), and 81 samples were ‘completely inconsistent’ (15.7%). Excluding the
samples including cloud-free and precipitation clouds, the completely consistent sample
size was 222, with 38 and 81 samples partially and completely inconsistent, respectively.
The specific percentage of each condition and the sample distribution in each quarter are
shown in Figure 9.
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Figure 9. Percentages of the sample sizes in different cases: completely consistent (radiosonde and
MMCR detect cloud-free and cloud conditions simultaneously), approximately consistent (numbers
of cloud layers detected by radiosonde and MMCR are different), and completely inconsistent
(radiosonde detects cloud and MMCR detects cloud-free condition, or MMCR detects cloud and
radiosonde identifies a cloud-free scenario).The upper left, the upper right, the lower left and the
lower right corner are spring, summer, autumn and winter respectively, and the middle of the figure
is the annual record from December 2020 to November 2021.

4.2. Distribution Characteristics of the CVS
4.2.1. Cloud Layer Distribution

Using the data recorded by both the radiosonde and MMCR when observing the clouds
(260 samples), the CVSs detected by each were analysed. Figure 10a shows the average
CBH, CTH, and cloud geometric thickness values of one-, two-, and three-layer clouds at
the vertical height determined from the RH information recorded by the radiosonde, using
the RH threshold method. Figure 10b shows the distribution of the CVSs observed by the
MMCR during the same period. In the vertical direction, from a macro perspective, the
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average heights of the one-layer clouds detected by the radiosonde and the MMCR lay
between those of the two- and three-layer clouds, whereas the geometric thicknesses of
the one-layer clouds were relatively thicker than those of the latter. In a three-layer cloud
structure, the geometric thickness of the top-layer cloud exceeds those of the middle- and
low-layer clouds. This may be attributed to a top layer causing the cooling intensity of the
long-wave radiation at the top of a lower-layer cloud to decrease, causing the geometric
scale of the top-layer cloud to be larger than that of the low-layer cloud.
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Figure 10. Vertical distributions of the average CBH, CTH, and cloud thickness. (a) CVSs observed by
the radiosonde and (b) CVSs observed by the MMCR. T represents the geometric average thickness
of the cloud.

The frequency distribution obtained by the observations of low-, middle-, and high-
level clouds by the radiosonde and the MMCR is shown in Figure 11. The frequencies of
low-, middle-, and high-level clouds detected by the radiosonde and MMCR were 11%
and 13%, 37% and 41%, and 47% and 52%, respectively. These results show that both
the radiosonde and the MMCR detected the lowest frequency of low-level clouds and
the highest frequency of high-level clouds. With increasing cloud height, the difference
between the frequencies of the cloud occurrence detected by the radiosonde and the MMCR
gradually increased (the frequency differences for the low-, middle-, and high-level clouds
were 2%, 4%, and 5%, respectively). This may be attributed to the change in the rising trajectory
of the radiosonde, causing the detection of a cloud to differ from the detection by the MMCR.
Alternatively, because the cloud particle size at the cloud top is far too small to be detected by
the MMCR, the frequency of the cloud occurrence was underestimated. Therefore, further study
of the abilities of the radiosonde and the MMCR to detect CVSs is necessary.
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4.2.2. Seasonal Distribution of Cloud Base and Top Heights

From December 2020 to November 2021, 260 cloud data samples were observed by
the MMCR and the radiosonde. The four seasons were defined as follows: spring, from
March to May (MAM), summer, from June to August (JJA), autumn, from September to
November (SON), and winter, from December to February (DJF). Figure 12 shows the
correlation between the CBHs and CTHs observed by the radiosonde and the MMCR in
the four seasons. By analysing the former correlation, it can be inferred that the radiosonde
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and MMCR results of the CBH in spring and winter are relatively consistent, with the adj.
R-square values of 0.934 and 0.958, respectively. In summer, the adj. R-square between the
CBHs detected by the two devices was 0.814. In autumn, the corresponding adj. R-square
was the lowest (0.715) among all four seasons. The adj. R-square values between the CTHs
observed by the radiosonde and the MMCR were lower than those of the CBH, indicating
that the CTHs detected by the two devices significantly differed. The adj. R-square values
between the CTHs detected by the radiosonde and the MMCR in spring and summer
were similar: 0.879 and 0.852, respectively. The corresponding adj. R-square in autumn
and winter were only 0.629 and 0.710, respectively. Based on the adj. R-square values of
the CTH and CBH, the difference between the CVSs was the largest when employing the
radiosonde and the MMCR in autumn.
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Figure 12. Adj. R-square of the CBH ((left): red point) and CTH ((right): blue point) detection by the
radiosonde and MMC R. (a) Spring, (b) summer, (c) autumn, and (d) winter. Blue and red dotted lines
represent the fitted lines of the CBH and CTH detected by the radiosonde and MMCR, respectively.
In the figures, the R-square (COD) is the determination coefficient, and the adj. R-square is the
determination coefficient of the modified degree of freedom. The expression of the adj. R-square
can be written as R2(adj) = 1−

(
1− R2)·(n− 1)/(n− P− 1), where P is the number of variables, n

is the number of samples, and R means R-squared. In univariate linear regression, R-squared and
adjusted R-squared assessments are consistent, but the latter is more adaptable to the change in the
variables. RMSE refers to the root mean square error.

The distributions of the deviations of the CBHs and CTHs detected by the radiosonde
and the MMCR in the four seasons are shown in Figure 13. In spring, the deviation of
the CBH (the difference between the CBHs detected by the radiosonde and the MMCR)
was mainly distributed between −1 km and 1 km, and the deviation of the CTH was
distributed between −1 km and 2 km. In summer, the CBH and CTH deviations were
mainly concentrated between 0 km and 2 km and between−0.5 km and 1.5 km, respectively.
In autumn, the deviation range and deviation value of the CBHs detected by the radiosonde
and the MMCR were large. Both the CBH and CTH deviations were mainly concentrated
between −2 km and 2 km. In winter, the CBH and CTH deviations were mainly located
between 0 and 1 km and between −2 km and 4 km, respectively.
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Figure 13. Distributions of the CBH (left) and CTH deviations (right) detected by the radiosonde
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4.2.3. Annual Distributions of Cloud Base and Top Heights

The adj. R-square values of the CBHs and CTHs detected by the MMCR and the
radiosonde from December 2020 to November 2021 are shown in Figure 14. The adj. R2
between the CBH detection results of the two devices is 0.880 and the root mean square
error (RMSE) is 0.908. The adj. R-Square and RMSE of the CTH results are 0.788 and
1.268, respectively. Figure 15 shows that the CBH deviations detected by the two devices
are distributed between −6 km and 6 km, and mainly concentrated between −1 km and
2 km. The CTH deviation distribution is between −8 km and 8 km, and the deviation is
mainly concentrated between −2 km and 3 km. The adj. R-square, RMSE, and deviation
distribution characteristics of the CBHs detected by the radiosonde and the MMCR show
that employing these two devices to detect the CBH achieved a better consistency than in
the detection of the CTH.
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Figure 14. Adj. R-square of CBHs and CTHs detected by the radiosonde and MMCR from December
2020 to November 2021. (a) The blue dotted line shows the fitted line of CBHs detected by the radiosonde
and MMCR, and (b) the red dotted line is the fitted line of CTHs detected by the radiosonde and MMCR.
In the figures, the R-square (COD) is the determination coefficient, the adj. R-square is the determination
coefficient of the modified degree of freedom, and the RMSE is the root mean square error. The expression
of the adj. R-square can be written as R2(adj) = 1−

(
1− R2)·(n− 1)/(n− P− 1), where P is the number

of variables, n is the number of samples, and R means R-squared.
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5. Deviation Analysis of Cloud Top Height

It can be seen from the annual distribution of the CTH deviations detected by the
radiosonde and the MMCR that, within the range of 0–4 km, the frequency of the deviation
distribution is 0.78. Therefore, in most cases, the CTH determined from the RH observed
by the radiosonde using the RH threshold was higher than that derived by the MMCR, and
its main influencing factors are as follows:

1. Attenuation and limited sensitivity of MMCR

With the increasing detection distance, the attenuation correction of the MMCR in-
creases. However, for a cloud signal with a weak reflectivity factor, particularly in the
cloud area below −20 dBZ, there is no great difference between the reflectivity factors
before and after the correction. Concurrently, the CTH after the correction is similar to that
before the correction, i.e., the CVS remains almost unchanged. In this study, based on the
detection performance of the MMCR, the threshold value of the reflectivity factor used to
identify a cloud area was set as −40 dBZ (a reflectivity factor > −40 dBZ indicates a cloud).
This shows that the MMCR sensitivity of the cloud detection was sufficient. Although
precipitation clouds considerably attenuate an MMCR, the 467 samples used in this study
did not include precipitation clouds. Therefore, it can be inferred that the attenuation of
the MMCR is not the main cause of the underestimation of the CTH. The limitation of the
MMCR detection sensitivity, particularly for high-level cirrus cloud tops, where small ice
crystal particles are distributed, is the main cause of its CTH underestimation.

2. Radiosonde humidity sensor delay

The humidity sensor of the GTS11 radiosonde is a carbon film humidity-sensitive
resistor. Its response to a temperature change is gradual at low temperatures (particularly
below −50 ◦C), and the temperature measurement is rather poor. The average CTH
detected by the MMCR was approximately 8 km, whereas that detected by the radiosonde
based on the RH, using the RH threshold method, was higher than 8 km. When the cloud
top temperature was below −50 ◦C, the RH decreased very gradually with the increase in
the detection height. Therefore, the response delay of the humidity sensor caused the CTH
overestimation by the radiosonde compared to the results obtained the by MMCR.

3. Drift in the rising trajectory of the radiosonde

According to the existing literature [7,8,13–15,18,19], the drift of a radiosonde is the
main source of the deviation affecting its CTH and CBH measurement. However, these
studies do not explain and analyse the deviation caused by the drift in detail. The rising
trajectory of a radiosonde takes time to develop, during which the wind speed, wind
direction, and turbulence cause it to seriously deviate from the vertical route. Consequently,
when the spatial structure of a cloud changes rapidly, differences in the CVS observations
obtained using a radiosonde and an MMCR are expected.

Figure 16 shows the distributions of the horizontal wind speed and wind direction
experienced by the radiosonde on its rising trajectory over the four seasons (from December
2020 to November 2021: winter, spring, summer, and autumn). In spring and autumn, the
wind speed and direction presented similar distribution characteristics. The wind direction
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was mainly concentrated in the NNW–SSW directions, and the wind speed below 9 km
was less than 70 m·s−1, which indicates that the horizontal drifts were similar in spring and
autumn. The wind direction scale was large, mainly in the ENW–SW direction, whereas
the wind speed scale was small, and the wind speed below 9 km was less than 50 m·s−1 in
summer. In winter, the wind direction was concentrated mainly in the WNW–SW direction,
the wind speed almost reached 90 m·s−1 at 9 km, and the radiosonde deviated further from
the vertical path under a strong westerly wind.
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of the radiosonde. (a) Spring, (b) summer, (c) autumn, and (d) winter (0◦: north, N; 90◦: east, E; 180◦:
south, S; 270◦: west, W).

The wind direction and speed are the main factors affecting the rising trajectory of a
radiosonde. Figure 17 shows the distributions of the horizontal drifts calculated using the
longitude and latitude deviations of the radiosonde relative to the launch point over the
four seasons. As described above, the wind direction distribution ranges and wind speeds
in spring and autumn were similar; therefore, the horizontal drift distributions were also
very similar. Among the four seasons, in summer, the horizontal drift was the lowest, and
the average drift at 12 km was only 38 km. In winter, the horizontal drift was the highest,
and the relative drift at a height of 9 km reached 38 km. If a cloud structure is loose during
the radiosonde observation period, it is probable that it will be different from the cloud
observed by the MMCR, owing to the large horizontal drift of the former. In the case of
a large-scale and compact cloud, even if there is a large horizontal drift, the radiosonde
and the MMCR may detect the same cloud. Therefore, when comparing and analysing the
CVSs observed by the two devices, it is necessary to consider the cloud type, cloud height,
and horizontal drift in order to provide a more comprehensive and scientific explanation
for the differences between their results.
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According to the cloud data from Xi’an, cirrus clouds occur mainly in the spring.
Cirrus clouds are thin, dense, and mainly composed of non-spherical ice crystal particles,
and their horizontal range can reach hundreds to thousands of kilometres. In summer,
uniform episodic clouds are dominant, with a horizontal scale of hundreds of kilometres.
In autumn, isolated and scattered altocumulus clouds dominate. Greyish-white high-level
and stratocumulus clouds are common, and the scale of the clouds is large in winter. The
average height of a cloud layer in spring varies between 5.8 and 8.1 km. Within this
height range, the horizontal drift reaches approximately 10–20 km. For large-scale cirrus
clouds, the horizontal drift is insufficient to cause the radiosonde to pass into other clouds
(horizontal drift is not the main factor causing the differences in the CVSs detected by the
radiosonde and the MMCR). Moreover, the CTHs detected by the two devices are highly
consistent (the adj. R-square of the CBH and CTH are 0.934 and 0.879, respectively, in
Figure 13. In summer, the clouds are high, mainly distributed between 6.8 km and 9.8 km,
and the drift of the radiosonde is approximately 13–20 km within this range. Compared
to the horizontal scale of episodic clouds, this drift is insufficient to cause the radiosonde
to float into other clouds (the adj. R-square of the CBH and CTH are 0.814 and 0.852,
respectively). In autumn, the average height of the clouds is 5.4–8.0 km, and the drift is
10–18 km. For small-scale clouds that are isolated and dispersed, the radiosonde drifts
easily into other clouds during the rising process; i.e., in most cases, both the radiosonde
and MMCR pass through the base of the same cloud (the adj. R-square of the CBH is 0.715).
However, the radiosonde penetrates the other cloud top, resulting in a low correlation
between the CTHs detected by the two devices (the adj. R2 of the CTH is 0.629). In
winter, clouds are mainly distributed between 4.8 km and 6.8 km, and the corresponding
drift is approximately 10–18 km. In general, for large-scale, high-level and stratocumulus
clouds, both the radiosonde and MMCR detect the same clouds. Therefore, they show high
consistency in the CBHs (the adj. R-square is 0.958) and CTHs (the adj. R-square is 0.710).

6. Statistics and Analysis of the CVS Characteristics in the Xi’an Area

The CVSs observed by the radiosonde and the MMCR are in good agreement, using
the adjusted RH threshold and spatiotemporal matching criteria, respectively. In this
study, this RH threshold was used to identify cloud information from the RH profiles
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recorded by the radiosonde in Xi’an from 2019 to 2021. The objective was to examine the
distribution and change characteristics of the CVSs and provide effective supporting data
for climate research in Xi’an. Based on Table 3, the highest cloud-free condition in winter
was 34.36%, and rainfall occurred most frequently (12.99%) in autumn. In summer, two-
and three-layer clouds were the most frequent (22.10% and 5.23%, respectively) in all four
seasons, indicating that warm air was conducive to the formation of clouds. In autumn, the
frequency (0.75%) of the four-layer clouds was the largest, which may be due to the vast
horizontal drift of the radiosonde and the small scale of the clouds, resulting in the highest
frequency of the multi-layer clouds identified by radiosonde. The occurrence frequencies
of one-, two-, and three-layer clouds in spring and winter were similar.

Because the humidity sensor of the radiosonde responds sluggishly to the RH change
within a height range below −50 ◦C, it overestimates the CTH (see the Appendix A for
details). Based on the results shown in Figures A1 and A2, when the humidity sensor was
delayed at a temperature below −50 ◦C, the altitude corresponding to −50 ◦C was taken
as the CTH height detected by the radiosonde. The RH threshold method was used to
determine the cloud information from the RH data acquired by the radiosonde from 2019
to 2021. The monthly trends in the average CBH and CTH are shown in Figure 18. The
blue line in Figure 18a represents the average CTH variation with the months. The average
CTH fluctuated in the range of 7–10 km over the three years. In Figure 18b, the red line
shows the change in the average CBH with the months, and it fluctuated within the range
of 3–5 km. However, although the CBH and CTH fluctuated slightly with the changing of
the months, their changes did not vary significantly over the years.
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Table 3. Cloud distribution from 2019 to 2021.

Season Month Sample
Size

Cloud-Free
Sample

Size/Frequency

Precipitation
Cloud Sample
Size/Frequency

One-Layer
Cloud

Sample
Size/Frequency

Two-Layer
Cloud

Sample
Size/Frequency

Three-Layer
Cloud Sample
Size/Frequency

Four-Layer
Cloud Sample
Size/Frequency

Spring Mar, Apr, May 510 153, 30.00% 51, 10.0% 224, 43.90% 71, 13.90% 10, 1.96% 1, 0.19%
Summer Jun, Jul, Aug 525 116, 22.10% 62, 11.81% 200, 38.10% 116, 22.10% 28, 5.23% 3, 0.57%
Autumn Sep, Oct, Nov 531 169, 31.83% 69, 12.99% 179, 33.71% 98, 18.46% 12, 2.26% 4, 0.75%
Winter Dec, Jan, Feb 521 179, 34.36% 28, 5.37% 232, 44.53% 70, 13.44% 10, 1.92% 2, 0.38%
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7. Conclusions

In this study, the adjusted RH threshold method was used to identify CVSs from
RH profiles recorded by a radiosonde. Based on the established spatiotemporal matching
criteria, CVSs detected by an MMCR and the radiosonde were compared and analysed.
The deviation of the CVSs detected by the two devices was analysed in detail in terms
of the cloud type, cloud height, and horizontal drift of the radiosonde. Finally, using the
radiosonde data from 2019 to 2021, the CVSs over Xi’an were statistically analysed. The
main conclusions of this study are as follows:

1. The adjusted RH threshold method effectively identified cloud information from the
RH profiles recorded by the GTS11 radiosonde in Xi’an. Spatiotemporal matching
criteria can effectively reduce the detection deviation of the CVSs caused by the
horizontal drift of the radiosonde.

2. The GTS11 radiosonde and MMCR results showed high consistency in the observation
of the CVSs of low-level clouds. However, with the increase in the cloud height, the
frequency of clouds detected by the radiosonde became higher than that detected by
the MMCR.

3. In summer, large-scale clouds were distributed at high heights, and the radiosonde
experienced a wide range of wind directions and a low wind speed during the ris-
ing process, resulting in a low horizontal drift. Therefore, the CVS results of the
radiosonde and the MMCR were similar. The cloud height distributions in spring
and autumn were similar, causing the wind speed and direction distributions of the
radiosonde on the rising trajectory to be similar. Therefore, the drift was approxi-
mately the same, whereas the cloud size in autumn was small, and the correlation
between the CVS observations by the radiosonde and the MMCR was lower than that
observed in summer. In winter, the concentrated wind direction and high wind speed
caused a large drift. However, the cloud height was low and its size was large. Thus,
there was no significant difference between the CVSs detected by the two devices.
Therefore, when using the RH threshold method to identify a CVS from radiosonde
RH profiles, not only the horizontal drift of the radiosonde, but also the cloud type
and cloud height, should be considered.

4. In different seasons, the cloud types, cloud height, horizontal drift of radiosonde,
and the delay of humidity sensor were the main factors affecting the accuracy of
the radiosonde in detecting the CVSs. Although the MMCR was subject to some
limitations when detecting precipitating clouds and high-level cirrus clouds, it could
remove near-surface moist layers with no clouds. The CVSs distribution and change
characteristics examined in this study can provide better support for the numerical
model analysis and study of climate change characteristics in Xi’an.

5. Using the RH threshold method to identify CVSs from radiosonde RH profiles from
2019 to 2021 in Xi’an showed that the cloud-free condition was the highest (34.36%) in
winter, and precipitation clouds appeared most frequently (12.99%) in autumn. The
frequencies of two-layer (22.10%) and three-layer (5.23%) clouds were the highest in
summer. The average CTH and CBH did not fluctuate significantly with the changing
of the years. The average CTH and CBH fluctuated in the ranges of 7–10 km and of
3–5 km, respectively.
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Appendix A. Analysis of the Radiosonde Delay

The difference between the CTHs detected by the radiosonde and the MMCR is
generally considered to be caused by two factors: (1) The MMCR cannot respond to small
particle information at a cloud top, owing to its limited detection sensitivity, resulting
in the CTH underestimation. (2) The CTH is overestimated by the radiosonde owing to
the delay of its humidity sensor at temperatures < −50 ◦C. Compared to the MMCR, a
lidar has a better detection ability for small particles; therefore, we used lidar data in the
same period to verify factor (1): whether the underestimation of the CTH is caused by the
limited sensitivity of the MMCR. Figure A1a shows the results of the cloud information
obtained from the radiosonde RH profile on 7 March 2021, using the RH threshold method.
Accordingly, the CTH is 10.3 km. The average CTHs detected by the MMCR and lidar
are similar in this period: 8.6 km (Figure A1b) and 8.4 km (Figure A1c), respectively.
Therefore, in this case, the CTH detected by the MMCR is more accurate than that detected by
the radiosonde. The temperature of the GTS11 radiosonde is −50 ◦C at 9.2 km, and it decreases
gradually with the increase in the cloud height. Therefore, it can be inferred that the information
between 9.2 km and 10.3 km is misidentified as a cloud by the radiosonde, owing to the response
delay of its humidity sensor, resulting in the overestimation of the CTH.
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and (c) 1064 nm signal of the lidar. 

Figure A1. Cloud information observed by the radiosonde, MMCR, and lidar on 7 March 2021.
(a) Temperature and RH obtained by the radiosonde, (b) reflectivity factor observed by the MMCR,
and (c) 1064 nm signal of the lidar.
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Figure A2. Cloud information observed by the radiosonde, MMCR, and lidar on 21 March 2021.
(a) Temperature and RH obtained by the radiosonde, (b) reflectivity factor observed by the MMCR,
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Figure A2 shows the same plots as Figure A1 but for 21 March 2021. The radiosonde
overestimates the CTH, owing to the delayed response of its humidity sensor. The CTH
detected by the radiosonde is 11.5 km. The average CTHs detected by the MMCR and
the lidar are similar: 9.8 km and 9.9 km, respectively. Therefore, the CTH, in this case, is
~9.9 km. The height corresponding to the radiosonde temperature of −50 ◦C is 10.0 km,
and the RH within the range of 10.0–11.5 km exceeds the RH threshold, and the wet layer
is incorrectly identified as a cloud. Therefore, the cloud top is overestimated by 1.6 km
by the radiosonde. Among the scenarios shown in Figures A1 and A2, 19% of cases (data
from December 2020 to November 2021) are CTH overestimations due to the delay of the
humidity sensor.
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