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Abstract: Accurate plant-type (PT) detection forms an important basis for sustainable land man-
agement maintaining biodiversity and ecosystem services. In this sense, Sentinel-2 satellite images
of the Copernicus program offer spatial, spectral, temporal, and radiometric characteristics with
great potential for mapping and monitoring PTs. In addition, the selection of a best-performing
algorithm needs to be considered for obtaining PT classification as accurate as possible . To date, no
freely downloadable toolbox exists that brings the diversity of the latest supervised machine-learning
classification algorithms (MLCAs) together into a single intuitive user-friendly graphical user inter-
face (GUI). To fill this gap and to facilitate and automate the usage of MLCAs, here we present a
novel GUI software package that allows systematically training, validating, and applying pixel-based
MLCA models to remote sensing imagery. The so-called MLCA toolbox has been integrated within
ARTMO’s software framework developed in Matlab which implements most of the state-of-the-art
methods in the machine learning community. To demonstrate its utility, we chose a heterogeneous
case study scene, a landscape in Southwest Iran to map PTs. In this area, four main PTs were identified,
consisting of shrub land, grass land, semi-shrub land, and shrub land–grass land vegetation. Having
developed 21 MLCAs using the same training and validation, datasets led to varying accuracy results.
Gaussian process classifier (GPC) was validated as the top-performing classifier, with an overall
accuracy (OA) of 90%. GPC follows a Laplace approximation to the Gaussian likelihood under
the supervised classification framework, emerging as a very competitive alternative to common
MLCAs. Random forests resulted in the second-best performance with an OA of 86%. Two other
types of ensemble-learning algorithms, i.e., tree-ensemble learning (bagging) and decision tree (with
error-correcting output codes), yielded an OA of 83% and 82%, respectively. Following, thirteen
classifiers reported OA between 70% and 80%, and the remaining four classifiers reported an OA
below 70%. We conclude that GPC substantially outperformed all classifiers, and thus, provides enor-
mous potential for the classification of a diversity of land-cover types. In addition, its probabilistic
formulation provides valuable band ranking information, as well as associated predictive variance at
a pixel level. Nevertheless, as these are supervised (data-driven) classifiers, performances depend on
the entered training data, meaning that an assessment of all MLCAs is crucial for any application.
Our analysis demonstrated the efficacy of ARTMO’s MLCA toolbox for an automated evaluation of
the classifiers and subsequent thematic mapping.

Keywords: Automated Radiative Transfer Models Operator; machine-learning classification toolbox;
Gaussian process classifier; plant types; Sentinel-2
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1. Introduction

Satellite images provide valuable geospatial data for monitoring land surface condi-
tions [1] and both characterizing and mapping land use/land cover [2]. The concepts of
‘land cover’ and ‘land use’ are commonly confused in most land surveys including those
derived from satellite imagery, although they are fundamentally distinct [3]. Land use is
a socio-economic interpretation of the activities that take place on the earth’s surface [4].
Hence, the goal of land-use classification is to assign a land-use label to larger spatial
entities, which form a functional unit. Instead, land-cover classification focuses on the as-
signment of class labels to (frequently small) image sites [5]. Thus, land-cover classification
involves the discrimination of land-cover types through different classification methods,
which were developed in the field of remote sensing [6]. Land cover mapping plays an
important role in studies related to changes in environmental conditions, climate, biodiver-
sity [7], conservation and management of landscapes [8], and ecosystem services [9]. Plant
communities are considered the fundamental unit of natural habitats [10], and plant-types
(PTs) are the representative plant communities at a site [11]. PTs are distinctive kinds of
land cover that differ from other kinds of land in the ability to produce distinctive types and
amounts of vegetation and respond alike to management actions and natural disturbances.

Land cover assessment and classification, whereby each image pixel is assigned to
a class label indicating the physical material of the surface, are nowadays standard tasks
in satellite image processing [12–14]. Although Earth observation is used to land cover
assessment, its application for vegetation-type mapping has been mainly limited to struc-
tural classification units such as cropland [15], mixed forest [16], or woodland [8]. At the
same time, the distinction of PTs remains challenging [17], particularly in a heterogeneous
landscape [18]. Sub-classes of a land-cover unit such as PTs have similar spectral behavior
(low inter-class separability) and a complex spatial structure on the landscape [19]; there-
fore, these heterogeneous vegetation communities remain challenging to classify using
satellite imagery. Understanding the weaknesses and strengths of various remotely sensed
data is the first essential step for the selection of appropriate satellite images and creating
successful thematic maps.

Traditionally, the Landsat satellite series have provided a long record and valuable
datasets for land cover monitoring and mapping due to their free availability and regular
revisit capabilities [20]. However, studies have also noted that Landsat sensors easily
misrepresent the spatial variations of vegetation species and are inadequate for highly
heterogeneous landscapes, due to a spatial resolution of 30 m [21–24]. Finer spatial reso-
lution multispectral sensors are required for more detailed characterization of vegetation
species [25]. In 2015, the Sentinel-2A (S2) satellite was launched for data continuity and en-
hancement of Landsat performance, followed by the launch of S2B in 2017. S2 is equipped
with a multispectral sensor of high and medium spatial resolution (10, 20, and 60 m) and
13 spectral bands [26]. Given its high spatial and temporal resolution and excellent radio-
metric characteristics, this satellite suits perfectly for vegetation monitoring and mapping.

Because each of the classifiers interprets data in a different way, usually leading to
varying mapping results, the selection of a best-performing algorithm needs to be con-
sidered for the classification task [27]. With the ongoing gain in computational power,
attractive pixel-based supervised methods have been developed for efficient and accurate
land-cover mapping [28]. Especially, the family of machine-learning classification algo-
rithms (MLCAs) emerged as a powerful non-parametric approach for classification tasks.
MLCAs have the potential to generate adaptive, robust relationships and, once trained,
they are fast to apply [29]. Machine learning methods cope typically well with the strong
nonlinearity of the functional dependence between the label and the acquired reflectance
data. Such models can substantially reduce the time and cost of constructing accurate
land-cover maps [19,30,31]. Popular pixel-based supervised MLCAs can be categorized
according to families of: (1) neural networks, (2) decision trees, (3) kernel-based algorithms,
or (4) ensemble learning. However, these categories are merely semantics, and in reality, all
kinds of cross-category classification methods exist, e.g., random forests, which is an en-
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semble decision tree classifier. For each of these families, algorithms diversified in different
directions and variations; each of these methods have strengths and weaknesses in terms
of accuracy, processing time, and easiness to use [32,33]. While accuracy is considered
the most important criterion, apart from the applied classifier in supervised methods, the
quality of the generated map depends on the representativeness of the training data as they
were theoretically proven [34,35]. Despite the availability of a diverse array of methods in
distinct computing languages, there is a need for an intuitive software toolbox that enables
fast and easy testing of advanced methods to obtain a systematic and comprehensive
evaluation. After all, one can only be certain of using the best-performing classifier when
all of them were tested and compared.

Moreover, for the broader remote sensing community, MLCAs may be perceived as
complicated algorithms. Supervised machine learning algorithms possess several algo-
rithm options and parameters to be tuned, so-called hyperparameters, which typically
require certain expertise and the know-how of a programming language. When alter-
natively inspecting available software packages, to the best of our knowledge, no freely
downloadable toolbox brings the diversity of pixel-based MLCAs together into a single
intuitive user-friendly graphical user interface (GUI). To fill this gap and to facilitate and
automate the usage of MLCAs, in this study, we present a novel software package that
allows systematically training, analyzing, and applying supervised MLCA models. The so-
called MLCA toolbox has been implemented within the in-house developed toolbox called
ARTMO (Automated Radiative Transfer Models Operator). ARTMO is a scientific GUI
toolbox originally dedicated to the running of radiative transfer models and the retrieval of
vegetation properties from optical imagery [36]. Over the years, the software package has
been expanded with all kinds of image processing tools and toolboxes (e.g., [37–39]), with
now also the MLCA toolbox.

Given the available diversity of advanced classifiers, the impact of distinct pixel-
based ML classifiers in interpreting heterogeneous vegetation communities with similar
spectral features has not yet been quantitatively assessed, and remains a challenge. In
this study, we aim to bridge this gap with the algorithms and versatility offered by the
MLCA toolbox. At the same time, we aimed to provide a quantitative assessment of the
implemented algorithms for landscape monitoring and assessment. To this end, we chose
a heterogeneous rangeland landscape in Southwest Iran as a demonstration case. It is a
challenging semi-steppe region for vegetation classification as PTs are overlapping and
spectrally alike. Altogether, the overarching objectives of this study are: (1) to present the
novel MLCA software toolbox for semi-automatically analyzing MLCAs and classification
tasks; (2) to evaluate the implemented MLCAs on their performance and robustness; and
(3) to apply the best-performing MLCAs to remote sensing imagery to test the robustness
and accuracy in real scenarios.

2. Materials and Methods
2.1. ARTMO Toolbox

First, a brief introduction of ARTMO is given, followed by the specifics of the MLCA
toolbox. ARTMO is a modular GUI toolbox developed in Matlab, with the original purpose
to automate the simulation of radiative transfer models (RTMs) [40]. ARTMO brings
multiple leaf and canopy RTMs together with essential tools required for a semi-automatic
retrieval of biophysical and biochemical variables in one GUI toolbox. ARTMO has been
expanded over the years with all kinds of RTMs and image processing toolboxes, such
as mapping, emulation, sensitivity analysis, and scene generation. ARTMO is linked
with a relational SQL database management system (MySQL, version 5.5 or 5.6; local
installation required), where all generated data (i.e., simulations, statistical results) and
trained models are stored along with metadata, thus, allowing the re-running of earlier
models or simulations. Figure 1 presents ARTMO v3.29’s main window and a systematic
overview of the drop-down menu below. See also http://artmotoolbox.com/ (accessed on
2 July 2022) for details about each of the implemented RTMs, toolboxes, and tools.

http://artmotoolbox.com/
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Figure 1. Schematic overview of ARTMO’s v3.29 modules (RTMs, toolboxes, tools).

This paper introduces ARTMO’s classification “MLCA toolbox” and the accompanying
“LabelMeClass” tool, which facilitates the generation of labeled data. The key features of
the MLCA toolbox are outlined below, starting with an overview of included classifiers.

2.2. ARTMO’s Machine-Learning Classification Algorithms (MLCA) Toolbox: Classifiers

In this first official version (v.1.1) of the MLCA toolbox, 19 supervised MLCAs have
been implemented belonging to the key families of supervised classifiers, most of them
belonging to families of machine learning methods. It must be remarked that this first
version is restricted to pixel-based classifiers, implying that object-based sub-pixel-based or
scene-based deep learning classifiers have not been considered yet. However, pixel-based
classifiers allow to learn and characterize complex spectra and fit decision functions that
are able to predict full scenes acquired by satellites.

Pixel-based classifiers are traditionally categorized into either parametric or non-
parametric methods (see book [41] and reviews [32,42]). Parametric methods are based
on probabilistic theories, modeling the decision boundaries between classes from a fixed
number of parameters, independent of the number of samples, using global criteria for the
classification [43]. Conversely, the non-parametric methods guide the grouping of classes
based on the digital number (single band/image) or spectral reflectance (multispectral
image) and other characteristics, such as shape and textural attributes of the scene. The
distribution of the image values is independent and it is focused on the local data structure,
requiring a high set of samples for the classification process [44].

The following parametric classifiers are implemented: (1) discriminant analysis, and
(2) naive Bayes. See also Table 1 for a brief description and references. Apart from the
parametric classifiers, a diversity of non-parametric classifiers have been implemented,
most of them due to the available Matlab “Statistics and Machine Learning Toolbox” and
“Deep Learning Toolbox”, but also external codes, such as Gaussian process classification
coming from the “simpleClass” repository (https://github.com/IPL-UV/simpleClass,
accessed on 2 July 2022). According to the logic of loaded libraries, the implemented
non-parametric classifiers can be categorized as follows: (1) nearest neighbor, (2) decision
trees, (3) error-correcting output codes (ECOC), (4) ensemble learners, (5) neural networks,
and (6) Gaussian processes. These categories are briefly described in Table 2. All classifiers
were provided in their default settings, unless otherwise specified. Algorithm settings can
be changed within Settings -> Advanced settings.

https://github.com/IPL-UV/simpleClass
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Table 1. Implemented parametric classifiers into MLCA toolbox.

Classifier Description Ref.

Discriminant
Analysis
(DA)

DA is a linear model for classification and dimensionality reduction, most commonly used for feature extraction in pattern
classification problems. First, in 1936, Fisher formulated linear discriminant for two classes, and in 1948, C.R Rao generalized
it for multiple classes. LDA projects data from a D dimensional feature space down to a D′ (D > D′) dimensional space in a
way to maximize the variability between the classes and reduce the variability within the classes. The quadratic DA is also
known as maximum likelihood classification within popular remote sensing software packages.

[45]

Naive Bayes
(NB)

The NB is a classification algorithm based on the concept of the Bayes theorem with the “naive” assumption of conditional
independence between every pair of features given the value of the class variable. [46]

Table 2. Implemented non-parametric (machine learning) classifiers into MLCA toolbox.

Classifier Description Ref.

Nearest neighbor
(NN)

The principle behind NN methods is to find a predefined number of training samples closest in distance to the new point, and
predict the label from these. The basic NN classification uses uniform weights; that is, the value assigned to a query point is
computed from a simple majority vote of the nearest neighbors.

[47]

Decision trees
(DT)

Classification trees (CF) fit binary decision tree for multiclass classification. See also:
https://es.mathworks.com/help/stats/fitctree.html (accessed on 2 July 2022). Random forests (RF) bags an ensemble of decision
trees. Bagging stands for bootstrap aggregation. Every tree in the ensemble is grown on an independently drawn bootstrap replica of
input data. See also: https://es.mathworks.com/help/stats/treebagger-class.html (accessed on 2 July 2022). For RF, by default, 100
trees are set as recommended according to [48].

[49,50]

Neural networks
(NN)

ANNs in their basic form are essentially fully connected layered structures of artificial neurons (AN). An AN is basically a pointwise
nonlinear function (e.g., a sigmoid or Gaussian function) applied to the output of a linear regression. ANs with different neural
layers are interconnected with weighted links. The most common ANN structure is a feed-forward ANN, where information flows
in a unidirectional forward mode. From the input nodes, data pass hidden nodes (if any) toward the output nodes. The following
algorithms have been implemented:
1. Trainlm is a network training function that updates weight and bias values according to Levenberg–Marquardt optimization;
2. Trainscg is a network training function that updates weight and bias values according to the scaled conjugate gradient method;
3. Trainbr is a network training function that updates the weight and bias values according to Levenberg–Marquardt

optimization. It minimizes a combination of squared errors and weights, and then determines the correct combination so as to
produce a network that generalizes well. The process is called Bayesian regularization.

Additionally, the option of developing (per-pixel) deep learning network is added according to Matlab’s deep learning toolbox
(https://es.mathworks.com/help/deeplearning/ref/trainnetwork.html (accessed on 2 July 2022)). The NN consists of the following
default settings: one hidden layer with 10 neurons, ReLU activation and 10% of dropout. The NN is trained with 1000 epochs using
Adam optimization algorithm.

[51,52]

Ensemble learn-
ers (EL)

EL combines a set of trained weak learner models and data on which these learners were trained. EL can predict ensemble response
for new data by aggregating predictions from its weak learners. The following EL are provided: (1) discriminant EL, (2) k-nearest
neighbor (KNN) EL, (3) tree EL (bagging), (4) tree EL (AdaBoost), (5) tree EL (RUSBoost). Bagging and boosting techniques are
typically applied to decision trees. Bag generally constructs deep trees. This construction is both time-consuming and
memory-intensive. This also leads to relatively slow predictions. Boost algorithms generally use very shallow trees. This construction
uses relatively little time or memory. However, for effective predictions, boosted trees might need more ensemble members than
bagged trees. See also: https://es.mathworks.com/help/stats/framework-for-ensemble-learning.html (accessed on 2 July 2022)

[50,53]

error-correcting
output codes
(ECOC)

The ECOC method is a technique that allows a multi-class classification problem to be reframed as multiple binary classification
problems, allowing the use of native binary classification models to be used directly. Unlike one-vs-rest and one-vs-one methods that
offer a similar solution by dividing a multi-class classification problem into a fixed number of binary classification problems, the
error-correcting output codes technique allows each class to be encoded as an arbitrary number of binary classification problems.
When an overdetermined representation is used, it allows the extra models to act as “error-correction” predictions that can result in
better predictive performance. The following ECOC are provided: (1) discriminant analysis, (2) kernel classification, (3) KNN,
(4) linear classification, (5) naive Bayes classification, (6) decision tree, (7) support vector machine. See also
https://machinelearningmastery.com/error-correcting-output-codes-ecoc-for-machine-learning/ (accessed on 2 July 2022).

[54]

Gaussian process
(GP)

The GP is a stochastic process where each random variable follows a multivariate normal distribution. The goal is to learn mapping
from the input data to their corresponding classification label, which can then be used on new, unseen data pixels. When the GP is
developed with kernel methods, it allows mapping the original data into a possibly infinite dimensional space in which the
input–output relation can be better estimated as it considers more complex and flexible functions than the linear models. As the GP
is based on a probabilistic framework, it allows to provide uncertainty estimation per sample. This measurement becomes useful for
taking decisions and allows to be more or less confident with the inferred classification label. Moreover, the GP can use more
sophisticated kernel functions than the standard linear kernel or the radial basis function (RBF) kernel

kRBF(xi , xj) = exp
(
− ‖ xi − xj ‖2

2σ2

)
, which can be optimally tuned through the likelihood maximization. In the classification case, the

output values are discrete (±1); this causes the likelihood function to be non-Gaussian, and then, some approximations should be
performed [55]. We choose the Laplace approximation which performs well and is robust. One notable kernel function is the

automatic relevance determination (ARD) kernel kARD(xi , xj) = exp
(
− 1

2 (xi − xj)
>Σ−1(xi − xj)

)
, where Σ is a diagonal matrix

whose diagonal tries are constituted by {σ2
1 , . . . , σ2

d} parameters to weight each input dimension. This kernel covariance function
requires one parameter per input feature; it can be optimized under that framework and it allows to provide a band ranking based
on their optimal values. Source code is in: https://github.com/IPL-UV/simpleClass (accessed on 2 July 2022).

[55]

https://es.mathworks.com/help/stats/fitctree.html
https://es.mathworks.com/help/stats/treebagger-class.html
https://es.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://es.mathworks.com/help/stats/framework-for-ensemble-learning.html
https://machinelearningmastery.com/error-correcting-output-codes-ecoc-for-machine-learning/
https://github.com/IPL-UV/simpleClass


Remote Sens. 2022, 14, 4452 6 of 21

2.3. MLCA Toolbox: Workflow

The following step addresses the analysis of multiple MLCA-based classification
strategies within the MLCA toolbox. The toolbox and its workflow logic is illustrated in
Figure 2. The key modules and their key characteristics are outlined next.

Figure 2. Schematic overview of ARTMO’s MLCA toolbox. The toolbox is on top, and the main
GUIs are underneath.

The toolbox operates by starting with inserting input data required for training the
MLCA algorithms. The input GUI guides the user to import a plain .txt file that should
consist of labeled data and associated spectra organized as a data matrix. The GUI will
guide the user through the data selection steps and check if the data are properly read
(not displayed for brevity). Only once the input data are inserted, the “Settings” module
can be configured, and only when Settings is configured, the training/validation step can
be initiated by giving a name. All model and validation results are stored within MySQL
running underneath. Settings include the following options, which can be combined with
each of the selected supervised ML classifiers.

2.3.1. Data Splitting and Cross-Validation Options

The training/validation data partition can be controlled by setting the percentage of
how much of the labeled data are assigned to training or to validation (i.e., random split-
sample approach). Thereby, the user can evaluate the impact of ranging training/validation
partitioning by entering a range of training/validation partitions. The classifiers are then
trained based on the training data and evaluated based on the validation data. Further, the
following cross-validation options are provided whereby all data are used both for training
and testing: (1) k-fold cross-validation, (2) hold-out, and (3) leave-one-out. Cross-validation
methods may lead to more robust models, and are recommended when having only a
limited number of samples at disposal for training and testing. Additionally, the option is
provided to load a new external validation dataset. That would allow us to use all input
data for training (i.e., 100%), and validation results are then exclusively based on the newly
entered dataset.

2.3.2. Dimensionality Reduction, Noise, and Advanced Options

Spectral dimensionality reduction (DR) methods aim to bypass the so-called “curse of
dimensionality” (Hughes phenomenon) [56]) that is commonly observed in hyperspectral
data, but also can be applicable to multispectral data. With DR methods, the original
spectral data are transformed into a lower-dimensional space that allows the definition of
a small set of new features (components), which contain the vast majority of the original
dataset’s information [57]. As such, it bypasses the need to search for most relevant spectral
bands, and thus, simplifies the retrieval problem. Especially in data classification, a diversity
of feature extraction and DR methods are available in the literature [58,59]. The most
common DR method is provided by the classical principal component analysis (PCA) [60].
PCA has been proven successful in a broad diversity of applications and continues to be
the first choice in vegetation properties mapping based on hyperspectral data (e.g., [61–63]).
However, situations may occur where PCA is not the best choice and alternatives have to be
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sought for. As an extension of PCA, partial least squares (PLS) introduce some refinements
by looking for projections that maximize the covariance and correlations between spectral
information and input variables [64]. Apart from PCA and PLS, in the MLCA toolbox, we
introduced nine alternative DR methods into classification, including canonical correlation
analysis (CCA), orthonormalized PLS (OPLS), and minimum noise fraction (MNF), as well
as their nonlinear extensions derived by means of the theory of reproducing kernel Hilbert
spaces. All these methods have earlier been put together into an in-house developed
MATLAB library called SIMFEAT [58], which has been included in a GUI in ARTMO’s
machine learning regression algorithm (MLRA) retrieval toolbox, and now also in the
MLCA toolbox. See Ref. [65] for details on the implemented DR methods. Thus, when
selecting a DR method, the spectral data will be converted to a user-defined number
of components. The classifiers will subsequently use those components for developing
classification models. In this way, not only the spectral redundancy is mitigated, but it also
speeds up the processing time.

Further, Gaussian noise can be optionally added to the spectral data. The injection
of noise is of importance when synthetic (i.e., noise-free) spectra are used for training to
account for environmental and instrumental uncertainties, or can be used to assess the
robustness of the classifiers given noisy spectra. A range of noise levels can be configured
to evaluate multiple noise scenarios.

It is also possible to change the default settings for each of the selected MLCA. The
advanced options are available under the drop-down “Advanced options” and are activated
when selecting a MLCA. Typically, these setting options are provided by the Matlab codes.
It is beyond the scope of this paper to list all the options; they are made accessible with drop-
down menus and a button is provided that links to the corresponding Matlab webpage.

2.3.3. Accuracy Metrics and Mapping

Once the MLCAs are selected and additional options (e.g., dimensionality reduction)
are defined in “settings”, the following step is to move towards validation. Hereby, models
are trained and then validated against the testing data. The following accuracy metrics are
calculated: (1) overall accuracy (OA) and (2) kappa coefficient (k). Additionally, processing
time is provided. Results are provided in the validation GUI (see Figure 3). To facilitate the
comparison of the implemented classification strategies, the overview table can be sorted
based on each of these statistics. Regarding kappa, however, it must be remarked that this
metric is not recommended in an accuracy assessment or comparison [66]. We, therefore,
decided not to show kappa in the subsequent demonstration study.

For each trained classifier, the following validation statistics can be optionally dis-
played and exported: accuracy matrix and statistics per class. The statistics per class are the
typical accuracy metrics calculated based on the accuracy matrix: (1) producer’s accuracy
(also known as recall or true positive or sensitivity), (2) user’s accuracy (also known as
precision or positive predictive value), (3) specificity, and (4) F1-Score (%). The F1-Score
combines the precision and recall of a classifier into a single metric by taking their harmonic
mean, thus, giving a good indicator of the class detection accuracy. See also Ref. [67]
for details on these metrics. Note also that all models and accuracy metrics are stored
within MySQL, and can always be retrieved by selecting “validation -> load”, and then
selecting the name of the conducted analysis. Finally, the best-performing model, or any
model, can be selected for subsequent mapping purposes. It will then be loaded in the final
“Classification” GUI with mapping options.

2.4. Extracting Labeled Spectra from Images: LabelMeClass

Along with the release of the MLCA toolbox, we present an associated withol tool
called “LabelMeClass”. See also Figure 3. This tool allows to load imagery in ENVI or
TIFF format for extracting labeled data, i.e., labels with associated spectra. That file can
then serve as training data in the MLCA toolbox. After having loaded an image, the
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corresponding RGB will appear in the left panel. Subsequently, there are two options to
generate labeled training data:

1. Load coordinates based on a .txt file consisting of GPS coordinates. The file should
consist of class labels and associated coordinates. The tool then checks if the coordi-
nates match within the loaded imagery. It will then extract the associated spectra and
visualize the spectra with different colors per class.

2. Manual generation of labeled data. Based on the visualization of the image, pixels
can be selected and then assigned to a class. In this way, labeled spectra per class
are selected.

For both input data flows, options are added to remove either individual spectra or
complete classes. All the labeled spectra will appear in the right panel. Being satisfied
with the extracted spectra, finally, the data can be exported to a .txt file. Apart from the file
with the labeled spectra, an associated .txt file is created with metadata, including the data,
number of samples, number of bands, name of the classes, information of the geo-data
and how the data file is organized. Additionally, as the tool is designed to extract spectral
profiles from an image cube, it also provides the option to stack files with individual bands
into a single multispectral image.

Figure 3. The LabelMeClass tool for extracting labeled data from imagery.

2.5. Demonstration Study: Satellite Data and Feature Selection

A demonstration study is presented next. Concerning the used satellite data, earlier
studies already demonstrated that the S2 Multi Spectral Instrument (MSI) imagery is apt
for plant community classifications, including heterogeneous landscapes with complex and
sparse vegetation patterns [68–70]. S2 offers 13 spectral bands at a spatial resolution of 10,
20 and 60 m. We downloaded a L2A S2 image acquired on 10 June 2020. The image location
corresponds to path 164 and row 38 from the USGS (https://earthexplorer.usgs.gov/,
accessed on 2 July 2022). This date represents maximum phenological development for the
majority of PTs in the study area. The three-coarse resolution bands of 60 m pixel size, i.e.,
443 nm (B1), 945 nm (B9), and 1374 nm (B10), were excluded from our analysis, as their
purpose is the correction of clouds and atmospheric effects.

First, 20 m spatial resolution bands (bands 5, 6, 7, 8a, 11, and 12) and 10 m spatial
resolution bands (bands 2, 3, 4, and 8) were fused through the Gram–Schmidt algorithm.
By executing this algorithm, 20 m bands are downscaled to 10 m and a 10 m dataset was
created. The pixel size equalizing of all bands when converting the 20 m to 10 m bands
was done by resampling other bands with larger pixel sizes using the nearest neighbor
algorithm so that the values of adjacent pixels are added for new pixels and avoid the

https://earthexplorer.usgs.gov/
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geometric error [71]. Regarding feature selection, selected spectral bands were stacked into
a set of datasets and were supplemented with image transformations, namely PCA. From
the spectral bands, the first three principal components (PCs) were extracted. These PCs
explained > 95% of the data variation and were generated using the spectral information
for each image individually [32].

2.6. Study Area and Ground Data

The classification study here presented targets the Marjan watershed area located in the
Chaharmahal-Va-Bakhtiari province in the southwest of Iran (51°23′12′′E and 32°08′01′′N).
Before 1990, Marjan was used as an agricultural area with intensive tilling and cultivation.
From the year 2000, agricultural activities were reduced due to land abandonment, initiating
a nature conservation and rehabilitation program [72]. The vegetation of Marjan went
through natural succession, recovering to full canopy cover, with shrubs and perennial
grasses becoming dominant. Figure 4 shows the Marjan watershed area with the plant
community boundaries, which can be straightforwardly observed due to relatively narrow
ecotones and sharp borders. The current vegetation of Marjan consists of shrub land, grass
land, semi-shrub land and shrub land–grass land vegetation, while trees are absent. PT
data were collected as follows. In spring, which coincides with the beginning growth
and maximum plant species growth, we sampled the four identified PTs using three
replicates so that the canopy cover was sampled along three transects of 100 m that were
evenly distributed throughout the study area with different topography. The sampling was
systematic random (the first node was selected systematically but the rest were randomly
distributed along the transects). We collected a species-based canopy cover within each
quadrat. In each PT, the canopy cover percentage was calculated and the PTs were named
according to their dominant floristic composition. For this purpose, first, the dominant
plant species of each PT was identified and then its accompanying species was determined
by having 50% or more of a canopy cover of a previously dominant species cover. Thus,
each PT was named based on a physiognomic–floristic method. Four distinct PTs with the
highest coverage in the area were identified, namely: PT1, representing the areas dominated
by shrubs, such as Astragalus verus Olivier. PT2 represents the areas consisting of grasses,
such as Bromus tomentellus Boiss. (1846) and Stipa hohenackeriana rin. and Rupr. (1842). PT3
involves semi-shrubs vegetation, such as Scariola orientalis (Boiss.) Soják (1962) and Noaea
mucronata (Forsk) Aschers. et Schweinf. (1887). The PT4 class includes shrub-grasses, such
as Astragalus verus Olivier (1807)—Bromus tomentellus Boiss and Astragalus verus Olivier
(1807)—Stipa hohenackeriana Trin and Rupr.

Within each PT, a set of 75 XY random sample points were recorded with a Garmin
eTrex 32× Handheld GPS (i.e., 300 points in total). Corresponding spectral data were
subsequently added using the LabelMeClass tool. The exported file was then entered into
the MLCA toolbox applying a random splitting of 70% for training and 30% for validation.
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Figure 4. Location of Marjan in the Chaharmahal-Va-Bakhtiari province in southwest Iran: (a) Iran
border; (b) Chaharmahal-Va-Bakhtiari border; (c) study area border (Marjan).

3. Results

Building 21 machine-learning classifiers through training and validation with an
identical dataset led to varying accuracy results for the classification of the PTs. The MLCA
validation module automatically ranked the classifiers based on overall accuracy (OA)
results and provided additional accuracy statistics, as shown in Table 3. Results can also
be ranked according to the OA. Gaussian process classifier (GPC) was validated as top-
performing, with an OA of 90%. The superiority of GPC stands out, as it substantially
outperformed all the other classifiers. For this best-performing classifier, the accuracy
matrix is exemplarily provided in Figure 5 (left), but note that it can be consulted for any
trained model. The second best classifier resulted to be the random forests (RF) algorithm
with an OA of 86%. Furthermore, RF delivered top-performing accuracy given that two
other types of ensemble-learning algorithms, i.e., tree-ensemble learning (bagging) and
decision tree (ECOC), followed at some distance with an OA of 83% and 82%, respectively.
The large majority of algorithms closely followed with an OA lowering between 80% and
70%. For instance, the widely used support vector machine classifier produced an OA of
74%. For brevity, the classifiers leading to OA results below 70% were not shown in the table.
At the same time, despite the convincing results of the top-performing classifiers, it must be
emphasized that the performance and, thus, ranking of these data-driven methods, largely
depends on the entered data. Most likely, the validation outcomes of the classifiers are
ranked differently in other applications. The message here is that a variability of classifiers
are analyzed, so that the best-performing model can be applied to image processing.
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Table 3. Accuracy results against validation data for all MLCAs. Results are ordered from best overall
accuracy (OA) to worst.

MLCA PT1 PT2 PT3 PT4

Gaussian processes classifier

Precision (PA %) 86.9 81.8 100 90.9
Sensitivity (UA %) 95.2 94.7 84.6 86.9

Specificity (%) 95.5 94.2 100 96.9
F1-Score (%) 90.9 87.8 91.6 88.8

OA = 90.0%

Random forest

Precision (PA %) 86.9 86.3 86.3 86.3
Sensitivity (UA %) 90.9 86.3 86.3 82.6

Specificity (%) 95.5 95.5 95.5 95.4
F1-Score (%) 86.3 86.3 86.3 84.4

OA = 86.5%

Tree EL (bag)

Precision (PA %) 91.3 86.3 86.3 68.0
Sensitivity (UA %) 80.7 82.6 382.6 88.2

Specificity (%) 96.8 95.4 95.4 90.2
F1-Score (%) 85.7 84.4 84.4 76.9

OA = 83.1%

Decision tree (ECOC)

Precision (PA %) 91.3 75.7 81.8 81.8
Sensitivity (UA %) 87.5 84.2 72.0 85.7

Specificity (%) 96.9 91.4 93.7 94.0
F1-Score (%) 89.3 78.0 76.6 83.7

OA = 82.0%

Discriminant analysis (ECOC)

Precision (PA %) 86.9 86.3 81.8 63.6
Sensitivity (UA %) 83.3 79.1 85.7 70.0

Specificity (%) 95.3 95.3 94.0 88.4
F1-Score (%) 85.1 82.6 83.7 66.6

OA = 79.7%

Neural network (Adam)

Precision (PA %) 95.6 81.8 72.7 68.1
Sensitivity (UA %) 81.4 81.0 84.2 71.4

Specificity (%) 98.3 94.0 91.4 89.7
F1-Score (%) 88.0 81.0 78.0 69.7

OA = 79.0%

Classification trees

Precision (PA %) 91.3 72.7 81.8 68.1
Sensitivity (UA %) 87.5 80.0 72.0 75.0

Specificity (%) 96.9 91.3 93.7 89.8
F1-Score (%) 89.3 76.1 76.6 71.4

OA = 78.6%

Discriminant analysis (quadratic)

Precision (PA %) 86.9 72.7 81.8 72.2
Sensitivity (UA %) 86.9 80.0 69.2 80.0

Specificity (%) 95.4 91.3 93.6 91.3
F1-Score (%) 86.9 76.2 75.0 76.1

OA = 78.6%

k-nearest neighbors (ECOC)

Precision (PA %) 82.6 63.6 81.8 77.2
Sensitivity (UA %) 90.4 73.6 69.2 73.9

Specificity (%) 94.1 88.5 93.6 92.4
F1-Score (%) 86.3 68.3 75.0 75.5

OA = 76.4%



Remote Sens. 2022, 14, 4452 12 of 21

Table 3. Cont.

MLCA PT1 PT2 PT3 PT4

Neural network (trainbr)

Precision (PA %) 82.6 68.1 89.3 59.0
Sensitivity (UA %) 76.0 78.9 79.1 61.9

Specificity (%) 93.7 90.0 95.3 86.7
F1-Score (%) 79.1 73.1 82.6 60.4

OA = 74.1%

Support vector machines (ECOC)

Precision (PA %) 86.9 68.1 77.2 63.6
Sensitivity (UA %) 80.0 71.4 68.0 77.7

Specificity (%) 95.3 89.7 92.1 88.7
F1-Score (%) 83.3 69.7 72.3 70.0

OA = 74.1%

Linear classification (ECOC)

Precision (PA %) 86.9 68.1 77.2 36.3
Sensitivity (UA %) 80.0 71.4 68.0 77.7

Specificity (%) 95.3 89.7 92.1 88.7
F1-Score (%) 83.3 69.7 72.3 70.0

OA = 74.0%

Neural network (trainscg)

Precision (PA %) 82.6 72.7 72.7 63.6
Sensitivity (UA %) 86.3 69.5 66.6 70.0

Specificity (%) 94.0 90.9 90.7 88.4
F1-Score (%) 84.4 71.1 69.5 66.6

OA = 73.0%

Naive Bayes

Precision (PA %) 78.2 90.9 45.4 72.7
Sensitivity (UA %) 81.8 76.9 90.9 53.3

Specificity (%) 92.5 96.8 84.6 89.8
F1-Score (%) 80.0 83.3 60.6 61.5

OA = 72.0%

Neural network (trainlm)

Precision (PA %) 82.6 63.6 77.2 63.6
Sensitivity (UA %) 82.6 77.7 60.7 70.0

Specificity (%) 93.9 88.8 91.8 88.4
F1-Score (%) 82.6 70.0 68.0 66.6

OA = 72.0%

Tree EL (AdaBoost)

Precision (PA %) 86.9 95.4 45.4 54.5
Sensitivity (UA %) 83.3 61.7 62.5 80.0

Specificity (%) 95.3 98.1 83.5 86.4
F1-Score (%) 85.0 75.0 52.6 64.8

OA = 70.7%

Discriminant EL

Precision (PA %) 86.9 90.9 36.3 63.6
Sensitivity (UA %) 76.9 71.4 88.8 53.8

Specificity (%) 95.2 96.7 82.5 87.3
F1-Score (%) 81.6 80.0 51.6 58.3

OA = 69.6%

Apart from the OA and k accuracy metrics, additional statistical results per class are
also provided in Table 3. For each PT, Precision, Sensitivity, Specificity and F1-Score per
classifier are given. For instance, for the best-performing GPC, PT3 led to the highest
PA with 100%, and PT2 (grass vegetation) led to the lowest PA with 82%. Yet, with
only four classes, on the whole, PT class detection accuracies are generally alike, as also
expressed by the F1-Score that is around 90%. Furthermore, the second best classifier, RF,
leads to a consistent accurate detection of the four PT classes, with an F1 score of around
86%. However, when lowering to the following classifiers, stronger differences between
the classes appear, with generally most difficulties in detecting PT class 4.
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An interesting property of GPC is the ability to provide band relevance, obtained
through automatic relevance determination (ARD) kernels [73]. The relevance of the
features can be demonstrated with a polar plot according to Ayala Izurieta et al. [74].
Hereby, the class-specific relevance for each feature is obtained, with values further away
from the center expressing increasing importance. The polar plot (Figure 5 (right)) thus
provides insights about the key features of the classification process. For instance, it
indicates that from the first three PCs, only the second one plays an important role. In fact,
the third component had no influence at all, and probably can be discarded. Furthermore,
regarding the original S2 bands, B6 (740 nm) and B11 (1610 nm) played only a marginal
role. It implies that these two bands expressed too little relevant information to contribute
to the identification of the classes. In turn, the most relevant S2 bands appeared to be in
the visible green-to-red edge (B3, B4, B5), and then in the near infrared (NIR, B7, B8) and
shortwave infrared (SWIR, B12), but only for some classes. In summary, as part of the
training process, GPC provides band relevance information to be used to interpret the
sensitivity of the spectral information for the performed classification.

PCA1

PCA2

PCA3

B2 (490 nm)

B3 (560 nm)

B4 (665 nm)

B5 (705 nm)B6 (740 nm)

B7 (783 nm)

B8 (842 nm)

B8a (865 nm)

B11 (1610 nm)

B12 (2190 nm)

0

1

2

3

PT1
PT2
PT3
PT4

Figure 5. Left: confusion matrix of GPC against validation data with correct detection in the blue
shade and wrong detection in the red shade. Furthermore, summary percentages per class are
provided. Right: polar plot of GPC band relevance for the four classes calculated according to the
equations described in [74]. The further away from center, the more important.

The seven top-performing models were subsequently applied to the S2 image. Starting
with GPC, Figure 6 (left) displays the resulting PT thematic map. Inspecting the GPC-
produced PT classes accuracy (Table 3, Figure 5) and obtained map, the following trends are
noteworthy. PT1 yielded the highest UA (95.2%), while PT3 led to the lowest UA (84.6%).
PT1 is characterized by single-dominated shrubby species with relatively higher canopy
cover. Consequently, the higher reflectance of this class, which presents pure pixels of
shrubs, resulted in a higher accuracy of classification for this PT. PT3 is characterized by
sparse distribution and irregular semi-shrubs species with areas of bare soil frequently
visible between plants. Thus, the presence of bare soil and its impact on reflectance received
by the satellite sensors likely reduced the classification accuracy in this PT. PT4 consists of
two dominant species of shrub-grasses, having dissimilar spectral behavior due to life form
differences, therefore, causing more mixed pixels, and consequently, lower UA (86.9%). The
GPC-produced map (Figure 6) reveals that PT2 is distributed mainly in the flat areas of the
study area, whereas PT1 and PT4 are distributed on more steep slopes. PT3 occurs evenly
almost throughout the whole study area. Being a combination of shrub-grass vegetation,
PT4 dominates and accounts for 39.8% of the entire study area. PT3 is characterized by
sparse distribution and irregular semi-shrubs species with areas of bare soil frequently
visible between plants, accounting for only 15.6%. The shrubs vegetation of PT1 and grass
vegetation of PT2 accounted for 23.8% and 20.7%, respectively.

Apart from excellent thematic mapping results, another appealing property of the
probabilistic GPC is the delivery of associated uncertainty estimates. It is calculated
through the predictive variance, which, in the case of a nonlinear GPC with a kernel
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function k over a test pixel x∗, corresponds to V[f(x∗)] = k(x∗, x∗) − v>v, where v is
obtained through the Laplace approximation (see Chapter 3, Equation (3.29) in book [55]
to obtain the detailed procedure). Although contrarily to regression, in the classification
framework, the predictive variance loses its physical meaning and provides a confidence
measurement about the inferred discrete label. This predictive variance is interpreted as the
higher the more uncertain the classification, and conversely, the lower, the more confident.
Consequently, the associated uncertainty map (Figure 6 (right)) reveals the fidelity of the
classification result. A systematic spatial pattern appears with higher uncertainties in the
valleys and patches on mountain tops. Practically, the uncertainty map illustrates which
regions are more or less well represented in the training dataset. Hence, the map informs
where additional samples could be collected and added to the training dataset to increase
the robustness of the classification model.

GPC thematic map associated uncertainties (SD)GPC

2500 Meters

51° 17'33'' 51° 20'22'' 51° 23'10''

32
° 

7'
1'

'
32

° 
3'

60
''

32
° 

0'
58

'' PT1
PT2
PT3
PT4

 N 

Map of Uncertainty

2500 Meters

51° 17'33'' 51° 20'22'' 51° 23'10''

3
2

° 
7

'1
''

3
2

° 
3

'6
0

''
3

2
° 

0
'5

8
''

0.5

1

1.5

2

 N 

Figure 6. Left: thematic map of PTs as obtained from the top-performing Gaussian process classifier
(GPC). Right: Associated uncertainty map as expressed by standard deviation. The higher the value,
the more uncertain.

In comparison, generated maps, as produced by the subsequent six best-performing
classifiers, are shown in Figure 7, being: (1) RF, (2) tree EL (bag), (3) decision tree (ECOC),
(4) discriminant analysis (ECOC), (5) neural networks, and (6) classification trees. The
spatial differences among the maps are evident, with RF resembling most closely the
top-performing GPC map. Consequently, the revealed spatial patterns and differences
highlight the relevance of striving for applying the most accurate classifier. Inspecting
accuracy results alone is not enough; although overall accuracies of multiple classifiers
may be alike given a limited validation dataset, the impact of the classifiers on thematic
mapping and resulting spatial patterns over larger areas can be substantial. Hence, apart
from the importance of applying the top-validated classifier, a thorough visual inspection
remains critical to ensure the produced map is fully accurate.
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Figure 7. Thematic maps of PTs as obtained from the second- to seventh-best validated classifiers
(see Table 3). RF: random forests, TEL: tree-ensemble learning (bag), DT: decision tree (ECOC), DA:
discriminant analysis (ECOC), NN: neural network (Adam), CT: classification trees.

4. Discussion

Accurate thematic maps that depict the patterning of land cover in the landscape are
indispensable for land cover conservation and effective managing [75]. This accuracy is not
only dependent on the classification scene or the data themselves, but it is also strongly
bound to the applied classification method. For that purpose, this study aimed to introduce
ARTMO’s new classification “MLCA toolbox” with an application of PTs mapping in a
heterogeneous, semi-steppe Iranian landscape. The particular challenge here lies in the
spectral similarity of the PTs, being vegetation sub-classes. The classification layout used for
separating PTs is based on the premise that each class is the result of a distinct combination
of diagnostic species. We selected four dominant PT classes in the study area: PT1 with
the shrubs vegetation, PT2 with the grass vegetation, PT3 with the semi-shrubs vegetation,
and PT4 with the combination of shrub-grass vegetation. Aggregating precise information
of related PTs characterized by rather similar spectral responses at the landscape level is an
ambitious classification task. Apart from the applied classifier, the success of land-cover
mapping in general and PTs specifically relies on the careful selection of remote sensing data
with appropriate spatial and spectral features to improve classification accuracy [76]. The
present era of Earth observation with multiple optical satellite sensors orbiting the Earth
has provided free imagery with high spectral, spatial, and temporal resolutions considered
essential tools for vegetation cover mapping. Here, S2 satellite imagery was selected for
the classification task. S2 imagery has demonstrated its utility for vegetation mapping due
to its optimal radiometric resolution [77]. Typically, the most sensitive bands in vegetation
mapping studies are located in the visible red, red edge, and NIR domains. Since the MSI
onboard the S2 satellite is equipped with bands located in the visible red and red edge (B4,
B5, B6, and B7), NIR (B8 and B8a) and even SWIR (B11, B12), it allows to retrieve valuable
information related to vegetation properties, e.g., to discriminate PTs [78–80]. Regarding
the extraction of labeled spectra for training or validating the classifiers, ARTMO’s new
LabelMeClass tool facilitates the collection of spectra from a loaded image, either based
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on GPS coordinates or visually selected. The export option prepares the output .txt file
ready-to-import into the MLCA toolbox.

4.1. Selection of the Best Machine-Learning Classification Algorithm

After the collection of labeled spectra for training and validation, the next essential step
was selecting a suitable classification algorithm to obtain an accurate thematic map. This
depends on the capacity of the supervised algorithm to classify land covers correctly, its
operational capacity, interpretability and transparency, given the entered training data. The
current generation of machine-learning classifiers proved to be more accurate and robust
than conventional classification techniques in multiple studies, especially when the feature
space is complex and data present different statistical distributions [81–83]. Its popularity in
mapping applications lies in multiple factors [81,83–86]: (1) the ability of these techniques
to learn complex patterns, nonlinear in many cases; (2) the high generalization capacity of
these algorithms, which allows to apply them on incomplete or noisy databases; (3) the
possibility of incorporating a priori information; and above all, (4) their independence with
respect to the data statistical distribution. This latter characteristic makes it possible to
incorporate data from different sensors, auxiliary variables—such as those derived from
digital terrain models—or even categorical variables [87,88].

Despite the popularity of common supervised machine-learning classifiers in thematic
mapping applications, a freely downloadable software package that brings the diversity
of the latest MLCAs together in a streamlined toolbox was still missing. To facilitate the
use of these advanced algorithms by the broader community, here we introduced a novel
GUI toolbox within ARTMO’s software framework that guides the user through evaluating
over 20 supervised MLCAs and applying a selected model for mapping applications. The
MLCA toolbox uses the same logic as ARTMO’s machine learning regression toolbox [89],
i.e., it streamlines the training and validation of the classifiers, and the user can then select a
classification model (e.g., the best-performing one) for mapping applications. Furthermore,
the toolbox largely uses the same machine learning algorithms available from Matlab,
but then the classification version. Finally, all models and validation results are being
stored in a MySQL server running underneath, ensuring easy loading and application of
an earlier model.

4.2. Perspectives of Gaussian Process Classifier (GPC) in Remote Sensing

Based on the evaluation of all included MLCAs using the collected semi-steppe PTs
dataset, GPC was identified as a top-performing classifier with an OA of 90%. GPC out-
performed widely used MLCAs such as RF, support vector regression, or neural networks.
Each of these classifiers were evaluated as top-performing against other common classifiers
in earlier studies [30,90,91]. The outstanding accuracy reached by GPC is remarkable; as in
this study, we did not aim for detecting the usual thematic land covers with distinct spectral
behaviors (e.g., water, land, vegetation). Instead, we targeted the detection of related PTs
where the spectral behavior is alike, leading classical classifiers to fail PTs detection with
adequate accuracy [92]. In addition, the majority of past studies dedicated to thematic
mapping using satellite imagery evaluated only a few classifiers [42,84]. To the best of our
knowledge, this is the first time that more than 20 different MLCAs were evaluated.

GPC has not yet received the full attention it deserves [93]. As pointed out in this
work, GPC comes from a probabilistic framework which offers a bunch of advances with
respect to other techniques inside the statistical learning theory. These include the capability
of providing confidence estimation about the inferred class value (i.e., uncertainty map),
the optimization of hyperparameters under an optimization framework based on the
maximization of the likelihood function, and the capability of optimizing more complex
kernel functions. We used the ARD [73] kernel whose complexity increases with the number
of input dimensions or, equivalently, with the number of wavelengths. The advantage
of the ARD kernel is that it provides band ranking information, and thus, identifies the
most sensitive bands in the development of the classification model. The advantage of
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uncertainty information is that it allows inspecting how the GPC model performs over
the complete image. Practically, high uncertainty over an area tells that the model would
benefit from additional sampling over that area. At the same time, uncertainty can be used
to assess the portability of the model when applied to other images in space and time [94].
On the downside, GPCs are computationally demanding; the optimization process involves
many matrix inversions and parameter choices. Despite this, the framework in which GPCs
are built is robust, allowing to obtain optimal estimates with a relatively small number of
samples. When the training dataset is fairly small, as presented in this study (i.e., 300), then
training time is in the order of seconds (12 s), and mapping runtime is quasi-instant (here
<1 min). When aiming to use larger training datasets (i.e., in the order of thousands), then
alternative solutions may have to be introduced as presented in the literature, such as a
sparse-approximation, for example, informative vector machine [93], active learning [95],
or Fourier approximations [96]. These studies indicate that variations of GPCs have been
developed, e.g., in order to cope with larger training datasets, and are of interest to be
implemented into future versions of the MLCA toolbox.

As a closing remark, it must be mentioned that the MLCA toolbox does not have
to be restricted to the processing of multi-spectral data. When combining the classifiers
with the dimensionality reduction methods (e.g., PCA), it is perfectly prepared to process
hyperspectral data. Within the emerging spaceborne imaging spectroscopy era with the
recently launched Environmental Mapping and Analysis Program (EnMAP), PRecursore
IperSpettrale della Missione Applicativa (PRISMA), and planned operational hyperspectral
satellites, it is expected that the toolbox will open opportunities for improved or new
thematic mapping applications. At the same time, we envision to expand the MLCA
toolbox with the latest machine learning algorithms, including in the field of image-based
deep learning, as well as in the field of unsupervised learning. Furthermore, a change
detection tool is foreseen. The ARTMO software framework is freely downloadable at:
http://artmotoolbox.com/ (accessed on 2 July 2022).

5. Conclusions

Machine learning algorithms became standard practice in the field of vegetation clas-
sification. However, despite the diversity of distinct classifiers implemented in popular
computing languages, an intuitive software GUI toolbox that enables automated evalu-
ation of multiple MLCAs was still lacking. In this study, we introduced the ARTMO’s
MLCA toolbox encompassing 21 supervised MLCAs that belong to the key families of
supervised per-pixel machine-learning classification algorithms, including decision trees,
neural networks, ensemble methods, and kernel-based classifiers.

To demonstrate the utility of the MLCA toolbox, a vegetation thematic mapping
study was conducted, focusing on the detection of plant-types. PTs in a semi-steppe
Iranian landscape, consisting of a few dominant plant species, are characterized by a
complex spatial structure and are often spectrally similar, leading to a low inter-class
separability. Therefore, these heterogeneous vegetation communities are challenging to
aggregate using satellite imagery and conventional classifiers. Based on a dataset collected
from four dominant PTs, a Gaussian process classifier (GPC) excelled with an OA of
90%. Moreover, the GPC not only outperformed established MLCAs, such as random
forests and neural networks for this challenging task, but also provided band ranking
information and associated uncertainty estimates. Finally, the MLCA toolbox has been
made freely available to the community, allowing the evaluation of the MLCAs for any
thematic mapping application from optical Earth observation data.
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