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Abstract: Grapes are one of the world’s most widely distributed crops and are cultivated in more
than 100 countries in the global scheme. Due to climate change and improper vine growth variable
selection, production has significantly decreased across countries. Therefore, the primary purpose of
this study was to develop a land suitability analysis method using a fuzzy expert system at a regional
scale. The fuzzy membership function was used in the ArcGIS® environment to perform the spatial
analysis, and the overlay function was used to generate the final suitability map for Afghanistan
considering policy planning. The results indicated that 23% (15,760,144 ha) of the areas were potential
and located in the highly suitable region for grape production; however, 11% (7,370,025 ha) of the
regions were not suitable for vineyards throughout the country of Afghanistan. In the present study,
it was observed that most of the vineyards were in highly suitable areas (90%, 80,466 ha), while
0.01% (5 ha) of the vineyards were in less suitable areas. The present analysis demonstrated that
the significant extension of grape vines can be possible in highly suitable areas. The results of this
research can support decision-makers, farm managers and land developers to find more prospective
acreage for expanding vineyards in Afghanistan.

Keywords: land suitability analysis; vineyards; regional scale and fuzzy

1. Introduction

Land suitability analysis is an important tool to maintain the long-term viability of
agricultural lands. It is also an important management strategy to identify the ideal farming
locations for various crops and vineyards. Land suitability evaluation is also a basis for land
use planning and helps to establish the most suitable uses of land on a regional scale [1–3].
Assessing the potential of land for grapevine extension is very important to increase grape
production on a regional scale. It also supports farmers in increasing their income and
ensuring their livelihood. In recent land suitability analysis, researchers considered GIS-
based multicriteria, satellite remote sensing vegetation indices and UAV (Unmanned aerial
vehicle) images to increase the resolutions for higher accuracy in interpretations [4–6].

Land suitability analysis using remote sensing data at the regional scale may increase
the complexity of data collection and image processing due to the high data volume and
diversity that it generates. With regard to incorporating big data analytics with cloud
computing, large-scale scientific applications have demonstrated the advantages of high
computational and storage constraints that are simple to implement [7]. The Google Earth
engine (GEE) makes this task possible for everyone to access and manipulate these data
without cost and large computational facilities [8]. In addition, rainfall datasets are also
difficult to obtain on a regional scale. Across most of the globe, there is neither a reliable
system of weather data nor a homogeneous distribution of those that exist. Consequently,
it is essential to study other data sources for rainfall information, such as satellite-based
near real-time rainfall information and radar data. In addition, there are products with low
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latency and extensive records, such as the Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) dataset. This package contains integrated models of terrain-induced
precipitation, precipitation estimates from measurement satellites that cover the majority of
the globe and have low latency and polarization, and achieve precipitation estimates from in
situ stations. The CHIRPS dataset contains a lengthy recording period (1981 to the present)
with a fine spatial resolution of 0.05◦ [9,10]. Not only is precipitation information important
for vineyard management, but vegetation and soil properties are also important to locate
further potential areas to increase vineyard cultivation coverage under agroecology.

In agroecological zoning, satellite remote sensing-based topographical, vegetation,
climate, and soil features can be included for land suitability analysis [11]. The Food and
Agriculture Organization (FAO) classified land suitability in four categories: highly suitable
(S1), moderately suitable (S2), marginally suitable (S3), and not suitable (N) [12]. The
determination and identification of land suitability categories were performed based on the
determination of numerous aspects that influence the quality of land. Since many variables
have been used in this analysis, it is called a multicriteria decision-making process [13]. To
develop a suitability map in different classifications and overlay methods, AHP (analytical
hierarchy process) weighted overlay, fuzzy logic, and weighted linear combination (WLC)
are commonly used. Furthermore, a combination of two methods, fuzzy and AHP, are also
used in the land assessment process [14–16].

Among all the suitability overlay methods that are mentioned, the AHP is the simplest
for generating the weight. However, there is evidence of prejudice in the conclusions
drawn from expert assessments [17,18]. Another method is WLC, which primarily em-
ploys the weighted average operation to combine the appropriateness ratings of several
evaluation elements into a single composite score. WLC has become one of the most
widely utilized land suitability analysis techniques due to its simplicity, adaptability, and
effectiveness [19,20]. The Fuzzy-AHP approach is also used for generating suitability
maps. In this method, classification was performed by the fuzzy membership function and
weight of each criterion obtained by AHP, and finally, the suitability map was developed
by the overlaying method [21,22]. Fuzzy suitability analysis is an effective technique with
improved precision for land suitability evaluations. To standardize the criterion, the fuzzy
set membership can be utilized [13]. Fuzzy logic provides more realistic results since it can
classify variables in a continuous manner and consider all the uncertainties of a problem
more thoroughly than other methods, such as Boolean classification [15,22]. All the overlay
methods have been used for different crop suitability analyses, such as rice, maize, cassava,
grapes, and other crops [23–29]. There is a significant advantage to employing CHIRPS
rainfall for land suitability analysis, which can overcome the limitations of stations and
radar data. Most studies used are station- and Japan Aerospace Exploration Agency (JAXA)
rainfall-based [30,31]. In addition, the GEE is also an effective platform for climate-weather
and geophysical datasets. Moreover, fuzzy sets reduce subjectivity and increase effec-
tiveness in land suitability analysis [32]. There is very limited research in the world on
land suitability analysis for table grapes at the regional scale where climatic variability is
severe and environmental factors have uncertainty. Former suitability assessment mostly
focused on the relationship between vintage quality and other environmental variables for
wine grapes [22,33,34]. Coulon-Leroy et al. (2014) developed a vine vigor model using a
fuzzy set based on data related to soil, rootstock, and inter-row management strategies and
spatial suitability assessment was done for vineyard site selection based on biophysical
models and fuzzy logic for spatial land assessment in micro-scale [15,34]. Accordingly,
in Afghanistan, land suitability analysis was performed based on the AHP method for
saffron and grapes on a micro-scale [35,36]. This study focused on all of Afghanistan on a
regional scale and to reduce the subjectivity of suitability analysis, the fuzzy method was
performed. The fuzzy set addresses such uncertainty of climatic variables and biophysical
and soil properties with justification on a continuous scale precisely. Thus, for the extension
of vineyards, the government needs a comprehensive land assessment system to determine
the potential region for vineyards. Aside from ground assessment, suitability analysis for
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finding the potential vineyard area is one of the best options. Therefore, the primary objec-
tive of this study was to develop a land suitability analysis method for potential vineyard
extension based on biophysical, infrastructural and climate variable using a fuzzy-based
expert system and satellite remote sensing at the regional scale.

2. Materials and Methods
2.1. Study Area

Afghanistan is a landlocked country that is located between 33.9391◦ to the north
and 67.7100◦ to the east. Afghanistan’s scenery is dominated by high mountains and
arid deserts. The craggy mountain summits are dangerous and snow-covered for most
of the year. The country consists of 34 provinces with a total population of 40.2 million
(Figure 1) [37]. Most of the population lives in fertile valleys. The summers are very hot and
dry, and the winters are very cold, especially at high elevations. The area is divided into
three parts: the eastern, central, and western regions. The eastern regions are Badakhshan,
Takhar, Kunduz, Baghlan, Panjsher, Nuristan, Parwan, Kapisa, Kunar, Wardak, Kabul,
Laghman, Nangarhar, Ghazni, Logar, Paktya, Khost, and Paktika Provinces. The central
regions are the Balkh, Jawzjan, Sari Pul, Samangan, Bamyan, Ghor, Daykundi, Uruzgan,
Zabul, and Kandahar Provinces, and the western regions are the Faryab, Badghis, Hirat,
Farah, Nimroz, and Hilmand Provinces. The country’s climate is favorable for different
vegetables and fruits. Among all fresh fruits, grapes are the most economically important
horticultural crop, with a total production of 993,382 tons in 2020 in the country [37]. The
total vineyard area is 87,593 ha, which makes up 0.13% of Afghanistan’s land [38]. A total
of 46.97% of Afghanistan consists of rangeland and 34.45% of non-arable land. This means
that the area for agricultural activities is very limited.
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2.2. Vineyard Suitability Framework

This research was conducted in three steps. In the first step, infrastructure, soil,
vegetation, and climate variables were organized for vineyard suitability analysis, as
portrayed in the research flowchart (Figure 2 and Table 1). Variable maps, such as
(a) elevation, (b) slope, (c) river, (d) road, (e) soil depth, (f) soil pH, (g) soil texture, (h) soil
salinity, (i) NDVI, (j) LULC, and (k) rainfall were developed (Figure 3). In this research,
different sources were used to obtain the datasets, such as FAO, readily available sources,
and GEE for downloading big datasets of Landsat 8 Operational Land Imager (OLI) and
rainfall. All primary suitability variables were resampled to the same resolution (30 m)
as Landsat 8 OLI. Second, the fuzzy membership function was applied to each variable
based on previous literature (Figure 4 and Table 2) [14,15,28,39–43]. Third, in the ArcGIS®

environment, fuzzy gamma was applied to overlay all the variables. The suitability classes
were identified (Figure 5) [44]. Finally, validation was performed with ground reference dataset.
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Table 1. Variable selections and their explanation for specifications that included data types and sources.

No Data Explanation Types Source of Data

1 Land use map
Derived from Spot (10 m color), Google
Earth (2.5 m 1 m, /0.6 m color) and Arial
Photographs (1 m color/0.5 m B and W).

Raster FAO, 2016

2 Slope map The Shuttle Radar Topography Mission
(SRTM), resolution 1-ARC Raster

DEM SRTM USGS,
2014 & 20153 Elevation map

4 Rainfall map CHIRPS PERSIANN-Cloud classification
system, resolution of 4 km × 4 km Raster CHIRPS,

2016–2020

5 NDVI map Landsat 8 (Collection 1 Tire 1 eight-days
composite) composite NDVI scenes Raster Google Earth

Engine, 2016–2020

6 Soil pH
Soil mapping developed from field soil

survey and laboratory analysis.
Afghanistan soil atlas

Raster FAO, 2020
7 Topsoil texture

8 Topsoil depth

9 Topsoil salinity

10 Road map
This dataset is an extraction of roads

from OpenStreetMap data made by WFP
following UNSDI-T standards

Vector
Afghanistan Road

Network (main
roads), 2018

11 River map Scale 1:50,000 Vector AIMS OSM
OCHA, 2019

12 Vineyard’s
locations Polygon and point Vector FAO, 2016

Table 2. Fuzzy Suitability membership function for vineyard.

No. Variable
Fuzzy Membership Function

Equation Fuzzy
Membership TypeMid-Point Spread

1 Elevation 2500 m 5 µ(x) =
1

1+( x
2500 )

5 Small

2 Slope 15.6 5 µ(x) =
1

1+( x
15.6 )

5 Small

3 Road 1000 3 µ(x) =
1

1+( x
1000 )

3 Small

4 River 1000 5 µ(x) =
1

1+( x
1000 )

5 Small

5 Soil Depth 1 0.1 µ(x)= e(−0.1 × (x − 1)2) Gaussian

6 Soil pH 8.13 0.1 µ(x)= e(−0.1 × (x − 8.13)2) Gaussian

7 Soil Texture 4.5 0.1 µ(x)= e(−0.1 × (x − 4.5)2) Gaussian

8 Soil Salinity 3.5 0.1′ µ(x)= e(−0.1 × (x − 3.5)2) Gaussian

9 LULC 0.5 1 µ(x)= e(−1 × (x − 0.5)2) Gaussian

10 Rainfall 500 m 0.1 µ(x)= e(−0.1 × (x − 500)2) Gaussian

Variable Minimum Maximum

11 NDVI 0.513 0.716 µ(x) =


0 x ≤ 0.513

x − 0.513
0.716−0.513 0.513 < x < 0.716

1 x ≥ 0.716
Linear
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2.3. Dataset and Variable Conversion (Fuzzification)

In the fuzzification method, the datasets of various ranges and unites were transformed
into a common scale (0–1). The fuzzy small, large, linear, and Gaussian were assigned to
biophysical, climatic, infrastructure, topographic, and soil-related variables in this study,
respectively. The fuzzy small transformation function was used when the small values of
the input raster were more likely to be a member of the set (Table 2). The defined midpoint
identifies the crossover point (assigned a membership of 0.5), with values greater than
the midpoint having a lower chance of membership and values less than the midpoint
having a higher chance of membership [Equation (1)]. Fuzzy linear indicates that the
linear relationship in datasets and minimum values were assigned to 0, and maximum
values were assigned to 1 [Equation (2)]. The fuzzy Gaussian demonstrated the normal
distribution of datasets. The midpoint was assigned 1, and the remaining datasets moved
in positive and negative directions. The input value membership was decreased when
data moved from the midpoint [Equation (3)] [16]. All fuzzy membership functions have
a midpoint (f2) and a spread (f1) [16]. Then each variable was classified according to the
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number and four categories, 1–0.85, 0.85–0.5, 0.5–0.25, and 0.25–0 and, respectively, highly
suitable, moderately suitable, marginally suitable, and not suitable areas (Figure 4).

µ(x) =
1

1+
(

x
f2

)f1
(1)

where µ is the fuzzy membership function, x is the variable, midpoint (f2) and spread
(f1) [16].

µ(x) =


0 x ≤ a

x− a
b − a a < x < b

1 x ≥ b
(2)

where µ is the fuzzy membership function, x is the variable, a is the minimum and b is the
maximum [16].

µ(x)= e( −f1 × (x − f2)
2) (3)

where µ is the fuzzy membership function, x is the variable midpoint (f2) and spread
(f1) [16].

2.3.1. Elevation

In this study, elevation data were obtained from the SRTM DEM and taken from
the USGS website (Table 1). This criterion was important because of its direct impact on
grapevine phenology. The elevation dataset was converted using a fuzzy small function
from low, ranging from 0 to a high of 6998 m [39]. The range of elevation was selected based
on the field experience of the expert since the study area’s elevation was very high. Fuzzy
small selection of the optimal elevation was selected in a range of 1500 m. The smaller
values were considered optimum in an arrangement of 1500 m (Table 2). The elevation range
changed from 0 to 1, where 0 denotes the least suitable areas and 1 denotes the most suitable
areas. Therefore, 1–0.85 membership functions were highly suitable, 0.85–0.50 moderately
suitable, 0.50–0.25 marginally suitable, and 0.25–0 not suitable (Figure 4a).

2.3.2. Slope

Slope relates to the vineyard’s degree of inclination, and a slight to moderate slope
can be favorable for grape production. The Gaussian function was assigned to each pixel
of the slope (Table 2). In the study area, a 5–15% slope was considered the optimal slope
based on previous studies [15,35,39]. In this process, the optimum elevation was assigned
at the peak of the function. More or less than the ideal range was not good for growing
grapes. Finally, the range of membership functions were classified as 1–0.85 membership
functions highly suitable, 0.85–0.50 moderately suitable, 0.50–0.25 marginally suitable, and
0.25–0 not suitable. (Figure 4b).

2.3.3. River

There is a significant impact on vineyard production, especially in a country such
as Afghanistan, where water scarcity is widely observed due to its geographical location
(Table 1). Based on previous studies and field experience, up to 1 km from rivers was
considered the optimum distance. In this regard, fuzzy small membership functions were
assigned to each river’s pixel variable (Table 2). The near area value changed to 1, and
further locations were assigned a value of 0. Then the range of membership functions were
classified as 1–0.85 membership functions highly suitable, 0.85–0.50 moderately suitable,
0.50–0.25 marginally suitable, and 0.25–0 not suitable (Figure 4c) [16].

2.3.4. Road

Roads are an important parameter in facilitating grower’s access to input and output
markets (Table 1). Based on previous studies and a field expert’s experience, a distance of
up to 1000 m from the road was selected as optimal for vineyard suitability. The fuzzy small
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membership function was assigned to roads (Table 2). The closer the road was assigned 1,
and the farther distance was assigned 0. Then the range of membership functions were
classified as 1–0.85 membership functions highly suitable, 0.85–0.50 moderately suitable,
0.50–0.25 marginally suitable, and 0.25–0 not suitable (Figure 4d) [16,35].

2.3.5. Soil Datasets

Several important soil variables were chosen, such as soil pH, soil depth, soil texture,
and soil salinity. All these variables were obtained from the FAO soil database (Table 1).
Fuzzy Gaussian membership was assigned for all soil components. The soil pH range in
the study area was 7.4–8.8. The optimum range was 6.5–8 [45]. Soil texture was categorized
for study areas into nine classes based on FAO classification. Based on reference, sandy
loam, loam, and coarse sandy loam were selected with higher scores because clay or silt
soils have less water-holding capacity in the root zone of grapevines [46]. Poor irrigation
and drainage are the primary causes of soil salinity in the study area because it is mostly prone
to drought [47]. The saline category is assigned a value of 0, and the less saline category is
assigned a value of 1.2 ECe dS/m is not saline soil [48]. The fuzzy Gaussian was used to assign
all soil parameters (Table 2). The optimal level is considered the peak of distribution, which is
less than or higher than the range considered 0 [15,40,41,49]. Therefore, 1–0.85 membership
functions highly suitable, 0.85–0.50 moderately suitable, 0.50–0.25 marginally suitable, and
0.25–0 not suitable were classified (Figure 4e–h).

2.3.6. Normalized Difference Vegetation Index (NDVI)

A Google Earth engine environment was used to calculate composite NDVI scenes
from Landsat 8 OLI (TIRE 1, 8-days composite NDVI) from April to October for 5 years
(2016–2020) (Table 1). Finally, the average of all NDVIs from 2016 to 2020 was considered
for the suitability analysis. Further analysis was carried out with ArcGIS® 10.8. The fuzzy
linear membership function was assigned (Table 2). The higher NDVI is given a value of 1,
and the lower NDVI is given a value of 0 [42]. The membership functions 1–0.85 highly
suitable, 0.85–0.50 moderately suitable, 0.50–0.25 marginally suitable, and 0.25–0 not suit-
able were classified (Figure 4i).

2.3.7. Land Use Land Cover (LULC)

The LULC datasets were obtained from FAO (Table 1). For instance, LULC consisted
of different classes, such as vineyards, irrigated and non-irrigated agricultural land, forest
and shrubs, rangeland, barren land and sand cover, permanent snow, build up, water, and
marshland. Most of the Afghanistan’s land is covered in sand and rock, with only 12%
suitable for agricultural activities. All the LULC categories reclassified to a new range of
values. After the normalization, fuzzy Gaussian membership was given to LULC. The max-
imum vineyard and agricultural land membership is 1 (Table 2). However, the minimum
membership function for buildings, roads, and water bodies is 0 [50]. The membership
functions of 1–0.85 as highly suitable, 0.85–0.50 moderately suitable, 0.50–0.25 marginally
suitable, and 0.25–0 not suitable were classified (Figure 4j).

2.3.8. Rainfall

The rainfall data were collected yearly from the website of CHIRPS. Following that,
the years 2016–2020 were used in this calculation (Table 1). Based on previous studies,
the optimum rainfall for grapevines is approximately 500 mm, and the reference fuzzy
Gaussian was used [45,49] (Table 2). The optimum rainfall was assigned to 1, which was less
than or greater than that assigned to 0. The membership functions of 1–0.85 highly suitable,
0.85–0.50 moderately suitable, 0.50–0.25 marginally suitable, and 0.25–0 not suitable were
classified (Figure 4k).
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2.4. Fuzzy Overlay

The fuzzy overlay was used for multicriteria to indicate the likelihood of a feature
belonging to various sets. Fuzzy gamma was used to develop the final suitability map.
Fuzzy gamma is made of fuzzy product and fuzzy sum. The fuzzy product was calculated
by multiplying each cell’s fuzzy values by all the input criteria, and the fuzzy sum was
calculated by adding the fuzzy values of each set to the cell location. The fuzzy gamma
developed the links between the numerous input variables rather than merely returning
the value of a single membership set, according to fuzzy OR and fuzzy AND [Equation (4)].
The final suitability map was classified based on the land suitability index and membership
value (Figure 5).

µ(x) =(fuzzy sum)γ× (fuzzy product )1−γ (4)

where µ(x) combination is the calculated fuzzy membership function, γ is a parameter
chosen in the range (0, 1) and the fuzzy algebraic sum and fuzzy algebraic product are
calculated using the Equation (5).

µ(x) =
[
∏n

i=1 µi
]γ
×
[
1−∏n

i=1(1− µi)
]1−γ

(5)

where µi is the fuzzy membership function for the ‘i’th map, and i = 1, 2, 3, . . . ..n maps are
to be combined and γ is the user input variable selected in the range 0–1. When γ = 0, the
combination equals the fuzzy algebraic product and when γ = 1, the combination equals
the fuzzy algebraic sum [33].

The suitable vineyards were classified based on the land index. The current and
permanently unsuitable areas were considered in a similar class to not suitable, highly,
moderately, and marginal areas. In this fuzzy method, a land index was calculated and
converted from a 0–1 fuzzy value to be multiplied by 100. The suitability classes were
determined by the value of the land index: S1 highly suitable land is 75–100, moderately
suitable land is 75–50, S3 marginally suitable land is 50–25, and N not suitable land is
25–0 [45] (Figure 5).

2.5. Validation of Suitability Map with Ground Reference Data

The total yield of 2020 for each of the province was collected from the statistical book
of the Islamic Republic of Afghanistan (Figure 6) [37]. The average yield in each province
was calculated from the total yield divided by the total vineyard area. Furthermore, the
model validation was performed by evaluating and testing the proxy of ground data. In
the context of this study, validation was performed using linear regression and polynomial
regression function between the average vineyard area from the land suitability index and
the average yield of grapes in each province level.
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Figure 6. Average yield of table grapes (ton/ha) in Afghanistan during 2020.
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3. Results
3.1. Fuzzy Overlay Analysis

In this research, eleven fuzzy layers were used for vineyard suitability analysis
(Figure 7). The fuzzy suitability results indicated that in Afghanistan overall, 23%
(15,760,144 ha) of lands were highly, 44% (30,307,470 ha) were moderately, 22% (15,403,607 ha)
were marginally, and 11% (7,370,025 ha) were not suitable for grape production in
Afghanistan. To confirm the present vineyard locations, the results indicated that 90.3%
(80,466 ha) of the vineyards were in the highly, 7.3% (6533 ha) moderately, 2.4% (2124 ha)
marginally, and 0.01% (5 ha) unsuitable areas in Afghanistan (Tables 3 and 4).
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Figure 7. Suitable areas for table grape production in Afghanistan based on fuzzy multicriteria
decision analysis.

Table 3. Potential areas belonging to the suitable classes based on fuzzy algorithms for Afghanistan.

Suitability Classes Pixels Vineyards Area (ha) Vineyard Area (%)

S1 892,282 80,466 90.3
S2 72,447 6533 7.3
S3 23,553 2124 2.4
N 57 5 0.013

Table 4. Vineyard locations at different suitability classes distributed among the provinces of Afghanistan.

Suitability Classes Pixels Area (ha) Area (%)

S1 174,763,186 15,760,144 23

S2 336,077,507 30,307,470 44

S3 170,809,566 15,403,607 22

N 81,725,718 7,370,025 11

Moreover, based on fuzzy suitability analysis (gamma overlay), suitability classes
were defined in present practice and potential categories. The results indicated that in most
provinces, the potential for extension is very high, such as Badghis’s present practice of
81 ha and a potential of 11,442,659 ha, Balkh’s present practice of 650 ha and a potential
of 802,525 ha, Faryab’s present practice of 7863 ha and a potential of 1,065,155 ha, Herat’s
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present practice of 7499 ha and a potential of 1,503,025 ha, Khandahar’s present practice
of 18,784 ha and a potential of 615,253 ha, Samangan’s present practice of 628 ha and a
potential of 465,673 ha, Sar-e-pul’s present practice of 8210 ha and a potential of 562,666 ha,
and Takhar’s present practice of 107 ha and a potential of 836,973 ha (Table 5).

Table 5. Vineyard locations and potential for vineyard extension at different suitability classes
distributed among the provinces of Afghanistan.

No Provinces Categories S1 (ha) S2 (ha) S3 (ha) N (ha)

1 Badghis Present Practice 81 0 0 0
Potential 1,142,659 810,647 286,037 1484

2 Balkh
Present Practice 650 6 3 0

Potential 802,525 444,395 407,443 194,948

3 Farah
Present Practice 717 170 207 0

Potential 387,215 2,703,118 1,685,316 433,877

4 Faryab Present Practice 7863 2 29 0
Potential 1,065,155 653,186 428,675 119,013

5 Ghazni
Present Practice 8900 1891 158 0

Potential 483,463 1,517,790 324,367 10,073

6 Helmand
Present Practice 587 165 250 0

Potential 586,359 2,648,833 1,803,261 1,217,535

7 Herat
Present Practice 7499 260 396 0

Potential 1,503,025 3,003,630 1,287,774 55,550

8 Jawzjan Present Practice 11,130 489 1 0
Potential 379,067 236,147 435,719 182,225

9 Kabul
Present Practice 547 63 14 0

Potential 11,130 489 1 0

10 Kandahar
Present Practice 18,784 1755 372 0

Potential 615,253 1,698,481 1,079,035 2,215,816

11 Kapisa Present Practice 1004 16 6 0
Potential 121,173 62,767 22,188 661

12 Kunduz
Present Practice 235 1 4 0

Potential 442,893 150,901 229,115 39,966

13 Laghman Present Practice 8 9 0 0
Potential 193,205 175,397 40,687 11,162

14 Logar Present Practice 1010 130 0 0
Potential 113,391 300,938 62,851 367

15 Nangarhar Present Practice 192 34 80 0
Potential 363,646 343,736 63,826 2513

16 Nemroz
Present Practice 102 165 79 0

Potential 90,494 1,698,144 1,712,493 712,428

17 Paktia
Present Practice 626 125 33 0

Potential 537,537 952,389 430,318 71,961

18 Patyka Present Practice 278 24 2 0
Potential 224,665 299,047 41,469 0

19 Parwan
Present Practice 6863 97 36 0

Potential 132,406 324,202 136,561 21,154

20 Samangan Present Practice 628 0 0 0
Potential 465,673 694,886 269,141 6645

21 Sar-e-pul Present Practice 8210 13 0 0
Potential 562,666 713,517 400,439 14,081

22 Takhar
Present Practice 107 0 38 0

Potential 836,973 195,768 226,469 107,492

23 Urozgan Present Practice 19 3 1 0
Potential 427,891 629,480 105,621 0

24 Wardak
Present Practice 58 18 1 0

Potential 104,788 836,273 199,258 13,304

25 Zabul
Present Practice 4364 1096 414 5

Potential 369,797 1,094,514 325,407 47,186
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3.2. Fuzzy Suitability Validation

Ground validation of the suitability map was significant for confirming each suitable
vineyard and extending the vineyard areas for the future in Afghanistan. However, obtain-
ing many ground datasets in the country’s current condition was very difficult. The results
indicated good agreement between the land suitability index and average grape yield at
the provincial level. The datasets were used for linear regression (R2 = 0.74) and polyno-
mial regression (R2 = 0.84) (Figure 8). Polynomial regression indicated higher accuracy in
prediction than the linear trend.
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Figure 8. Validation of the fuzzy-based land suitability score referring to the average grape yield
from different provinces in Afghanistan. (a) linear regression and (b) polynomial regression.

4. Discussion

Fuzzy suitability analysis is a technique in land suitability analysis when the vari-
ables are more complicated and need a continuous output. In this regard, the fuzzy set
model has many advantages, including the ability to convert all data to a range of 0–1,
which is a great way to solve different magnitudes at different data layers, and the use of
fuzzy membership functions to produce a thorough assessment of the suitability of the
land for each crop production on a continuous scale across various land categories [3,29].
Moreover, the implementation of fuzzy inference as a useful addition to the fundamental
of GIS and remote sensing techniques were proposed in this paper to extend the areas of
vineyard [34]. Fuzzy sets were used in previous studies to determine the suitability anal-
ysis of land [16,26,28,33,51,52]. Most of the prior studies used fuzzy models to construct
agricultural suitability analysis framework considering multiple variables related to spe-
cific micro-regions for cereals, fruits, and wine grape production. Pilevar et al. [52] used
topographic variables such as slope and elevation and soil characteristics such as soil
texture and soil pH for fuzzy suitability. In addition, other studies have used variables like
rainfall, evapotranspiration, NDVI, LULC, soil, soil moisture, groundwater level, slope, and
elevation to assess fuzzy suitability assessment [29,53]. In this study, topographic variables
(elevation and slop), soil variables (soil depth, soil pH, soil texture, soil salinity), vegetation
(NDVI), infrastructure (road and river), and climatic (rainfall) variables were changed to
fuzzy membership. After applying different fuzzy membership functions to each variable
based on references and the literature, the suitability classes were defined [16,50]. Litera-
tures indicated how well-developed fuzzy inference variables selection have significant
advantages over the conventional method of mathematical modeling [29,54]. In the USA,
a study was done on vineyard site selection and revealed that fuzzy set methods were
the best method for land suitability classification with expert knowledge. Similarly, other
studies mentioned expert knowledge is an influential factor [16] for vineyard management
and long-term strategy development. However, the advantageous application of fuzzy
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methodology has been confirmed by Tang et al. (1997). In this research, higher accuracy
has reported for the fuzzy method in comparison with Boolean methods for land suitability
evaluation of different crops [55].

The findings of this study indicated that highly suitable regions were mostly located
in the southern regions of Afghanistan for its agroclimatology. Furthermore, some parts
of the western zone and northern zone were also suitable. These regions include Kabul,
Logar, Khandahar, Kapisa, Ghazni, Zabul, Uruzgan, Kandahar, Herate, Badghis, Frayah,
Jawzjan, Balkh, Kunduz, and Takhar Provinces. However, some parts of the northeast and
central highlands, where the elevation is very high, are not suitable for grape production.
Increasing elevation raises the likelihood of frost, cooler temperatures, and a decrease in
plant growth months [39]. The study also proved that there was potential for vineyard
extension in Afghanistan for grape production. However, only 0.13% of the land area is
currently under vineyard production practices. Some provinces have the highest potential
for vineyard extension, such as Badghis, Faryab, Herat, and Takher. The government
could act to increase vineyards since the suitable areas exceed reality because grapes
are an industrial crop, and fresh grapes play an important role in growers’ farm income
and international trade in Afghanistan. The extension of vineyards can support farmers’
livelihoods, particularly in the southern provinces (Table 5 and Figure 7).

In this study, the suitability model was validated with the average yield of each
provincial vineyard. Thus, the model accuracy was approximately 82% on the regional
scale. Previous studies also reported the higher accuracy of the fuzzy method in comparison
with Boolean methods for land suitability evaluation of different crops. They compared
land index to the observed yield of rubber and maize. They discovered that the fuzzy
approach had a correlation coefficient of 0.89, 0.87 [51,56] for land suitability for cassava
done in Indonesia. They compared land indices with observed yield and obtained a
correlation coefficient of 0.55 [16]. Based on the high accuracy findings that came from
this research, the fuzzy set technique could be a good model for land assessment in other
environments. However, the average yield of each province was not adequate for validation
due to the inaccessibility of ground reference data and information. This study can help
researchers and decision-makers find more prospective acreage for expanding vineyards at
the regional scale. Further research will be performed to expand the model with additional
expertise knowledge with respect to economical points of view and logistics, including
storage facilities for table grapes to reduce the post-harvest losses at the regional scale.

5. Conclusions

Selecting appropriate land for a vineyard is very important for sustainable grape
production. Therefore, the primary objective of this study was to develop a land suitability
analysis method using a fuzzy membership function on a regional scale to extend the best
areas for table grape production. In this study, different climate, topographic, vegetation,
and soil parameters were considered for vineyard suitability analysis. After this step,
the final suitability map was developed based on the fuzzy overlay method. In further
assessments, the validation of the suitability map was performed for table grape yield at
the provincial level. The validation results of the suitability analysis indicated that the
land suitability model had 82% accuracy at the regional scale. In the analysis, we found
that less than 1% of the highly suitable area was used for vineyards. There is a significant
opportunity to increase the production of table grapes in another 22% highly suitable areas.
Therefore, the main finding of this study suggests that there is a potential for vineyard
expansion in Afghanistan. This study contributes to the expansion of limited studies on
vineyard suitability by bringing in multiple variables centering on the fuzzy method at the
regional scales to increase table grape production.
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