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Abstract: In modeling a rough surface, it is common to assume a Gaussian height distribution. This
hypothesis cannot describe an eventual asymmetry between crests and troughs of natural surfaces.
We analyzed the bistatic scattering from a rough surface with non-Gaussian height distributions using
the Kirchhoff scattering theory. Two extreme cases of Gamma-distributed surfaces were compared in
particular: exponential and Gaussian distributions. The bistatic angular dependence was examined
under various root mean square (RMS) heights and power spectrum densities. Contribution sources
to the coherent and incoherent scattering components were singled out relating to the surface height
distribution. For an exponential height surface, the coherent scattering strengthens even as the
surface becomes rough. The non-Gaussian effect on the incoherent scattering is connected with
surface power spectrum density. The height distribution impacts differ in the different regions of
the bistatic scattering plane and thus complicate the differentiation of the scattering patterns due to
height distribution.

Keywords: height probability density; non-Gaussian; rough surface; bistatic scattering; power
spectrum density

1. Introduction

Understanding the electromagnetic scattering from a rough surface is vital for mi-
crowave sensing of land and ocean. In the past several decades, considerable efforts have
been made to elucidate the scattering processes through theoretical modeling and numeri-
cal simulations. In modeling a rough surface, it is common to assume a Gaussian height
distribution that suggests each point on the rough surface is irrelevant in the height direc-
tion, which is often far from realistic. A natural rough surface is frequently a non-Gaussian
process because of natural forces. Two rough surfaces can have the same correlation func-
tion but different height distributions, or vice versa. While the non-Gaussian effect on
the scattering characteristics has been well recognized, most previous works studying the
radar scattering of a rough surface assumed a Gaussian height. We considered the height
probability density function (HPD) non-Gaussian, to which a much smaller body of study
is dedicated.

Thus far, limited studies have focused on Gaussian and non-Gaussian rough surface
characteristics. For instance, Newland used the fast fourier transformation(FFT) method
and prescriptive power spectral density (PSD) to generate a Gaussian HPD surface [1].
Franceschetti applied the Kirchhoff-fractal electromagnetic model to examine the surface’s
statistics properties with Gaussian HPD [2]. The work in [3] presented the statistical
modeling of radar scattering from the ocean surface, whose slope and height assumed
a Gaussian process. The research in [4] reported, in the optical region, the dependence
of speckle contrast on the surface roughness where the surface height fluctuations were
Gaussian. The assumption of Gaussian HPD is accepted to some extent because it is easy
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to provide a simple analytical solution. However, in practice, many natural or engineered
surfaces are frequently non-Gaussian processes. Therefore, the existence of a non-Gaussian
effect on scattering characteristics should be taken into consideration.

Recent studies revealed that non-Gaussian HPD surfaces strongly influence scattered
signal and radar imaging statistics [5]. However, to our knowledge, minimal study has
been focused on the bistatic scattering for non-Gaussian HPD surfaces. Ocean and sea-ice
surfaces might be two distinctive non-Gaussian surfaces [6,7]. As proposed in [7], sea
ice presented negative exponential height distribution. These things considered, non-
Gaussian rough surfaces are common in machining processes such as honing, grinding,
and milling [8,9]. It was reported in [10,11] that material surfaces might change from
a Gaussian HPD to a non-Gaussian HPD when the material surfaces are subjected to
processes such as wear and friction. Furthermore, some material surfaces are designed
with non-Gaussian height distribution, including piston surfaces [12], asphalt roads [13],
and water channels [14].

It was shown [15] that surface height distribution is the dominant factor in deter-
mining the scattering coefficient’s coherent component. The incoherent scattering also
depends on the height distribution and the roughness relative to the radar wavelength.
The coherent Strehl factor, defined as the ratio of the coherent intensity with and without
surface roughness, depends on the surface height probability density. For a smooth sur-
face, the coherent Strehl factor is independent of HPD, but it highly depends on the HPD
when the surface roughness is moderate to large [16]. Beckmann presented the scattering
behaviors for non-Gaussian surfaces by the first-order Kirchhoff model [17]. The authors
of [18] reported wave scattering on rough surfaces with alpha-stable non-Gaussian height
distribution under the first-order Kirchhoff and small-slope approximations. A simulation
of wave scattering from a one-dimensional non-Gaussian HPD surface [19] found that the
coherent scattering is higher for a non-Gaussian than a Gaussian HPD surface for both HH
and VV polarizations. The quantitative characterization of non-Gaussian rough surfaces is
described in [20].

The rest of the paper is organized as follows. Section 2 briefly provides two key
statistics that describe a randomly rough surface: surface height distribution and power
spectrum density. We considered both Gaussian and exponential distributions for surface
height distribution, representing two extremes of Gamma distributions. As for power
spectrum density, we considered Gaussian and exponential PSDs. Section 3 formulates
the scattering problem using the Kirchhoff scattering theory, which involves univariate
and bivariate height distributions. Multiple scattering was not considered in this study but
will be included in a future study. Section 4 presents the surface roughness and angular
dependences of the bistatic scattering in line with a non-Gaussian effect. Finally, Section 5
draws a summary of this study.

2. The Statistical Description of Rough Surfaces

Considering the rough surface as stationary and ergodic, the height distribution and
the power spectral density are perhaps two of the most important statistical descriptors in
wave scattering.

2.1. Height Distribution

For Gaussian height distribution, it is well known that the univariate and bivariate
distributions are of the forms:

pg(ζ) =
1√
2πσ

e−ζ2/2σ2
(1)

pg(ζ, ζ ′) =
1

2πσ2
√

1− ρ2
exp

{
− ζ2 − 2ρζζ ′ + ζ′2

2σ2(1− ρ2

}
(2)

where σ is the RMS height and ρ is the autocorrelation function.
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The univariate and bivariate exponential distributions are given by

pe(ζ) =
1
σ

exp
[
− ζ

σ

]
, ζ ≥ 0 (3)

pe(ζ, ζ ′) =
1

σ2(1− ρ)
exp

[
− ζ + ζ ′

σ(1− ρ)

]
I0

(
2
√

ρζζ ′

σ(1− ρ)

)
(4)

where σ is the RMS height and ρ is the autocorrelation function; I0 is the zeroth-order
modified Bessel function.

2.2. Power Spectral Density

In this study, we considered the Gaussian and exponential PSDs for their common use
in modeling the wave scattering of rough surfaces. The Gaussian and exponential PSDs
indeed represent two extremes of the roughness distribution over spatial wavenumber in
terms of bandwidth [21].

For a Gaussian-correlated surface, the autocorrelation function and PSD are

ρg(r) = exp
(
− r2

l2

)
(5)

Sg(K) =
`2

2
exp

(
−K2`2

4

)
(6)

For an exponential-correlated surface, the correlation function and PSD are

ρe(r) = exp
(
−|r|

l

)
(7)

Se(K) =
`2(

1 + K2`2
)3/2 (8)

where K = (Kx, Ky) is a spatial wavenumber vector with Kx, Ky representing the wavenum-

ber components in x and y directions with K =
√

K2
x + K2

y; ` is the correlation length, and
both variables are represented in the unit of radar wavelength.

3. Formulation of the Scattering Problem
3.1. Scattered Field

Referring to Figure 1, assume a plane wave impinges onto a rough, dielectric surface
which scatters waves up into the upper medium and down into the lower medium in the
incident plane, with the electric and magnetic fields written as

→
E

i
= p̂E0 exp

[
−j
(→

k i ·
→
r
)]

(9)

⇀
H

i
=

1
η

k̂i ×
⇀
E

i
(10)

where j =
√
−1; p̂ is the unit polarization vector; E0 is the amplitude of the incident electric

field; and η is the intrinsic impedance of the upper medium.
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Figure 1. Geometry of wave scattering from a rough surface ζ(x, y).

The wave number vectors in incident and scattering directions are, respectively, de-
fined as follows:

→
k i = kk̂i = x̂kix + ŷkiy + ẑkiz;
kix = k sin θi cos φi, kiy = k sin θi sin φi, kiz = −k cos θi

(11)

→
k s = kk̂s = x̂ksx + ŷksy + ẑksz;
ksx = k sin θs cos φs, ksy = k sin θs sin φs, ksz = k cos θs

(12)

where k = 2π/λ is wavenumber, and λ is wavelength.
Under the Kirchhoff approximation, the estimation of surface tangential fields is in

order. We may define a local coordinate system (t̂, d̂, k̂i) shown in Figure 2, with

t̂ =
k̂i × n̂∣∣∣k̂i × n̂

∣∣∣ , d̂ = k̂i × t̂, k̂i = t̂× d̂ (13)

where the surface normal vector is given by

n̂ = − ∇ζ

|∇ζ| =
−x̂ζx − ŷζy + ẑ√

1 + ζ2
x + ζ2

y

(14)

with ζx = ∂ζ/∂x, ζy = ∂ζ/∂y being the surface slopes along x and y directions, respectively,
and are estimated by the stationary phase approximation:

ζx = − ksx − kx

ksz − kz
, ζy = −

ksy − ky

ksz − kz
(15)
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Once the surface fields are obtained, the far-zone scattered field is calculated by the
Stratton–Chu formula:

Es
qp = CE0

∫
fqp exp{jΦ}dx′dy′ (16)

with the phase term Φ = k[(k̂s − k̂i)x′ + (k̂s − k̂i)y′ + (k̂s − k̂i)ζ], where the third term
constitutes a random process because of ζ(x, y), C = −jk/4πR.

The Kirchhoff field coefficients fqp appearing in (16) may be more explicitly written in
the following form:

fvv = −[(1− Rv)ĥs · (n̂× v̂) + (1 + Rv)v̂s · (n̂× ĥ)]S1
−(Rh + Rv)(v̂ · t̂)[(ĥs · d̂)(n̂ · k̂i)− (n̂ · d̂)(ĥs · k̂i)− (v̂s · t̂)(n̂ · k̂i)]S1

(17)

fvh = [(1− Rh)v̂s · (n̂× v̂)− (1 + Rh)ĥs · (n̂× ĥ)]S1
−(Rh + Rv)(ĥ · d̂)[(ĥs · t̂)(n̂ · k̂i)− (n̂ · d̂)(v̂s · k̂i) + (v̂s · d̂)(n̂ · k̂i)]S1

(18)

fhv = [(1− Rv)v̂s · (n̂× v̂)− (1 + Rv)ĥs · (n̂× ĥ)]S1
−(Rh + Rv)(v̂ · t̂)[(ĥs · t̂)(n̂ · k̂i)− (n̂ · d̂)(v̂s · k̂i) + (v̂s · d̂)(n̂ · k̂i)]S1

(19)

fhh = [(1 + Rh)v̂s · (n̂× ĥ) + (1− Rh)ĥs · (n̂× v̂)]S1
−(Rh + Rv)(ĥ · d̂)[(ĥs · d̂)(n̂ · k̂i)− (n̂ · d̂)(ĥs · k̂i)− (v̂s · t̂)(n̂ · k̂i)]S1

(20)

where the Fresnel reflection coefficients Rp are given in [22,23], S1 =
√

1 + ζ2
x + ζ2

y, n̂ is

surface normal vector, and ĥ, v̂ and ĥs, v̂s are the horizontal-polarized and vertical-polarized
vector for the incident and scattering waves, respectively.

3.2. Scattered Power

Once we have the scattered field estimates, the next step is to compute the scattered
power. Noting that the scattered field is composed of a mean-field (coherent) and a
fluctuating field (incoherent):

Es
qp

(→
r
)
= Em

qp

(→
r
)
+ E f

qp

(→
r
)

(21)

where
→
r is the position vector

→
r = (x, y, z), the ensemble average of fluctuating field is

zero, and
〈

E f
qp

(→
r
)〉

= 0.
The scattered power is given by〈

Eqp

(→
r1

)
E∗qp

(→
r2

)〉
=
〈

Em
qp

(→
r1

)〉〈
Em∗

qp

(→
r2

)〉
+
〈

E f
qp

(→
r1

)
E f ∗

qp

(→
r2

)〉
(22)

so the coherent term is ∣∣∣Em
qp(
→
r )
∣∣∣2 =

k2|E0|2

16π2R2

∣∣ fqp
∣∣2|〈I〉|2 (23)

and the incoherent term is∣∣∣E f
qp(
→
r )
∣∣∣2 =

k2|E0|2

16π2R2

∣∣ fqp
∣∣2(〈|I|2〉− |〈I〉|2) (24)

The integral term appearing in Equations (23) and (24) is

I =
x

A0

e−i(qx x+qyy)e−iqzζ(x,y)dxdy (25)

The ensemble averages we have to evaluate are of the form

〈I〉 =
x

A0

e−i(qx x+qyy)
〈

e−iqzζ
〉

dxdy (26)
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〈
|I|2
〉
=

x

A0

dxdy
x

A0

dx′dy′ei(qx(x−x′)−qy(y−y′)
〈

eiqz(ζ−ζ ′)
〉

(27)

with wave components

qx = k(sin θs cos φs − sin θ cos φ)
qy = k(sin θs sin φs − sin θ sin φ)
qz = k(cos θs + cos θ)

(28)

To evaluate Equations (26) and (27), we make use of the characteristic functions of the
univariate and bivariate distributions, respectively.

The univariate and bivariate characteristics functions, φu, φb, are defined as:

φu ,
〈

e−iqzz
〉
=
∫ ∞

−∞
e−iqzζ p(ζ)dζ (29)

φb ,
〈

e−iqz(ζ−ζ ′)
〉
=
∫ ∞

−∞

∫ ∞

−∞
dζdζ ′p(ζ, ζ ′)eiqz(ζ−ζ ′) (30)

Following the approach by Beckmann [17], we obtain the univariate and bivariate
characteristics function for a Gaussian height distribution:

φu,g = e−σ2q2
z /2 (31)

φb,g = exp[−q2
zσ2(1− ρ)] (32)

Similarly, the univariate and bivariate characteristics functions for exponential height
distribution are

φu,e =
1
σ

(
1
σ
+ jqz

)−1
(33)

φb,e =
1

1 + q2
zσ2(1− ρ)

(34)

Substituting (31)–(34) into (26) and (27), we compute the coherent and incoherent
scattering coefficients for Gaussian and exponential height distributions.

3.3. Scattering Coefficients

The scattering coefficients are defined by

σ0
qp =

4πR2Pqp

E2
0 A0

(35)

where R is the range from surface to observation point, A0 is the effective antenna illu-
minated area over the surface, Pqp is the scattered power, and E0 is the amplitude of the
electric field.

After some mathematical manipulations, the coherent and incoherent scattering coeffi-
cients are given by

(1) For a Gaussian height distribution surface:

σ0
qp,coh = πk2∣∣ fqp

∣∣2e−q2
z σ2

δ(qx)δ(qy) (36)

σ0
qp,incoh =

k2

2

∣∣ fqp
∣∣2e−σ2q2

z
∞

∑
n=1

(
σ2q2

z
)n

n!
S(n)(qx, qy

)
(37)

(2) For an exponential height distribution surface:

σ0
qp,coh = πk2∣∣ fqp

∣∣2 1
1 + q2

zσ2 δ(qx)δ(qy) (38)
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σ0
qp,incoh =

k2

2

∣∣ fqp
∣∣2 1

1 + σ2q2
z

∞

∑
n=1

(
σ2q2

z
1 + σ2q2

z

)n

S(n)(qx, qy
)

(39)

The nth-power roughness spectrum is defined as the Fourier transform of the nth-
power correlation function in Equations (11) and (13):

S(n)(Kx, Ky
)
=

1
2π

∫ ∞

0
ρn(rx, ry

)
e−j(Kxrx+Kyry)drxdry (40)

The Gaussian nth-power PSD is

Sg
(n)(K) =

`2

2n
exp

(
−K2`2

4n

)
(41)

The exponential nth-power PSD is

Se
(n)(K) =

(
`

n

)2
(

1 +
(

K`

n

)2
)−3/2

(42)

4. Results and Discussion

This section analyzes both the coherent and incoherent bistatic scattering from Gaus-
sian and exponential HPD rough surfaces.

4.1. Surface Roughness Dependence

We compared the differences in scattering between Gaussian and exponential HPD
rough surfaces. The normalized RMS height, kσ, ranged from 0.1 to 1.2, and the normalized
correlation length, k`, was set to 8, with a permittivity of 15 − j1.5. In Figure 3a, we
note that the coherent scattering from the exponential HPD surface is higher than that
from the Gaussian HPD surface and is more pronounced for a larger RMS height. The
coherent scattering is strongly affected by the surface height distribution. In addition,
the HH polarization is higher than that of VV polarization, regardless of the HPDs. The
above observation is confirmed with experimental measurements in the visible region [24]
that the stronger coherent component exists in the exponential HPD surfaces, even in a
rougher (deep phase screen) surface. We note that in [24], only the backscattering at normal
incidence was investigated, and no autocorrelation function or PSD was involved.
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To better illustrate the non-Gaussian effect on the coherent scattering, we plotted the
difference between exponential and Gaussian HPD cases at 0◦, 10◦, and 20◦ of incident
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angles. In Figure 3b, due to the exponential HPD, the difference in coherent scattering
between exponential and Gaussian HPD cases is as wide as about 0~18 dB. The coherent
scattering is dramatically enhanced for the exponential HPD surface. As the RMS height
increases, the differences in coherent scattering grow almost exponentially. The non-
Gaussian effect on the coherent scattering is strongest at normal incidence. In addition, a
stronger dependence on the surface height distribution effect shows up in HH polarization.
These results show that the coherent scattering for both HH and VV polarizations is higher
from the exponential HPD surfaces than from the Gaussian HPD surfaces.

Under the same PSD, we evaluated the difference in incoherent scattering between a
Gaussian and an exponential HPD surface. Three surface roughness scales were examined
for the non-Gaussian effect. In general, the angular trends in the forward region are quite
similar for the Gaussian and exponential PSD. However, around the specular direction, as
the RMS height increases, the difference of incoherent scattering between Gaussian and
exponential HPD surfaces varies in an oscillatory fashion, as shown in Figure 4. Such
angular dependence of the roughness was not shown in backscattering [18]. Hence, the
backscattering properties cannot generally apply to the whole scattering plane. That
is, in the exponential HPD, the incoherent scattering is slightly weakened at a smaller
roughness but significantly enhanced at a larger roughness. This phenomenon is even more
pronounced for the exponential PSD, as shown in Figure 4b. For the exponential PSD, the
difference in incoherent scattering around the specular direction is as large as 10 dB.
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and exponential HPD rough surfaces with Gaussian and exponential PSDs at kl = 8, εr = 15− j1.5,
θi = 20◦, φs = 0◦. (a) Gaussian PSD, (b) exponential PSD.

Furthermore, at a larger scattering angle (θs > 50◦), compared with the Gaussian HPD
surface, the incoherent scattering from exponential HPD surfaces is first enhanced and then
weakened as the roughness increases. In addition, the angular trends are no longer the same
between Gaussian and exponential PSD in the backward region. In the backward region,
we note that the difference in incoherent scattering changes from −9 dB to about 2 dB for
the Gaussian PSD surface but varies from 0 to 2 dB for exponential PSD. The incoherent
scattering in the backward region is more sensitive to exponential HPD when the surface
is Gaussian PSD. Moreover, the incoherent scattering from the exponential PSD surface is
enhanced in the backward region, a fact also reported in [17,18] for backscattering.

To further explore the impact of the surface roughness, we present the difference
of incoherent scattering between Gaussian and exponential HPD under three roughness
scales in Figure 5. As the scattering azimuthal angle is rotating from the specular direction
to the backscattering direction, we can note that the angular trends of the incoherent
scattering are quite different under the three roughness scales. The difference in incoherent
scattering between the Gaussian and exponential HPD nonlinearly depends on the surface
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roughness. Such dependence is greatly affected by the surface PSD. In the forward region,
the incoherent scattering is enhanced for smooth surfaces but weakened for rough surfaces.
This phenomenon is reversed in the backward region. For a rougher surface, the incoherent
scattering in the forward region is more sensitive to exponential HPD.
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Figure 5. Difference of incoherent scattering as function of scattering azimuthal angle between
the Gaussian and exponential HPD rough surfaces with Gaussian and exponential PSDs at kl = 8,
εr = 15− j1.5, θi = 20◦, θs = 20◦. (a) Gaussian PSD, (b) exponential PSD.

4.2. Scattering Angular Dependence

Figure 6 shows the incoherent scattering in an incident plane for four surfaces: two
HPDs and two PSDs. The incoherent scattering as a function of scattering angle is presented
with the surface roughness of kl = 8, kσ = 1.0, and permittivity of 15− j1.5. The incident
angle was fixed at 20◦. These comparisons show that the non-Gaussian effect on the
incoherent scattering is significantly different under Gaussian and exponential PSDs. To
explore the effect of surface HPD with exponential PSD, we compared the numerical results
for Gau HPD and Exp PSD (blue line) and Exp HPD and Exp PSD (black line). From the
incoherent scattering plots of Figure 6, the angular shape and width are more dominated
by the PSD than by the HPD. For coherent scattering, the angular width is controlled by
the HPD and is wider for a Gaussian HPD surface [24].
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Gau HPD and Gau PSD, Gau HPD and Exp PSD, Exp HPD and Gau PSD, Exp HPD and Exp PSD.
The related parameters are kl = 8, kσ = 1.0, εr = 15− j1.5, θi = 20◦, φs = 0◦. (a) HH polarization,
(b) VV polarization.

The incoherent scattering from the exponential PSD surface is lower than that from the
Gaussian HPD surface, except in the specular direction. Furthermore, for Gaussian PSD,
the incoherent scattering is reduced because of exponential HPD in the forward scattering
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region (θs > 0◦). However, in the backward scattering region (θs < 0◦), the incoherent
scattering is weakened at a small scattering angle but enhanced at a larger scattering angle.
We continued to compare the incoherent scattering along the azimuthal direction for four
surfaces. For numerical illustration, the surface roughness was set to kl = 8, kσ = 1.0. As
shown in Figure 7, for the same PSD, the incoherent scattering from the exponential HPD
surface is higher than that from the Gaussian HPD surface.
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Figure 7. Comparison of bistatic incoherent scattering along the azimuthal direction for four types
of surfaces: Gau HPD and Gau PSD, Gau HPD and Exp PSD, Exp HPD and Gau PSD, Exp HPD
and Exp PSD. The related parameters are kl = 8, kσ = 1.0, εr = 15− j1.5, θi = 20◦, θs = 20◦. (a) HH
polarization, (b) VV polarization.

Next, we compared the hemispherical plots of bistatic scattering on the whole scatter-
ing plane between Gaussian and exponential HPD rough surfaces. As shown in Figure 8,
the left-half and right-half regions of the hemispherical plots correspond to the back-
ward and forward regions, respectively. To examine the non-Gaussian effect, we plot-
ted the bistatic scattering by fixing the PSD as Gaussian. The surface parameters are
kl = 8, kσ = 1.0, εr = 15− j1.5, with the incident angle of 20◦. As a reference, the scattering
patterns for Gaussian HPD with Gaussian PSD are given in Figure 8a.
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Figure 8. Bistatic scattering from the Gaussian and exponential HPDs with Gaussian PSD: kl = 8,
kσ = 1.0, εr = 15− j1.5, θi = 20. (a) Gaussian HPD and Gaussian PSD (Gau HPD and Gau PSD),
(b) exponential HPD and Gaussian PSD (Exp HPD and Gau PSD).
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The co- and cross-polarized scattering coefficients are significantly enhanced in the
backward region but slightly weakened in the forward region when comparing Figure 8a,b.
As mentioned before, the effect of surface height distribution varies with different PSD. To
demonstrate this effect, we set the PSD to exponential and plotted the bistatic scattering
patterns from a Gaussian and exponential HPD surface in Figure 9. In virtue of exponential
HPD, we can note that the co- and cross-polarized scattering is enhanced on the whole
scattering plane except for the specular direction and its vicinity. These results suggest
(under the exponential PSD and without considering the exponential HPD) that the bistatic
scattering will be overestimated except in the specular direction.
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Figure 9. Bistatic scattering from the Gaussian and exponential HPDs with the exponential PSD:
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The above observation exhibits the effect of surface height distribution on bistatic
scattering by fixing the roughness scale. Here, we investigated these effects under three
roughness scales. As shown in Figures 10–12, the scattering patterns display the difference,
in dB, between Gaussian and exponential HPD cases. In Figure 10, we first fix the PSD
as Gaussian. By contrast, the scattering in the backward region is more sensitive to the
HPD. For a relatively small roughness (kσ = 0.5), in virtue of the non-Gaussian HPD, the
scattering is enhanced except for the specular direction and its vicinity.
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Figure 10. Difference of bistatic scattering between Gaussian and exponential HPD rough surface
with Gaussian PSD kl = 8, kσ = 0.5, 1.0, 1.5, εr = 15− j1.5, θi = 20. (a) kσ = 0.5, (b) kσ = 1.0,
(c) kσ = 1.5.
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Moreover, the backward scattering for the Gaussian HPD surface is about 8 dB less
than that for the exponential HPD surface. As the surface roughness increases, we may
summarize the variation of the scattering patterns as follows. Due to the non-Gaussian
HPD, the scattering in the forward scattering region is reduced except in the specular
direction, implying that the coherent scattering is enhanced, especially from a rougher
surface. In the backward scattering region, the non-Gaussian HPD enhances the scattering
coefficient at a larger scattering angle ( θs > 45◦) but decreases the scattering coefficient at
a smaller scattering angle ( θs ≤ 45◦). In addition, the difference of backward scattering
between Gaussian and exponential HPD cases decreases, but that difference increases in the
forward region. That is to say, the sensitivity of backward scattering to HPD is diminished,
but that of forward scattering to HPD is enhanced.

As another example, we plotted the difference of bistatic scattering between Gaussian
and exponential HPD rough surface with exponential PSD, as shown in Figure 11. The
relevant parameters are the same as those in Figure 10. By comparison, when the PSD is
switched from Gaussian to exponential, the effect of surface height distribution on bistatic
scattering is quite different from Figure 10. In the case of exponential HPD, when the
roughness is relatively small, the scattering is reduced on the whole scattering plane. As
the surface roughness increases, the exponential HPD weakens the scattering in almost
all directions but enhances the scattering in the specular direction and its vicinity. The
dynamic range of bistatic scattering is about −6 dB~6 dB in virtue of exponential HPD.
That is, the effect of surface height distribution on bistatic scattering is enhanced as the
surface roughness increases.
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We then examined the coupling effect of HPD and PSD on bistatic scattering in
Figure 12. It is important to note that the dynamic range of bistatic scattering was−20~20 dB
when both the HPD and PSD were set to the exponential—noting that the effects of HPD
and PSD strongly depend on the surface roughness. In the virtual of the non-Gaussian
effect, for the relatively small roughness, the notable increase is concentrated in the forward
region. However, the apparent decrease is located in the backward region. As the surface
roughness increases, the bistatic scattering increases on the whole scattering plane. More-
over, the difference between the scattering coefficients in the forward region and backward
region is relatively weaker. This phenomenon indicates that when the surface roughness
is larger, the coupling effect of HPD and PSD between forward scattering and backward
scattering is reduced.

5. Conclusions

Bistatic scattering from Gaussian and exponential height distributed rough surfaces
was investigated by the Kirchhoff theory, which only accounts for single scattering. Nu-
merical results show that the non-Gaussian effect on coherent and incoherent scattering
is quite different. The coherent scattering from the non-Gaussian HPD surface is higher
than that from the Gaussian HPD surface. As the normalized RMS height varies from
0 to about 1.2, the dynamic range of differences between non-Gaussian and Gaussian
HPD surfaces is about 0~18 dB. That is, the non-Gaussian height distribution enhances
the coherent scattering. As the RMS height increases, their differences in coherent scat-
tering increase almost exponentially. Moreover, the non-Gaussian effect on the coherent
scattering is highest at normal incidence and decreases as the incident angle increases. By
contrast, the non-Gaussian height effect is significant in HH polarization. The results also
confirm that the non-Gaussian effect on incoherent scattering is distinct for Gaussian and
exponential PSDs.

The non-Gaussian effect is exhibited by fixing the PSD. Due to the non-Gaussian
HPD, the variation of the incoherent scattering characteristic can be summarized in the
following points. For the Gaussian PSD surface, the incoherent scattering coefficients are
significantly enhanced in the backward region but slightly weakened in the forward region.
As the surface roughness increases, the forward scattering is reduced except in the specular
direction. The backward scattering increases at a larger scattering angle but decreases at
a smaller scattering angle. The difference between forward and backward scattering is
shrunk, especially at more significant roughness.

However, for the non-Gaussian PSD surface, the incoherent scattering is enhanced
on the whole scattering plane except for the specular direction and its vicinity. When the
surface becomes rougher, the scattering weakens in almost the whole scattering plane for the
non-Gaussian HPD; however, it enhances the forward scattering in the specular direction
and vicinity. The results suggest that the effect of non-Gaussian height on bistatic scattering
is enhanced as the surface roughness increases. Furthermore, the difference between
coherent and incoherent scattering is widened because of the non-Gaussian height effect.

This paper analyzed the scattering behavior from Gaussian and exponential height
distributions. It would be worth examining the degree of non-Gaussianity’s impact on the
coherent and incoherent scattering and their ratio, and hence, in some essence, the fading
strength. Another subject for future study is the examination of the circularly polarized
bistatic scattering from a non-Gaussian height distributed surface and its application
to GNSS–R.
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