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Abstract: The existing synthetic aperture radar (SAR) ship datasets have an imbalanced number of 
inshore and offshore ship targets, and the number of small, medium and large ship targets differs 
greatly. At the same time, the existing SAR ship detection models in the application have a huge 
structure and require high computing resources. To solve these problems, we propose a SAR ship 
detection model named mask efficient adaptive network (MEA-Net), which is lightweight and high-
accuracy for imbalanced datasets. Specifically, we propose the following three innovative modules. 
Firstly, we propose a mask data balance augmentation (MDBA) method, which solves the imbalance 
of sample data between inshore and offshore ship targets by combining mathematical morphologi-
cal processing and ship label data to greatly improve the ability of the model to detect inshore ship 
targets. Secondly, we propose an efficient attention mechanism (EAM), which effectively integrates 
channel features and spatial features through one-dimensional convolution and two-dimensional 
convolution, to improve the feature extraction ability of the model for SAR ship targets. Thirdly, we 
propose an adaptive receptive field block (ARFB), which can achieve more effective multi-scale de-
tection by establishing the mapping relationship between the size of the convolution kernel and the 
channel of feature map, to improve the detection ability of the model for ship targets of different 
sizes. Finally, MEA-Net is deployed on the Jeston Nano edge computing device of the 2 GB version. 
We conducted experimental validation on the SSDD and HRSID datasets. Compared with the base-
line, the AP of MEA-Net increased by 2.18% on the SSDD dataset and 3.64% on the HRSID dataset. 
The FLOPs and model parameters of MEA-Net were only 2.80 G and 0.96 M, respectively. In addi-
tion, the FPS reached 6.31 on the Jeston Nano, which has broad application prospects. 

Keywords: synthetic aperture radar; ship detection; imbalanced datasets; data augmentation;  
attention mechanism; multi-scale detection 
 

1. Introduction 
Synthetic aperture radar (SAR) is a microwave imaging sensor capable of all-day, all-

weather observations of the ground. Therefore, SAR is widely used in disaster investiga-
tion [1], environmental monitoring [2,3], target detection [4] and other fields. At present, 
the SAR ship detection has important research value in both the military field, which re-
quires real-time position detection of specific ship targets, and the commercial field, 
which requires real-time scheduling of maritime transportation. 

The traditional SAR ship detection mainly uses the constant false alarm rate algo-
rithm (CFAR) [5–7] which is simple in calculation and has the characteristic of self-adap-
tation. The CFAR detector performs statistical modeling of the background clutter and 
adaptively estimates the threshold to determine whether the pixel is a ship or the back-
ground. It is suitable for scenes with high contrast between the ship and the background; 
however, the detection effect of ship targets in complex backgrounds is poor. 

In recent years, with the development of the convolutional neural network (CNN), 
SAR ship detection models based on CNN have been widely studied due to their superior 
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feature extraction capabilities. CNN-based object detection models are mainly divided 
into two categories. One is one-stage, such as the “you only look once” (YOLO) series [8–
10], single shot multibox detector (SSD) [11], CenterNet [12] and EfficientDet [13]; the 
other is two-stage, such as the region-CNN (R-CNN) series [14–17]. The target detection 
model based on two-stage is to generate a series of candidate areas by the algorithm, and 
then uses the CNN to classify these candidate regions. This model has high detection ac-
curacy, but the model inference speed is slow. The one-stage target detection model aban-
dons the candidate region generation stage, and directly performs target detection on the 
feature map extracted by the CNN, which can achieve faster model inference speed and 
better meet the needs of SAR ship detection. 

Although the above methods have excellent performance, there are still some prob-
lems that need to be solved when they are directly applied to SAR ship detection. (1) The 
number of ship targets of different sizes in SAR images is imbalanced, and the features of 
small and large ship targets are very different. Therefore, a large number of missed and 
false detections occur in the SAR ship detection process, especially for small ship targets. 
(2) Unlike the targets in optical remote sensing images, ship targets in SAR images have 
weak texture, low contrast and speckle noise. Therefore, inshore ship detection is easily 
disturbed by the land, such as coastal ports and coasts. Moreover, in the common SAR 
ship dataset, the number of inshore ship targets is far lower than the number of offshore 
ship targets, which further reduces the detection accuracy of the model for inshore ship 
targets. (3) The structure of the SAR ship detection model is huge, consumes a lot of com-
puting resources, and is difficult to deploy on the edge computing device. 

Considering these existing problems, we propose a lightweight SAR ship detection 
model named MEA-Net for imbalanced datasets. It can effectively solve the problem of 
data imbalance, which includes an imbalanced number of inshore and offshore ship tar-
gets, and the number of small, medium and large ship targets. Finally, we deploy it on the 
Jeston Nano edge computing device of the 2 GB version. 

The main contributions are as follows: 
• Aiming at the problem that the number of inshore ship targets is far less than that of 

offshore ship targets, we propose a mask data balance augmentation (MDBA) 
method, with the purpose of solving the imbalance of inshore and offshore ship tar-
gets on the datasets. 

• Aiming at the problem of low detection accuracy of inshore ship targets in SAR im-
ages, we propose a lightweight efficient attention mechanism (EAM) to enhance the 
ability of the model to extract the SAR ship target features. In this way, the important 
features of the ship target can be detected, and the influence of the complex back-
ground can be suppressed. 

• Aiming at the problem of multi-scale ship target detection, we propose an adaptive 
receptive field block (ARFB) for multi-scale detection to improve the detection ability 
of the model for ship targets of different sizes. It can effectively fuse global features 
and local features by adapting the convolution kernel size of RFB-s module. 

2. Related Works 
Due to the increasing demand for SAR ship detection in the military and commercial 

fields, researchers in related fields have conducted extensive research. In this section, we 
will introduce the current research progresses in four aspects of SAR ship detection based 
on CNN, data augmentation method, attention mechanism and multi-scale detection. 

2.1. SAR Ship Detection Based on CNN 
Thanks to the excellent feature extraction capabilities of CNN, a series of target de-

tection models based on CNN have emerged in recent years. Remote sensing target detec-
tion mainly includes optical-based [18] and SAR-based. Xu et al. [19] designed the multi-
level alignment network including image-level, convolution-level and instance-level, to 
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achieve cross-domain ship detection. Huang et al. [20] proposed a method based on trans-
fer learning, which can learn knowledge from sufficient unlabeled SAR images to labeled 
SAR images. Wang et al. [21] introduced the maximum stability extremal region (MSER) 
decision criterion to replace the original threshold criterion in Faster R-CNN target detec-
tion model. Wu et al. [22] proposed a new classifier and region-of-interest (RoI) feature 
integration strategy in Cascade R-CNN. Both of the above will further improve the accu-
racy of SAR ship detection. However, these two-stage target detection models have a large 
number of parameters and a slow inference speed, which is difficult to meet the needs of 
practical application deployment. For the lightweight deployment of the model, some re-
searchers apply the one-stage target detection model to SAR ship detection, such as 
YOLO. Wang et al. [23] proposed a SAR ship detection model named SSS-YOLO which 
redesigned the feature extraction network based on YOLOv3 to improve the ability of the 
model to extract spatial and semantic information of small ship targets. Chen et al. [24] 
introduced the network pruning and knowledge distillation technology into YOLOv3 to 
realize the lightweight design of SAR ship detection model. Tang et al. [25] designed an 
N-YOLO ship detection model based on YOLOv5, using a noise level classifier which can 
effectively derive and classify the noise level of SAR images, to detect a SAR ship in a 
complex background with noise. In view of the above, this paper focuses on one-stage 
detectors, aiming to achieve more lightweight SAR ship detection. 

2.2. Data Augmentation Method 
Data augmentation in SAR images before passing them into model training can im-

prove the robustness of the model. Jiang et al. [26] used the original image and two syn-
thetic RGB polarimetric SAR images containing the contour information of ship as three 
color channels respectively, which reduced the effect of scattering noise and greatly en-
riched the training data. Sun et al. [27] proposed a random rotation Mosaic (RR-Mosaic) 
data augmentation method based on the Mosaic. The random angle rotation was intro-
duced, which reduced the imbalance of angle categories. However, the existing research 
work on data augmentation methods does not focus on the imbalance between inshore 
and offshore ship targets. The MDBA method proposed in this paper solves this problem. 

2.3. Attention Mechanism 
The attention mechanism allows the model to learn the important features of the tar-

get while suppressing the secondary features, thereby improving the detection accuracy 
of the model. Cui et al. [28] proposed a spatial shuffle-group enhance (SSE) attention 
mechanism to solve the problem of confusion between ship targets and background clut-
ter in large-scale SAR images. Zhu et al. [29] proposed a hierarchical attention mechanism. 
By introducing a global attention module (GAM) and a local attention module (LAM), the 
hierarchical attention strategy was proposed from the image layer and the target layer, 
respectively, thereby improving the important feature extraction ability of the model for 
ship targets in SAR images. Du et al. [30] designed a multi-scale feature attention module 
(MFAM), combining channel and spatial attention mechanisms, which can highlight im-
portant information and suppress interference caused by background clutter. Yang et al. 
[31] introduced a coordinate attention mechanism (CAM) to decompose channel attention 
into a two-dimensional feature encoding process, which aggregated features and captured 
long-range dependencies along two spatial directions, respectively. Ge et al. [32] designed 
a spatial orientation attention module (SOAM), which spliced a multi-receptive field spa-
tial attention mechanism (MFSAM) on the CAM to make the model pay attention to the 
areas that need more attention, thereby enhancing the performance of ship detection in 
complex background. Cheng et al. [33] proposed the metric learning regularization which 
can enforce the model to be more discriminative to better focus on the features of different 
classes. The attention mechanisms proposed above all can achieve good performance. 
However, after being embedded into the model, they have a great impact on model 
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complexity. Therefore, the EAM proposed in this paper takes into account both the accu-
racy and the lightweight design, reducing the impact on the model complexity. 

2.4. Multi-Scale Detection 
On the SAR ship dataset, the proportion of ship targets of different sizes is imbal-

anced. Therefore, some researchers have studied multi-scale detection methods to im-
prove the detection ability of ship targets of different sizes. Multi-scale detection mainly 
realizes two parts of optimization, namely multi-scale feature fusion and the receptive 
field increasement. Liu et al. [34] embedded the receptive field block (RFB) into YOLOv4 
to solve the problem of SAR ship scale diversity, which improved the performance of the 
model to detect multi-scale ship targets. Yu et al. [35] designed a FASC-Net which in-
creased the receptive field of the feature map through the spatial pyramid pooling (SPP) 
module and performed feature fusion through the channel-attention path enhancement 
(CAPE) module to better predict SAR ship targets of different sizes. Wei et al. [36] pro-
posed a high-resolution feature pyramid Network (HRFPN) which utilized feature maps 
of high-resolution and low-resolution convolutions to achieve more accurate multi-scale 
detection. Zhang et al. [37] proposed a quad feature pyramid network (quad-FPN) to 
gradually improve the SAR ship detection performance by connecting four types of FPN 
networks. The multi-scale detection mechanisms proposed above all have achieved good 
performance, but there is still room for further optimization. Based on the principle of 
receptive field in brain neurons, this paper proposes an adaptive receptive field method 
to further improve the accuracy of multi-scale detection. 

3. Materials and Methods 
3.1. Overall Framework 

MEA-Net is designed on the baseline YOLOX-Nano [38] which is lightweight and 
has strong generalization ability. The overall framework is shown in Figure 1. 
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Figure 1. The overall framework of MEA-Net, where the purple dashed boxes represent improved 
parts. 

Firstly, in the input part, we propose a mask data balance augmentation (MDBA) 
method which can effectively solve the data imbalance problem of inshore and offshore 



Remote Sens. 2022, 14, 4438 5 of 20 
 

 

ship targets on the dataset to enhance the ability of the model to detect ship targets in 
different positions and backgrounds. Secondly, to improve the feature extraction capabil-
ity of the model, we propose a lightweight efficient attention mechanism (EAM) module 
to be embedded into the CSPDarknet53 backbone network. Thirdly, at the front of the 
PANet neck network, we propose an adaptive receptive field block (ARFB) for multi-scale 
detection which fuses local and global features during feature extraction to enhance the 
ability of the model to detect objects of different sizes. Finally, the Decouple-Head tech-
nology is used to achieve accurate detection, and the non-maximum suppression (NMS) 
algorithm is used to eliminate redundant detection boxes to find the correct position of 
the SAR ship targets. 

3.2. MDBA Method 
SAR inshore ship targets are easily affected by land, such as ports and coasts, which 

results in low accuracy and high missed detection rates for inshore ship targets. Therefore, 
we propose a MDBA method to solve the large gap in the amount of inshore and offshore 
SAR ship targets on the dataset. In the process of data augmentation, if there are both 
inshore and offshore ship targets in the SAR image, mask windows are used to remove 
the offshore targets and then transfer into the model for training. In this way, the number 
of inshore ship targets during model training is increased, while the number of offshore 
ship targets is suppressed. The algorithm steps are shown in Figure 2. We pass the SAR 
image into the MDBA method to determine whether it contains land. If land is not in-
cluded, data augmentation is not performed in this SAR image. If land is included, after 
traversing all the ship targets in the entire image, the inshore ship targets are kept and the 
offshore ship targets are removed through mask windows. After that, the image is flipped 
and rotated at different angles for data augmentation. There are two important links here, 
one is to determine whether the SAR image contains land, and the other is to determine 
whether the ship target is inshore or offshore. 

Does it 
contain land?

Traverse all 
targets

No data 
augmentation

Are there offshore 
ship targets 

Use mask windows 
to remove 

offshore ships 

Y

N

Y

Data 
augmentation

N

 
Figure 2. MDBA method flow chart. 

The algorithm steps for judging whether the SAR image contains land are shown in 
Figure 3. Firstly, the original SAR image and extensible makeup language (XML) label 
files are obtained. And the original image is binarized to obtain a binary image f(x,y). Sec-
ondly, we assign zero to the target area in the binarized image according to the XML label 
to obtain a new SAR image 𝑓𝑓′(x,y) without the ship target. After the image is subjected 
to morphological processing of dilate and erosion, the flood fill algorithm (FFA) is used to 
fill in the holes of the land area to obtain a filtered image h(x,y). This process can be de-
scribed as, 

( ) ( )( ), ,h x y FFA f x y B B ′= Θ   (1) 
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where   represents the dilate operation, Θ  represents the erosion operation, B repre-
sents the image template used in the dilate and erosion process, and FFA[·] represents 
the flood filling algorithm operation. We set Cp to represent whether the p-th SAR image 
contains land, and specify a threshold Tm. Here, Tm is associated with the image resolution. 
Then, the number of pixels of the maximum connected region is calculated. If the value is 
greater than Tm, it is judged that land is in the SAR image. This process can be described 
as, 

( )    ,1
0

m
p

L h x y T
C

else

   >  = 


 (2) 

where L[·] represents the number of pixels for obtaining the maximum connected region. 

 
Figure 3. Steps to determine whether the SAR image contains land. 

The steps of judging whether the ship target is inshore or offshore are shown in Fig-
ure 4. Firstly, we get the final image h(x,y) from the previous step and the mask image 
g(x,y) which is generated from the original image and the corresponding XML label files. 
Secondly, the center point of each rectangular block (i.e., the ship target) in the mask image 
is calculated to generate the set g′(x,y). Thirdly, the threshold Tm of the previous step is 
used to remove the land area smaller than it, and then the edge information is extracted 
by the Canny operator [39] to generate the land boundary points set h′(x,y). Finally, the 
distance between each element in g′(x,y) and h′(x,y) is calculated to form a two-dimen-
sional array D, and the calculation of each of its elements is shown in Formula (3). 

( ) ( )2 2

,     1 ,1i j i j i jD x x y y i N j M= − + − ≤ ≤ ≤ ≤  (3) 

where N is the length of set g′(x,y) and M is the length of set h′(x,y). 

 
Figure 4. Steps to determine whether the ship target is inshore or offshore. 
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number of pixels for the q-th ship and k is the scale factor. Then we calculate the Pq to get 
the corresponding Tn and take the minimum element of the q-th row of D. If it is less than 
the threshold Tn, the target is judged to be an inshore ship target. This process is described 
as, 

,    1
0

q n
q

Min D T
G

else
∗

   <  = 


 (4) 

where Min[·] represents the operation of obtaining the minimum element of the row ma-
trix. 

3.3. EAM Module 
The attention mechanism can make the model pay more attention to the important 

features of the ship target. It highlights the effective information and suppresses the inva-
lid information. However, the introduction of attention mechanism inevitably brings ad-
ditional computational burden. Inspired by the attention mechanisms of CBAM [40] and 
ECA [41], we propose a low-computation and high-accuracy hybrid domain attention 
mechanism EAM for extracting important features of SAR ship targets. Its structure dia-
gram is shown in Figure 5. 

MaxPool

AvgPool
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MaxPool
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Figure 5. EAM module structure diagram. 

The EAM module is composed of the channel attention mechanism and the spatial 
attention mechanism in series, which can be defined as: 

1

2 1 1

( )
( )

CAM

SAM

F M F F
F M F F
 = ⊗
 = ⊗

 (5) 

where MCAM(·) represents channel attention operation, MSAM(·) represents spatial atten-
tion operation, and ⊗  represents weighted multiplication operation of characteristic 
graph. 

The channel attention part of the EAM module uses one-dimensional convolution to 
obtain the channel information of the feature map. This method has the following three 
characteristics: (1) The cross-channel interaction is realized. (2) The one-to-one corre-
spondence between channel attention weights and channels is preserved. (3) The amount 
of computation and parameters is low, thereby reducing the complexity of the model after 
embedding the attention mechanism module. The implementation of the channel atten-
tion part is as follows. Firstly, the input feature map is subjected to global maximum pool-
ing and global average pooling. Secondly, the one-dimensional convolution operation 
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with a convolution kernel length of k is performed (here, k is associated with the number 
of channels, C), and the elements at the corresponding positions are added one by one. 
Thirdly, the Sigmod activation function normalizes the values between zero and one. Fi-
nally, the feature map F1 is obtained by the weighted multiplication with the result of the 
previous step and the input feature map, and F1 is passed to the spatial attention module. 
The channel attention process can be described as the following formula, 

( ) ( )( )max( ) 1 1c c
CAM k avg kM F C D F C D Fσ= +  (6) 

( )2

odd

log 1( )
2 2

C
k Cψ= = +  (7) 

where C1Dk(·) represents the one-dimensional convolution operation of convolution ker-
nel size k, Favg

c  is the channel characteristic diagram obtained by the global average pool-
ing of F, Fmax

c  is the channel characteristic diagram obtained by the global maximum pool-
ing of F, σ(·) represents Sigmod activation function operation, and |·|odd represents the 
closest odd number operation. 

The spatial attention part of the EAM module uses two-dimensional convolution to 
obtain the spatial information of the feature map. Firstly, the global maximum and aver-
age pooling are performed on the intermediate feature map F1, and then are concatenated. 
Secondly, the two-dimensional convolution is performed to obtain the feature map of 1 × 
H × W. Thirdly, the Sigmod activation function normalizes the values between zero and 
one. Finally, the feature map F2 is obtained by the weighted multiplication with the result 
of the previous step and the intermediate feature map F1. The spatial attention process 
can be described as, 

( ) ( )( )1 7 1 1max2 ;S S
SAM avgM F C D F Fσ=  (8) 

where C2D7(·) represents the two-dimensional convolution operation of the convolution 
kernel 7 × 7, F1avg

S  is the spatial characteristic diagram obtained by the global average 
pooling of F1, and F1max

S  is the spatial characteristic diagram obtained by the global max-
imum pooling of F1. 

3.4. ARFB Module 
In order to improve the detection ability of the model for SAR ship targets of different 

sizes, we propose an adaptive multi-scale detection module ARFB. In the visual cortex, 
the size of the receptive field of neurons in the same area is different, which makes the 
neurons collect multi-scale spatial information in the same stage. The RFB-s module [42] 
is built for this reason. 

The RFB-s module is shown in Figure 6a, which has four branches and shortcut con-
nections. Each branch first reduces the dimension through 1 × 1 convolution to reduce the 
amount of computation, and then obtains receptive fields of different sizes through con-
volution, asymmetric convolution, and dilation convolution. Here, dilated convolutions 
with three different dilation rates of 1, 3, and 5 are used. The four branches are concate-
nated in the channel dimension, pass through 1 × 1 convolution, and merge with the 
shortcut. Finally, the output is obtained through the Relu activation function. 
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(a) (b) 

Figure 6. Multi-scale detection module. (a) RFB-s. (b) ARFB. 

The RFB-s, which is based on the inception structure, obtains feature maps by stack-
ing convolution kernels of different sizes. SKNet [43] points out that this is insufficient, 
and the model should dynamically adjust the size of the convolution kernel to adjust its 
own receptive field. Based on this idea, we propose an adaptive multi-scale detection 
module named ARFB. Its structure is shown in Figure 6b. 

Based on the RFB-s module, we establish a mapping relationship between the convo-
lution kernel parameter k and the multiplication of the height and width (i.e., H × W) of 
the feature map. The mapping relationship here needs to meet two conditions. One is 
monotonically increasing, and the other is non-linear. Therefore, we introduce a unary 
quadratic function to represent the mapping relationship, as shown in Formula (9), 

2( ) ( 0)H W k ak b kϕ× = = − >  (9) 

Given the height (H) and width (W) of the feature map, the value of k can be uniquely 
determined, as shown in Formula (10), 

odd

( ) H W bk H W
a

ψ × +
= × =  (10) 

where |·|odd represents the closest odd number operation. The selection of a and b needs 
to consider two aspects. One is that it is not suitable to use too large a convolution kernel 
in the feature map of small resolution, and the other is that the size of the convolution 
kernel should be relatively smooth with the change of the H × W of the feature map. There-
fore, in this paper, we set a and b to 400 and 5000, respectively. 

The ARFB module is added after the three output feature maps C3, C4, and C5 of the 
backbone network. After the calculation, the k value of the convolution kernel of the ARFB 
module introduced into each feature map is shown in Table 1. 

Table 1. The convolution kernel k value of ARFB module introduced in different feature maps. 

Feature Map Input Size k 
C3 80 × 80 5 
C4 40 × 40 5 
C5 20 × 20 3 
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4. Results 
4.1. Experimental Datasets and Platforms 

The performance test of the model in this paper is implemented using the SSDD da-
taset, and the migration test of the model is implemented using the HRSID dataset. The 
data distribution of the two datasets is shown in Figure 7. 

 
Figure 7. Data distribution of the SSDD and HRSID datasets. 

The SSDD dataset [44] is derived from RadarSat-2, TerraSAR and Sentinel-1, with a 
resolution between 1 m and 15 m, including 1160 SAR images. There are 2456 ship targets, 
of which small ship targets account for 60.2%, medium ship targets account for 36.8%, and 
large ship targets account for 3%. The HRSID dataset [45] is derived from Sentinel-1 and 
Terra-SAR-X, with a resolution of 0.5 m, 1.0 m and 3.0 m, including 5604 SAR images. 
There are 16,591 ship targets, of which small ship targets account for 54.5%, medium ship 
targets account for 43.5%, and large ship targets account for 2%. 

In this paper, we train the model on the Windows platform and evaluate the metrics 
on the Jeston Nano edge computing device. The GPU of the Windows platform is NVIDIA 
GeForce RTX 3070, the CPU is AMD Ryzen7 3700X, and the memory is 16 G. In the train-
ing process, the input resolution is 640 × 640, the initial learning rate is 0.001, and the 
learning rate is updated by the Adam algorithm. The GPU of Jetson Nano is Maxwell with 
128 cores, the CPU is ARM A57 with 4 cores and a frequency of 1.43 G, the memory is 2 
GB, and the power supply is 10 W. 

4.2. Evaluation Metrics 
For the detection of SAR ship targets, it is necessary to comprehensively consider the 

detection accuracy, model complexity and real-time performance. Therefore, the experi-
ments in this paper use the precision rate (P), recall rate (R), average precision (AP), AP of 
small targets (APS), AP of medium targets (APM), AP of large targets (APL), and F1 as the 
evaluation indicators of the model detection accuracy. Defined by the following formula, 
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=
+
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1

0
( )AP P R dR= ∫  (13) 

21 P RF
P R
× ×

=
+

 (14) 

where TP represents the number of true positives, FP represents the number of false pos-
itives, TN represents the number of false negatives, and P (R) represents the ordinate is 
the precision rate and the abscissa is the curve made by the recall rate, respectively. In this 
paper, AP, APS, APM and APL of all experiments are calculated under the condition of in-
tersection over union (IoU) = 0.5. 

Model complexity is evaluated using the floating-point operations (FLOPs) and 
model parameters. The real-time performance is evaluated using frame per second (FPS), 
which is as follows: 

NFPS
T

=  (15) 

where N is the number of SAR images in the test set, and T is the seconds required for 
detection when the model is deployed on the Jeston Nano edge computing device of the 
2 GB version. 

4.3. The Effect of the MDBA Method 
In order to verify the effectiveness of the MDBA method proposed in this paper, ex-

periments are performed on the baseline, the model introducing the data augmentation 
(DA) which includes flip and rotation at different angles, and the model introducing the 
MDBA method. SSDD and HRSID datasets are used to test, and the results are shown in 
Table 2. Here, we divide the test set into two parts: inshore ship test set and offshore ship 
test set. On the SSDD dataset, after introducing the MDBA method, the AP and APi of the 
model increases, respectively, by 1.17% and 7.58%, while the APo of the model only de-
creases by 0.17%. However, after introducing the DA method, the AP, APi and APo of the 
model only increase, respectively, by 0.30%, 1.36% and 0.28%. Therefore, the detection 
accuracy improvement of introducing DA is much lower than that of introducing MDBA, 
especially for inshore ship targets. On the HRSID dataset, the detection accuracy of the 
introduction of MDBA is also much better than the baseline and the introduction of DA, 
especially for inshore ship targets. The APi of the introduction of MDBA is 7.19% and 
4.35% higher than the baseline and the introduction of DA, respectively. Thus, the effec-
tiveness of the MDBA data augmentation method is demonstrated. 

Table 2. The effect of the MDBA method. 

Dataset Model P (%) R (%) F1 (%) AP (%) APi 1 (%) APo 2 (%) 

SSDD 
baseline 92.04 87.85 89.90 90.65 67.60 95.52 

+DA 93.99 87.09 90.41 90.95 68.96 95.80 
+MDBA 93.52 89.49 91.46 91.82 75.18 95.35 

HRSID 
baseline 94.26 73.72 82.73 85.42 66.56 93.26 

+DA 93.66 74.62 83.07 85.55 69.40 92.80 
+MDBA 94.13 76.93 84.67 87.51 73.75 93.76 

1 APi represents the AP of inshore ship test set. 2 APo represents the AP of offshore ship test set. 

4.4. The Effect of the EAM Module 
In order to verify the effectiveness of the EAM attention mechanism proposed in this 

paper, it is compared with commonly used attention mechanisms such as CBAM [40], 
ECA [41], CA [46] and SE [47]. The results are shown in Table 3. Firstly, after the 
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introduction of the different attention mechanisms, the accuracy of the model improves. 
After the introduction of the EAM attention mechanism, the F1 and AP improve the most, 
increasing by 1.00% and 1.09% respectively. Secondly, the introduction of the EAM only 
needs to add 812 parameters to the model, which is far less than the 5920, 13,920, and 6704 
parameters added by the introduction of SE, CA and CBAM attention mechanisms. Alt-
hough the introduction of the ECA attention mechanism only needs to increase the 28 
parameters of model, the F1 and AP are 1.14% and 0.63% lower than the introduction of 
EAM, respectively. Parameter changes of this order of magnitude have little effect on the 
inference speed of the model, while 1.14% F1 and 0.63% AP reduction have a certain de-
gree of impact on model accuracy. In summary, after embedding the EAM attention mech-
anism, the model achieves the most balanced effect in F1, AP, and added parameters. 

Table 3. Comparison of the effects of different attention mechanisms. 

Model Added Parameters P (%) R (%) F1 (%) AP (%) 
baseline - 92.04 87.85 89.90 90.65 

+SE 5920 93.03 86.20 89.49 91.11 
+ECA 28 92.60 87.09 89.76 91.18 
+CA 13,920 94.58 86.20 90.20 91.37 

+CBAM 6704 94.43 85.82 89.92 91.05 
+EAM 812 94.90 87.22 90.90 91.74 

4.5. The Effect of the ARFB Module 
In order to verify the effectiveness of the ARFB multi-scale detection module pro-

posed in this paper, the baseline; the RFB-s module added after the C3, C4 and C5 feature 
maps; and the ARFB module added after the C3, C4, and C5 feature maps are compared. 
The results are shown in Table 4. It can be seen that after the introduction of the ARFB 
module, the F1, AP, APS, APM and APL improve by 0.84%, 1.46%, 0.80%, 2.12% and 2.87%, 
respectively, compared with the baseline. After the introduction of ARFB, the detection 
ability of the model for small, medium and large ship targets improves to varying degrees. 
After the introduction of the RFB-s module, although the AP of the model increases by 
0.96%, the detection accuracy of small targets decreases by 2.01%. This proves that the 
adaptive convolution kernel size method of ARFB module is effective in improving the 
detection accuracy of model for ship targets of different sizes. 

Table 4. Comparison of the effects of different multi-scale detection module. 

Model P (%) R (%) F1 (%) AP (%) APS (%) APM (%) APL (%) 
baseline 92.04 87.85 89.90 90.65 88.86 93.15 89.09 
+RFB-s 93.70 86.58 90.00 91.61 86.85 95.34 89.11 
+ARFB 94.27 87.47 90.74 92.11 89.66 95.27 91.96 

APS, APL and APM are calculated at IoU = 0.5. 

4.6. Ablation Experiments 
In this section, we design a series of experiments to verify the effects of the MDBA 

method, the EAM module and the ARFB module on the model performance, respectively, 
and the results are shown in Table 5. It can be seen that the introduction of the MDBA 
method can improve the AP of the model by 1.17% without increasing the amount of com-
putation. The introduction of EAM and ARFB only needs to increase the calculation 
amount of 0.33 G FLOPs and 0.01 G FLOPs, which can increase the AP by 1.09% and 1.46%, 
respectively. After embedding MDBA, EAM and ARFB at the same time, the model 
achieves the best results. The P, R, F1 and AP improve by 3.51%, 2.58%, 3.02% and 2.18% 
compared with the baseline. It can be proved that the designed modules in this paper are 
all effective, feasible and will not have too much influence on the complexity of the model. 
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Table 5. The results of ablation experiments. 

MDBA EAM ARFB P (%) R (%) F1 (%) AP (%) FLOPs (G) 
× × × 92.04 87.85 89.90 90.65 2.46 
√ × × 93.52 89.49 91.46 91.82 2.46 
× √ × 94.90 87.22 90.90 91.74 2.79 
× × √ 94.27 87.47 90.74 92.11 2.47 
√ √ √ 95.55 90.43 92.92 92.83 2.80 

4.7. Visualization Experiment 
In this section, we demonstrate the performance of MEA-Net by means of predicted 

boxes and Grad-CAM [48] heatmaps. Grad-CAM is able to visualize the feature extraction 
effect of the model. This technology can provide a better visual explanation for the per-
formance of the neural network-based model and give a view of interpretability. 

Figure 8 shows the detection effect of the baseline model and the MEA-Net model 
proposed in this paper on the SSDD dataset. 

It can be seen from Figure 8(a2–d2,a3–d3) that, compared with the baseline model, 
the MEA-Net model improves the detection ability of large and medium inshore ship tar-
gets, dense ship targets, and offshore ship targets under the background noise. In Figure 
8(a2), the baseline model identifies the land as a ship, and misses the detection of an in-
shore ship target. The reason for this problem can be explained by the corresponding ac-
tivation heatmap Figure 8(a4). The baseline incorrectly points the interested region to land 
and weakens or loses the focus on inshore ship targets. In contrast, Figure 8(a5) demon-
strates that the MEA-Net model pays more attention to the features of inshore ship targets 
and correctly focuses on the land region. For the detection in the dense ship scene, it can 
be seen from Figure 8(c2,c3) that the baseline model has a large number of false detections 
and missed detections. As explained by Figure 8(c4,c5), the baseline model cannot distin-
guish dense ship targets, while MEA-Net distributes the interested regions on each ship 
target. For the detection of offshore ship targets under the background noise, it can be 
seen from Figure 8(d2,d3) that the baseline model recognizes the noise points as a ship 
target, while the MEA-Net model recognizes all ship targets. This can be explained by 
Figure 8(d4,d5), the baseline model wrongly focuses on the noise points of the sea, while 
MEA-Net does not, and the focus region on the ship target is more concentrated than the 
baseline model. 

4.8. The Comparative Experiments with Other Advanced Models 
In order to verify the feasibility and generalization ability of the model proposed in 

this paper, we compare the performance of the MEA-Net model with the state-of-the-art 
models on the SSDD and HRSID datasets, respectively. Tables 6 and 7 are the experi-
mental results on the SSDD and HRSID datasets, respectively. It can be seen that the 
amount of model parameters and FLOPs of MEA-Net is much lower than that of Faster 
R-CNN based on two-stage, CenterNet based on anchor-free, and several common light-
weight models such as EfficientDet, YOLOv4-Tiny and YOLOv5-n, while reaching the 
highest AP value. The model parameters and FLOPs of MEA-Net are slightly higher than 
YOLOX-Nano by 0.06 M and 0.34 G, and the FPS is slightly lower by 0.21. However, the 
AP and F1 of MEA-Net improve, respectively, by 2.18% and 3.02% on the SSDD dataset, 
3.64% and 3.70% on the HRSID dataset. 
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Figure 8. Comparison of visualization results between baseline and MEA-Net. (a1–d1): Ground 
truth. (a2–d2): Prediction results of baseline. (a3–d3): Prediction results of MEA-Net. (a4–d4): Acti-
vation heatmap of baseline. (a5–d5): Activation maps for MEA-Net. Green boxes represent truth 
boxes, blue boxes represent prediction boxes, red boxes represent false negatives, and yellow boxes 
represent false positives. 
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Table 6. Comparison of evaluation indicators of different models on the SSDD dataset. 

Model AP (%) F1 (%) Params (M) FLOPs (G) FPS 
Faster R-CNN 73.09 65.87 136.69 258.58 - 

CenterNet 90.56 85.06 32.67 79.12 1.34 
EfficientDet 81.78 75.48 6.55 6.10 5.33 

YOLOv4-Tiny 88.26 86.13 5.87 16.11 5.11 
YOLOv5-n 91.91 89.06 1.90 4.50 5.83 

YOLOX-Nano 90.65 89.90 0.90 2.46 6.52 
MEA-Net (ours) 92.83 92.92 0.96 2.80 6.31 

Table 7. Comparison of evaluation indicators of different models on the HRSID dataset. 

Model AP (%) F1 (%) Params (M) FLOPs (G) FPS 
Faster R-CNN 77.65 77.10 136.69 258.58 - 

CenterNet 84.30 72.71 32.67 79.12 1.34 
EfficientDet 79.45 78.30 6.55 6.10 5.33 

YOLOv4-Tiny 84.09 81.42 5.87 16.11 5.11 
YOLOv5-n 87.24 83.73 1.90 4.50 5.83 

YOLOX-Nano 85.42 82.73 0.90 2.46 6.52 
MEA-Net (ours) 89.06 86.43 0.96 2.80 6.31 

In order to further prove the superiority of MEA-Net, the detection effects of MEA-
Net and other advanced target detection models are compared in the test images in the 
real scene. Here, green boxes represent truth boxes, blue boxes represent prediction boxes, 
red boxes represent false negatives, and yellow boxes represent false positives. Figure 9 is 
the comparison of the detection effects of different models for inshore medium ship tar-
gets on the SSDD dataset. It can be seen that MEA-Net detects all ship targets, while Cen-
terNet, EfficientDet, YOLOv4-Tiny, YOLOv5-n, and YOLOX-Nano miss 2, 4, 6, 1 and 3 
ship targets, respectively. Although Faster R-CNN also detects all of ship targets, there 
are two false detections. This can prove that MEA-Net can effectively suppress the influ-
ence of background to achieve accurate detection of inshore ship targets. Figure 10 is the 
comparison of the detection effects of different models for offshore small ship targets on 
the HRSID dataset. It can be seen that MEA-Net works best for offshore small ship detec-
tion compared to other models. Figure 11 is the comparison of the detection effects of 
different models for inshore large ship targets on the HRSID dataset. It can be seen that 
only MEA-Net detects all inshore large ship targets. The characteristics of the three large 
ship targets in Figure 11 are quite different, so many models cannot detect them all. How-
ever, MEA-Net relies on the excellent feature extraction ability of the EAM and the excel-
lent multi-scale detection ability of the ARFB to precisely detect these ship targets. 
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Figure 9. Comparison of the inshore medium ship detection effects of different models on the SSDD 
dataset. Green boxes represent truth boxes, blue boxes represent prediction boxes, red boxes repre-
sent false negatives, and yellow boxes represent false positives. 

 
Figure 10. Comparison of the offshore small ship detection effects of different models on the HRSID 
dataset. Green boxes represent truth boxes, blue boxes represent prediction boxes, red boxes repre-
sent false negatives, and yellow boxes represent false positives. 
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Figure 11. Comparison of the inshore large ship targets detection effects of different models on the 
HRSID dataset. Green boxes represent truth boxes, blue boxes represent prediction boxes, red boxes 
represent false negatives, and yellow boxes represent false positives. 

5. Discussion 
In the process of research, we find that the SAR ship datasets basically have the prob-

lem that the data volume of inshore and offshore ship targets do not match, and the data 
volume of ship targets of different sizes varies greatly. For the former, we innovatively 
propose a mask data balance augmentation (MDBA) method. By combining traditional 
image processing algorithms with XML label files in the dataset, the number of inshore 
ship targets can be effectively increased without affecting the number of offshore ship 
targets. For the latter, based on the traditional RFB-s multi-scale detection module, we 
propose an adaptive receptive field block (ARFB). Its adaptive convolution kernel size can 
improve the effect of multi-scale detection. At the same time, we find that there are very 
few ships target features in SAR images. In order to better extract ship features and im-
prove detection accuracy without excessively increasing the complexity of the model, we 
propose an efficient attention mechanism (EAM). These proposed optimization modules 
have been verified to be effective and feasible, and good results have been obtained on 
both the SSDD dataset and the HRSID dataset. 

6. Conclusions 
In this paper, we propose a lightweight SAR ship detection model named MEA-Net 

for imbalanced datasets to solve the problem of large model structure, high computing 
resources, and poor detection results of inshore and multi-scale ship targets. 

The following three optimizations are implemented. Firstly, we propose a data aug-
mentation method named MDBA which solves the imbalance of inshore and offshore ship 
targets. Secondly, we propose an efficient attention mechanism module named EAM 
which can improve the feature extraction ability of the model for SAR ship targets. 
Thirdly, we propose an adaptive multi-scale detection module named ARFB which inte-
grates local features and global features to achieve multi-scale detection. The above three 
optimizations are embedded into the baseline model at the same time. Compared with the 
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baseline model, the AP and F1 of MEA-Net increase, respectively, 2.18% and 3.02% on the 
SSDD dataset, 3.64% and 3.70% on the HRSID dataset. The FLOPs and parameters of 
MEA-Net are only 2.80 G and 0.96 M, and the FPS reaches 6.31 when MEA-Net is de-
ployed on the Jeston Nano edge computing device of the 2 GB version. 

In future work, we continue our research to achieve more lightweight SAR ship de-
tection, such as model pruning and knowledge distillation techniques. At the same time, 
the problem of imbalanced number of samples actually exists widely in different datasets, 
thereby the MEA-Net model proposed in this paper will be applied to other scenarios. 
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