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Abstract: With the increasingly severe damage wreaked by forest fires, their scientific and effective
prevention and control has attracted the attention of countries worldwide. The breakthrough of
remote sensing technologies implemented in the monitoring of fire spread and early warning has
become the development direction for their prevention and control. However, a single remote sensing
data collection point cannot simultaneously meet the temporal and spatial resolution requirements
of fire spread monitoring. This can significantly affect the efficiency and timeliness of fire spread
monitoring. This article focuses on the mountain fires that occurred in Muli County, on 28 March 2020,
and in Jingjiu Township on 30 March 2020, in Liangshan Prefecture, Sichuan Province, as its research
objects. Multi-source satellite remote sensing image data from Planet, Sentinel-2, MODIS, GF-1,
GF-4, and Landsat-8 were used for fire monitoring. The spread of the fire time series was effectively
and quickly obtained using the remote sensing data at various times. Fireline information and fire
severity were extracted based on the calculated differenced normalized burn ratio (dNBR). This
study collected the meteorological, terrain, combustibles, and human factors related to the fire. The
random forest algorithm analyzed the collected data and identified the main factors, with their
order of importance, that affected the spread of the two selected forest fires in Sichuan Province.
Finally, the vegetation coverage before and after the fire was calculated, and the relationship between
the vegetation coverage and the fire severity was analyzed. The results showed that the multi-
source satellite remote sensing images can be utilized and implemented for time-evolving forest
fires, enabling forest managers and firefighting agencies to plan improved firefighting actions in a
timely manner and increase the effectiveness of firefighting strategies. For the forest fires in Sichuan
Province studied here, the meteorological factors had the most significant impact on their spread
compared with other forest fire factors. Among all variables, relative humidity was the most crucial
factor affecting the spread of forest fires. The linear regression results showed that the vegetation
coverage and dNBR were significantly correlated before and after the fire. The vegetation coverage
recovery effects were different in the fire burned areas depending on fire severity. High vegetation
recovery was associated with low-intensity burned areas. By combining the remote sensing data
obtained by multi-source remote sensing satellites, accurate and macro dynamic monitoring and
quantitative analysis of wildfires can be carried out. The study’s results provide effective information
on the fires in Sichuan Province and can be used as a technical reference for fire spread monitoring
and analysis through remote sensing, enabling accelerated emergency responses.

Keywords: multi-source remote sensing; forest fire; forest fire monitor; vegetation recovery;
forest fire factors

1. Introduction

As an important material basis for the country’s sustainable development, forests are
vital and renewable resources in economic and ecological environment construction [1].
In particular, forests have a huge carbon sequestration function and play an important
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role as a buffer for climate change and maintaining ecological security [2,3]. However,
forest ecosystems often suffer from various human and natural disturbances, including
forest pests and diseases, multiple fires, and artificial logging [4–6]. Forest fire is a natural
disaster with such strong suddenness and destructive power that it is not easy to rescue
the forests. Forest fires damage the structure, composition, and function of virgin forests to
a certain extent, and can even threaten the safety of human beings and affect the region’s
carbon cycle in severe cases. Forest fires are severe natural disasters that threaten human
security, wildlife habitat, regional economies, and global climate change [7–10]. Reduc-
ing fire occurrence and damage has become one of the cornerstone tasks of protecting
ecological resources [11,12].

Traditionally, mechanical equipment and artificial environment monitoring are used
to track the spread of forest fires and extract information about burned areas [13]. However,
transportation issues make measuring fires in remote areas and steep terrains more difficult.
In addition, manual monitoring is a very dangerous and costly resource [14,15]. With the
continuous development of remote sensing technologies, the emergence of remote sensing
images with higher spatial, temporal, and radiometric resolution provides many reliable
data sources for forest fire monitoring. At the same time, the rapid and accurate extraction
of the fire location, area, progression, and other information hidden in remote sensing
images play an essential role in improving the monitoring effect [16]. The Landsat series
satellites, developed and launched by the National Aeronautics and Space Administration
(NASA), are characterized by rich spectral information and medium resolution. They can
better identify the areas burned by fire and have advantages in forest fire monitoring [17].
However, continuous time series images cannot be obtained due to time resolution lim-
itations of up to 16 days. There is an increased interest in the monitoring ability of the
binary star system (Aqua and Terra) of the Moderate Resolution Imaging Spectroradiometer
(MODIS) image to the exact location and the unique induction of the band to the fire point,
which has significantly improved our ability to observe fire spread [18]. MODIS has a
sensitive fire detection channel, which can support qualitative and quantitative analysis
of areas burned by forest fire etc. In this way, it plays an important role in enhancing
the visual expression of the forest fire environment and accurately identifying fire points.
MODIS records four images daily, which can monitor the incidence of a forest fire in a
timely and effective manner [19]. However, due to the fact that the spatial resolution of
the band used for fire monitoring is 500 m, it is difficult to effectively monitor the spread
of small fires. Sentinel 2 is a high-resolution multispectral imaging satellite composed of
Sentinel-2A and Sentinel-2B satellites. The Sentinel-2 satellite covers 13 spectral bands with
ground resolutions of 10 m, 20 m, and 60 m and provides red-edge spectral bands [20]. The
emergence of the GaoFen (GF) series images has resulted in their being widely used in
meteorology, forest fire monitoring, earthquake relief, and in other fields. They also have
great potential in forest fire early warning and prediction applications, further enhancing
the ability of satellite forest fire monitoring [21]. GF-1 data has high temporal and spatial
resolution characteristics, it is easy to obtain time-series images, and the spatial resolution
is 16 m [22]. The GF-4 is China’s first civilian satellite in geosynchronous orbit, with a
high spatial resolution. In addition, as a geostationary orbiting meteorological satellite,
the same area images in a sequence can be obtained within a few minutes. Since the GF-4
satellite has such high resolution, it is an indispensable remote sensing data source for fire
spread monitoring [21]. Planet satellite has been an emerging remote sensing satellite in
recent years. It is also the only remote sensing satellite in the world with a global high
resolution, high frequency, and full coverage capability. It has good image quality, high
data coverage efficiency, and a 3–5 m spatial resolution. The Planet constellation has more
than 170 satellites, and hundreds of satellites take images around the world daily, achieving
global daily coverage [23].

Remote sensing technologies have become one of the most used fire occurrence and
monitoring tools. Compared with traditional ground observations, remote sensing images
have a high imaging temporal frequency, and a wide comprehensive monitoring range
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and are sensitive to the thermal radiation of forest fires [24–26]. After a fire occurs, remote
sensing data from a single satellite cannot meet the requirements of time and space reso-
lution at the same time, so it is difficult to meet the emergency needs of monitoring fire
and fire location [27,28]. Furthermore, a single monitoring result may be constrained by
environmental factors, such as bad weather, which reduces monitoring effectiveness and
makes it impossible to collect reliable, detailed fire data or carry out firefighting opera-
tions [29]. Currently, because of the shortcomings of a single remote sensing observation
time, several studies have been using various remote sensing satellite monitoring data to
increase the observation frequency of satellites. Good results have been obtained for forest
resource inventory using multi-source remote sensing data and for assessing forest struc-
ture changes along productivity gradients after fires in the Canadian boreal forests [30,31].
In addition, multi-source satellite products were used to assess the characteristics of major
recent wildfires in the United States, Australia, and Brazil in 2018–2019, with satisfactory
results [32]. For example, the object-oriented analysis method is used to dynamically
monitor the fire burned area based on multiple remote sensing image data, or machine
learning techniques, such as Long Short Term Memory (LSTM) and Fuzzy logic models,
are utilized, which can overcome the shortcomings of the small number of images and
data acquired by a single satellite so as to better and continuously monitor the fire burned
area [33,34]. Using spectral indicators, such as the normalized differenced vegetation
index (NDVI) and the fire burned area identification index, a time series identification of
fire regions on remote sensing satellite images can be obtained by Landsat and GF series
satellites [35,36]. When monitoring and obtaining the fire burned areas, some methods
using the thresholds and spectral indices have achieved good results [37–39]. Therefore, the
advantages of different remote sensing data should be fully considered, and multi-source
remote sensing data should be coordinated to obtain fire occurrence and area information
from different sources and forms of remote sensing information quickly, accurately, with
high quality and efficiency to improve fire monitoring accuracy and timeliness. Achieving
regular and even real-time monitoring of forest resources provides an important basis for
forest fire monitoring and forest inventory and resource protection. There are few research
studies and applications of fire spread monitoring combined with various high, medium
and low-resolution remote sensing satellite image data, especially applications based on
high-resolution Planet satellites.

This study aims to provide a scientific basis for fire prevention and fighting, fire trend
inversion and disaster loss reduction. Therefore, utilizing data from the fires in Sichuan
Province, this paper combines the advantages of multi-source remote sensing satellites to
extract the time series of spreading fire lines to acquire the location and time evolution of
the fire. This approach can accurately calculate and analyze the area and how it changed at
different times after the fire. It can calculate and classify the fire intensity and quantitatively
analyze the dynamic changes in the vegetation in the study area before and after the
fire. Combining three different types of remote sensing data of low, medium, and high
resolution can accurately and quickly judge the direction of fire spread and solves the
problem that single remote sensing data cannot be continuously monitored. It provides
approaches to further explore the ability to use multiple remote sensing satellite image
data to collaborate in monitoring the spread of fires and construct forest fire assessment
techniques based on different spatiotemporal image data. It ultimately provides a scientific
and reasonable technical system for forest fire monitoring and prevention.

The rest of this paper is organized as follows. A collection of multi-source remote
sensing data and forest fire factors, and detailed description of experimental methods, is
presented in Section 2. In Section 3, based on the multi-source remote sensing data of two
forest fires in Sichuan Province, the burned area of the time series was extracted, a forest fire
factor importance experiment was conducted and forest fire intensity grade and vegetation
coverage experimental analysis were carried out. Sections 4 and 5 discuss the results and
some prospects for future work.
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2. Materials and Methods
2.1. Study Area

This study focused on the mountain fires that occurred in Muli County, on 28 March 2020,
and Jingjiu Township, on 30 March 2020 in Liangshan Prefecture, Sichuan Province, China
(Figure 1). The Muli County is located northwest of Liangshan between 100◦03′~101◦40′E
and 27◦40′~29◦10′N. At 19:00 p.m. on 28 March 2020, a mountain fire broke out in Muli
County, Sichuan Province. The fire lasted nine days until April 5, when the open flames
and smoke points were extinguished. The average altitude of the fire site was 4000 m, with
Pinus yunnanensis and shrubs mainly covering the area. The Jingjiu Township is located
in the south-central part of Xichang city, Sichuan Province, between 101◦46′~102◦25′E and
27◦32′~28◦10′N. At 15:00 p.m. on 30 March 2020, a fire broke out in Jingjiu Township, Sichuan
Province. By 2 April, all the fires were extinguished. The average altitude of the fire site is
1800 m, and Ageratina adenophora and shrubs dominate the surface vegetation. Since the
beginning of spring in 2020, southwest China has experienced drought and less rain, with
significantly higher temperatures and more windy weather. In the Liangshan area, it was
especially sunny in March, with a high temperature, no rainfall for 20 consecutive days,
and a humidity of less than 10%. Due to the extreme weather, complex terrain, steep slope,
and inconvenient traffic communication, fire emergency monitoring and firefighting faced
great difficulties.
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2.2. Remote Sensing Data

After the fire, satellite image data from multiple satellites were used for fire monitoring.
The multiple remote sensing satellite images acquired by the Planet, Sentinel-2, Landsat-8,
GF-1, GF-4, and MODIS satellites, the fire front, and the burned area were monitored in
this study. A total of 29 images were obtained with the specific data information shown
in Table 1.

Table 1. Selected remote sensing datasets.

Data Type Acquisition
Date

Acquisition
Time

Spatial
Resolution Source

Planet
1 April 2020 11:01

3 m
Planet Lab www.planet.com/explorer/

(accessed on 6 January 2022)10 April 2020 11:30
Sentinel-2 30 March 2020 11:45 10 m

Geospatial Data Cloud
www.gscloud.cn/ (accessed on 14

January 2022)Landsat 8

20 March 2020 11:46

30 m

13 March 2020 11:40
5 April 2020 11:46
16 May 2020 11:39

28 February 2021 11:40
23 March 2021 11:46

GF-1 30 March 2020 12:30 16 m China Centre For Resources Satellite
Data and Application

www.cresda.com/CN/ (accessed on 2
February 2022)

GF-4
31 March 2020 11:47; 13:38; 14:55;

15:00; 16:41 50 m/400 m
1 April 2020 11:52; 14:14; 15:17

MODIS

29 March 2020 12:45

500 m
EARTHDATA ladsweb.modaps.eosdis.

nasa.gov/search/ (accessed on 11
February 2022)

30 March 2020 11:50; 13:20

31 March 2020 10:55; 12:30; 14:05;
14:06

1 April 2020 11:35; 11:45; 13:10
5 April 2020 11:10

Each remote sensing image (Planet, Sentinel-2, Landsat 8, GF-1, MODIS) obtained was
used to extract the burned area, including Landsat-8 satellite to extract the fire intensity
and vegetation fractional coverage (VFC), GF-4 satellite to locate the fire and monitor the
dynamic time series of the fire. The monitoring process is shown in Figure 2.
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cloud or less cloud cover should be selected as far as possible. If the image has clouds, the
cloud mask algorithm should be used for cloud removal. According to the actual situation
of remote sensing images in this study, radiometric calibration, atmospheric correction and
geometric correction were preprocessed. Due to the different spatial resolutions of each data
source, all data were resampled to 3 m in this study and then information was extracted.

Among them, the GF4 satellite IRS was used to observe the abnormally high fire
temperature, and the PMS monitored the smoke and the fire point. The converted IRS data
could detect abnormal temperatures on the ground. By radiometric calibration, the remote
sensing image DN value could be converted into a radiation value to achieve temperature
conversion. The equation is described as follows:

Le(λi) = Gain·DN + o f f set (1)

where Le(λi) denoted the converted radiance value (W·m−2·sr−1·um−1), λi was the central
wavelength of channel i, DN denoted the observed load, Gain represented the calibration
slope (W·m−2·sr−1·um−1), and offset was the offset of the absolute calibration coefficient
(W·m−2·sr−1·um−1). In this study, Gain was 0.01107 W·m−2·sr−1·um−1, and offset was
−0.878625 W·m−2·sr−1·um−1.

After the above conversion, the temperature was calculated using the Planck function.
The equation is described as follows:

Ti =
Ki2

ln(1 + Ki1/Le(λi))
(2)

where Ki1 and Ki2 were constants, Ki1 = 2h·c2/λ5
i , Ki2 = h·c/(k·λi), h represented the

Planck constant, which was about 6.6261× 10−34 J·s, c denoted the light speed, which
was about 2.9979× 108 m/s, and k stood for the Boltzmann constant, which was about
1.3807× 10−23 J·K−1.

2.3. Forest Fire Factor Variables

The factors influencing forest fire spread are divided into four categories: meteoro-
logical, terrain, combustible and human factors. The researchers took these four factors
into consideration and used statistical inference or machine learning methods to predict
the risk of forest fire [42,43]. In forests, the degree of fuel burning is closely related to
meteorological factors. Temperature, humidity, precipitation, and wind factors affect the
speed at which combustibles reach the ignition point, the direction of combustion, and the
spread of combustibles, and, thus, directly affect the spread of forest fires [44]. Therefore,
this study collected the hourly temperature, relative humidity, precipitation, wind direction,
and wind speed values from the China Meteorological Data Network at the time of the
spread of the forest fire.

In terms of terrain factors, altitude and slope can affect the moisture loss of com-
bustibles. In contrast, the aspect affects the amount of solar radiation received by com-
bustibles, directly affecting the combustibles’ drying degree. For forests, terrain differences
lead to differences in wind, water balance, and heat transfer between different areas, affect-
ing the spread of fire [45]. Therefore, this study obtained the study area’s digital elevation
model (DEM) data from the Geospatial Data Cloud and extracted the study area’s elevation,
slope and aspect factors. The type of combustibles is an important factor that directly affects
forest fires’ spread time and severity [46]. Therefore, this study obtained the combustible
type variables of the study area from the Institute of Botany, the Chinese Academy of
Sciences. In addition, human factors, such as roads, residential areas, and other surface
structures, may block or alter the spread of fire, causing changes in the location of the fire
and affecting the direction of the fire spread [47,48]. Therefore, this study downloaded
the basic geographic database of the study area from the National Catalogue Service for
Geographic Information to collect information on whether there were roads, railways,
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residential areas, and water. To summarize, thirteen factors were collected to analyze their
impact on forest fires. The specific factors are listed in Table 2.

Table 2. Variables affecting forest fires.

Variable Type Variable Name Code Source

Meteorological

Hourly temperature Temperature

China Meteorological Data Network
data.cma.cn/ (accessed on 12 February 2022)

Relative humidity per hour Humidity
Precipitation per hour Precipitation
Hourly wind direction Wind direction
Wind speed per hour Wind speed

Terrain
Elevation Elevation Geospatial Data Cloud www.gscloud.cn/

(accessed on 14 February 2022)Slope Slope
Aspect Aspect

Combustible Types of combustibles Combustible
Institute of Botany, Chinese Academy of

Sciences www.ibcas.ac.cn/ (accessed on 18
February 2022)

Human

Road Road National Catalogue Service for Geographic
Information www.webmap.cn/ (accessed on

25 February 2022)

Residential area Resa
Railway Rail

Water Water

2.4. Extraction of Fire Line and Classification of Fire Severity

Fire intensity refers to the impact or degree of damage of the forest fire on the forest
ecosystem [49]. Quantitative evaluation of forest fire intensity is helpful to reveal the
development and change of various ecological processes in the ecosystem and the formation
mechanism of the forest landscape pattern under the disturbance of forest fire and to analyze
the change of regular vegetation coverage and the assessment of vegetation restoration after
fire [50,51]. Therefore, it is very important for fire intensity classification. The normalized
burn ratio (NBR) [52] and the differenced normalized burn ratio (dNBR) [53,54] were used
to extract the location of the line of fire and the fire state in the remote sensing images.
NBR is used to identify forest fire burned areas in remote sensing images (Formula (3)).
The theoretical value of the NBR index ranges from −1 to 1, negatively correlated with
forest fire intensity. The dNBR threshold method is used to detect the fire state (Formula
(4)). The dNBR values range from −2 to 2. To facilitate subsequent analysis and processing
steps, 1000 was used as a multiplier in the dNBR calculation to convert to an integer.
Previous studies have used the dNBR threshold to extract forest fire intensity levels and
have achieved good results. This study selected the threshold range according to previous
studies [55–57] and Table 3 shows the threshold range.

NBR =
ρnir − ρswir
ρnir + ρswir

(3)

dNBR = NBRpre− f ire − NBRpost− f ire (4)

where ρnir denotes the near-infrared band, ρswir denotes the short-wave infrared band,
NBRpre− f ire represents the NBR value of the image before the fire, NBRpost− f ire represents
the NBR value of the image after the fire.

Table 3. Threshold range for forest fire status.

Fire Severity 1000 × dNBR Ranges

Unburned <299
Low 300–499

Moderate 500–799
High >800

data.cma.cn/
www.gscloud.cn/
www.ibcas.ac.cn/
www.webmap.cn/
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2.5. Variable Importance Analysis

A random forest method was used to rank the importance of the collected factors
and analyze the key factors affecting the spread of the two selected forest fires in Sichuan
province. The dependent variable in this study was the occurrence of fire in the grid. A
forest fire occurring in a grid was recorded as “1” and no forest fire occurring in a grid
as “0”. This method directly measured each feature’s influence on the model’s prediction
accuracy. The basic idea is to rearrange the order of eigenvalues in a column and observe
how much the model accuracy is reduced [58,59]. This method has little influence on the
model accuracy for unimportant features, but it significantly reduces the model accuracy
for important features. At the same time, the grid search method was used to specify the
model parameter values, and the parameters of the estimated function were optimized
through cross-validation to obtain the optimal value. The hyperparameters used by the
random forest algorithm are shown in Table 4.

Table 4. Hyperparameter setting of random forest algorithm.

Hyperparameter Name Value

learning_rate 0.05
n_estimators 1000
max_depth 10
num_leaves 30

min_samples_leaf 1
colsample_bytree 1

The “Random Forest” package in R software was used to calculate and rank the impor-
tance of each variable. The specific calculation method of the importance of a particular
feature X in the random forest was as follows:

(1) for each decision tree in the random forest, the corresponding out-of-bag data (OOB)
was used to calculate its out-of-bag data error, denoted as errOOB1;

(2) noise interference was randomly added to feature X in all samples of out-of-bag data
(so that the value of samples at feature X can be randomly changed), and its out-of-bag
data error calculated again, denoted as errOOB2.

If there were N variables in the random forest, the feature X importance equation was:

Importance =
1
N ∑(errOOB2− errOOB1) (5)

2.6. Vegetation Fractional Coverage

Vegetation fractional coverage (VFC) is an important indicator reflecting ecological
environment monitoring [60]. VFC values are between 0 and 1. The closer the value is
to 1, the higher the VFC of the study area. The value is generally calculated based on the
normalized differenced vegetation index (NDVI) [61] by a dimidiate pixel model. The
calculation method of vegetation coverage was as follows:

NDVI = (NIR− R)/(NIR + R) (6)

VFC = (NDVI − NDVIsoil)/
(

NDVIveg − NDVIsoil
)

(7)

where NIR denotes the near-infrared band, R denotes the red band, VFC is the vegetation
coverage, NDVIsoil represents the NDVI value of the area with completely bare soil or
no vegetation coverage, and NDVIveg represents the NDVI value of the pixel completely
covered by vegetation.
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3. Results
3.1. Extraction of the Fire Line Results
3.1.1. Fire Line Time Series in Muli County

The time series of fire smoke and fire point distribution was obtained from the GF4
data of the Muli County fire (Figure 3). At 11:47 a.m. on 31 March, the fire point was found
(Figure 3a). At 13:38 p.m., the region covered by the fire smoke increased significantly
(Figure 3b), decreasing at 15:00 p.m. (Figure 3d). However, at 11:52 a.m. on 1 April, the area
of smoke from the fire showed an upward trend (Figure 3e), indicating that the fire was
intensifying again. As shown in Figure 3, there was a lot of thick smoke at the fire scene,
and the fire spread to the north–northeast, consistent with the local weather conditions.
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Figure 3. Forest fire monitoring in Muli County based on GF-4 satellite data. (a–f) are the fire and
smoke distribution at 11:47 a.m. on 31 March, 13:38 p.m. on 31 March, 14:55 p.m. on 31 March, 15:00
p.m. on 31 March, 11:52 a.m. on 1 April and 14:14 p.m. on 1 April in 2020, respectively.

The location and shape of the fire line were extracted from multi-source remote sensing
data (Figure 4). At 12:45 p.m. on 29 March, the image monitoring indicated that the burned
area was 1.05 km2 (Figure 4a). At 11:45 a.m. on 30 March, the burned area was 8.97 km2

(Figure 4b), and by 12:30 p.m., the burned area had reached 17.08 km2 (Figure 4d), within
45 min, and the fire spread by 8.11 km2. By 14:05 p.m. on 31 March, the fire burned area
reached 106.35 km2 (Figure 4f). The rapid spread of this stage brought great difficulties to
the rescue. By 11:35 a.m. on 1 April, the fire burned area was 125.89 km2 (Figure 4g), and
the fire was initially controlled at this timepoint. However, the fire reignited again, due to
the sudden change of wind direction and the accelerated wind speed. On 5 April, the fire
was controlled and extinguished, and the final burnt area was 209.17 km2 (Figure 4i).
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Figure 4. Multi-source satellite remote sensing image extraction of the burned area in Muli County.
(a) at 12:45 p.m. on 29 March, (b) at 11:45 a.m. on 30 March, (c) at 11:50 a.m. on 30 March, (d) at
12:30 p.m. on 30 March, (e) at 12:30 p.m. on 31 March, (f) at 14:05 p.m. on 31 March, (g) at 11:35 a.m.
on 1 April, (h) at 11:10 a.m. on 5 April, (i) at 11:46 a.m. on 5 April in 2020.

3.1.2. Fire Line Time Series in Jingjiu Township

The fire smoke and fire point distribution time series were obtained by GF-4 data of the
Jingjiu Township (Figure 5). At 11:47 a.m. on 31 March, the fire point was found in Jingjiu
Township (Figure 5a). At 14:55 p.m., the fire smoke decreased (Figure 5b), while later, at
16:41 p.m., the area covered by fire smoke increased significantly (Figure 5c). However,
by 11:52 a.m. on 1 April, the region of the fire smoke showed a downward trend again
(Figure 5d). By 15:17 p.m. on 1 April, only a small amount of smoke and sporadic fire spots
was observed at the scene, showing that the fire had been brought under effective control
(Figure 5f). According to the trend analysis in the figure, the fire gradually moved to the
east–northeast, consistent with the local weather conditions. This supports the important
application value of the GF-4 satellite multispectral data in fire spread monitoring.
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Figure 5. Forest fire monitoring in Jingjiu Township based on GF-4 satellite data. (a–f) are the fire
and smoke distribution at 11:47 a.m. on 31 March, 14:55 p.m. on 31 March, 16:41 p.m. on 31 March,
11:52 a.m. on 1 April, 14:14 p.m. on 1 April and 15:17 p.m. on 1 April in 2020, respectively.

The fire line time series of Jingjiu Township was extracted from multi-source remote
sensing data (Figure 6). At 13:20 p.m. on 30 March, the burned area was 2.80 km2 (Figure 6a),
and by 10:55 a.m. on 31 March, the burned area had reached 12.10 km2 (Figure 6b). By
14:55 p.m., the fire burned area had risen up to 17.98 km2 (Figure 6d), and the fire at this
stage had an accelerating trend. By 15:17 p.m. on 1 April, the fire burned area had reached
26.45 km2 (Figure 6h), and the fire was under control at this time. The fire was extinguished
on 2 April, and the final area burned was 30.91 km2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 5. Forest fire monitoring in Jingjiu Township based on GF-4 satellite data. (a–f) are the fire 

and smoke distribution at 11:47 a.m. on 31 March, 14:55 p.m. on 31 March, 16:41 p.m. on 31 March, 

11:52 a.m. on 1 April, 14:14 p.m. on 1 April and 15:17 p.m. on 1 April in 2020, respectively. 

The fire line time series of Jingjiu Township was extracted from multi-source remote 

sensing data (Figure 6). At 13:20 p.m. on 30 March, the burned area was 2.80 km2 (Figure 

6a), and by 10:55 a.m. on 31 March, the burned area had reached 12.10 km2 (Figure 6b). By 

14:55 p.m., the fire burned area had risen up to 17.98 km2 (Figure 6d), and the fire at this 

stage had an accelerating trend. By 15:17 p.m. on 1 April, the fire burned area had reached 

26.45 km2 (Figure 6h), and the fire was under control at this time. The fire was extin-

guished on 2 April, and the final area burned was 30.91 km2. 

 

Figure 6. Multi-source satellite remote sensing image extraction of the burned area in Jingjiu Town-

ship. (a) at 13:20 p.m. on 30 March, (b) at 10:55 a.m. on 31 March, (c) at 14:05 p.m. on 31 March, (d) 
Figure 6. Multi-source satellite remote sensing image extraction of the burned area in Jingjiu Town-
ship. (a) at 13:20 p.m. on 30 March, (b) at 10:55 a.m. on 31 March, (c) at 14:05 p.m. on 31 March, (d) at
14:55 p.m. on 31 March, (e) at 11:01 a.m. on 1 April, (f) at 11:45 a.m. on 1 April, (g) at 13:10 p.m. on
1 April, (h) at 15:17 p.m. on 1 April, (i) at 11:30 a.m. on 10 April in 2020.
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3.2. Extraction of Forest Fire Intensity Results

The final fire burned area in Muli County was 209.17 km2. The final fire burned area
was classified according to the dNBR threshold (Figure 7a). The low-intensity burned
area was 138.66 km2, accounting for 66.29%, the moderate-intensity burned area was
36.51 km2, accounting for 17.45%, and the high-intensity burned area was 34.00 km2,
accounting for 16.26%. The final burned area of the Jingjiu Township was 30.91 km2. The
forest fire intensity classification in the final burned area was performed according to the
dNBR threshold (Figure 7b). The low-intensity burned area was 23.70 km2, accounting for
76.67%, the moderate-intensity burned area was 5.51 km2, accounting for 17.83%, and the
high-intensity burned area was 1.70 km2, 5.50% of the total area.
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Figure 7. Fire intensity and the difference between the post-fire VFC and the pre-fire VFC (dVFC)
distributions in Muli County and Jingjiu Township. (a,b) fire intensity distributions in Mulli County
and Jingjiu Township, respectively. (c,d) the dVFC distributions in Mulli County and Jingjiu Township,
respectively.

3.3. Variable Importance

A random forest algorithm was used to rank 13 variables of forest fire spread (Figure 8).
The relative humidity was the most important variable affecting the spreads of the two
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selected forest fires in Sichuan Province, followed by temperature. Altitude had the greatest
impact among terrain factors, while other terrain factors (slope, aspect) had relatively weak
effects on the forest fire spread. The importance of combustible type was higher, below only
relative humidity and temperature. The importance of human factors was overall lower,
while the location in residential areas and rivers was higher than roads and railways.
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3.4. Changes in Vegetation Coverage

The vegetation coverage of Muli County is depicted before the fire and one year after
the fire (Figure 9a,b) and Jingjiu Township before and one year after the fire (Figure 9c,d),
respectively. In this study, 40 points were randomly selected from the pre-fire VFC, the
post-fire VFC and the dNBR images, respectively, to build the relationship between the
VFC and dNBR, respectively (Figure 10). The results for Muli County and Jingjiu Township
were similar. Both pre-fire VFCs were significantly proportional to dNBR, with an R2 of
0.79 and 0.76, respectively (Figure 10a,c). Both post-fire VFCs were inversely proportional
to dNBR, with an R2 of 0.77 and 0.74, respectively (Figure 10b,d).
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Figure 9. Changes in vegetation coverage before and after the fire. (a,b) the VFC before and
after the fire in Muli County, respectively, (c,d) the VFC before and after the fire in Jingjiu
Township, respectively.

The difference between the post-fire VFC and the pre-fire VFC (dVFC) (Figure 7c,d),
indicated that the VFC recovery effect of different degrees of fire was significantly different.
The VFC in the low-intensity burned area could be restored to its original state. After a
long time of natural recovery, the VFC in the moderate-intensity burned area still had a
certain gap from the original VFC. However, even after a long time of recovery, the VFC
was still far from the original in the high-intensity burned area.
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curves of VFC before and after the fire, and dNBR in Jingjiu Township, respectively.

4. Discussion

With frequent forest fires and massive losses, it is crucial to use remote sensing to
understand and monitor the spread of forest fires [62,63]. By acquiring multi-source remote
sensing data to extract the process of spreading of a forest fire, great value is added to
analyzing the development of a regular fire time series. In this study, 29 remote sensing
images were obtained from two forest fires in Sichuan Province, and the burned areas were
extracted in time series. In terms of forest fire monitoring, comprehensive multi-source
remote sensing images have the advantages of being low cost, accurate and efficient. They
play an important role in fire spot identification and burned area extraction.

Due to low resolution and low accuracy, the medium- and low-resolution satellite
remote sensing images are only suitable for monitoring large-scale forest fires. With such
images, it is difficult to timely and accurately obtain fire location information for small area
forest fires [64]. The emergence of a new generation of remote sensing satellites has made
up for the lack of spatial and temporal resolution of traditional remote sensing information.
It has become an essential supplement to satellite forest fire monitoring services. High
spatial resolution can provide more detailed and accurate forest fire information, such as
smoke and fire conditions [65]. However, the large storage space and low data processing
efficiency, due to high spatial resolution, mean its wide range of industrial applications can
be limited. To accurately grasp the information and dynamics of forest fires, efficient and
reliable forest fire recognition algorithms are particularly important. Here, this study used
the normalized burned ratio (NBR) and the difference normalized burned ratio (dNBR)
of multiple phase differences to extract the fire line and forest fire status. The NBR index
represents an improvement on the normalized difference vegetation index (NDVI), and
dNBR, which uses a multi-temporal approach, when combined with the NBR index, can
more accurately extract fire lines and define fire situations. Its increased accuracy was
similarly observed in previous research [66]. Therefore, combining the advantages of
multi-source satellite remote sensing data can effectively display forest fire information
and monitor the spread and development of forest fires.
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The hourly relative humidity, temperature, precipitation, wind speed and wind direc-
tion were selected as the five important meteorological factors affecting the spread of the
two selected forest fires in Sichuan Province. Meteorological factors have a more significant
impact on fire spread than other factors. The variable importance results showed that
relative humidity was the most critical factor affecting the spread of forest fires in the
study area. The temperature was second only to relative humidity, and wind speed and
direction were more important than precipitation. Relative humidity affects the fire fuel
moisture contents in forests, and high relative humidity increases fuel moisture, thereby
slowing the fire spread. Temperature directly affects the moisture content of combustible
fuels. High temperatures can increase plant transpiration and lower the moisture content of
potential fire fuels, therefore increasing the likelihood of forest fire spread. Increased wind
speed and direction can accelerate forest moisture loss and expand fire spread [67–69]. In
March 2020, the southwest region suffered from drought and little rain, with temperatures
significantly higher than in previous years and more windy weather. Moreover, there was
no rain for 20 consecutive days with less than 10% humidity. Extreme weather conditions
have significantly increased the likelihood of forest fires starting and spreading in the study
area. It is worth noting that although temperature was an important variable among the
meteorological factors affecting fire spread in this study, previous studies have shown
that high temperature appears to inhibit the occurrence and spread of fires in Fujian [70].
Previous research suggests a threshold between temperature and forest fires [71]. It is
also possible that forest managers’ increased awareness of fire prevention has dramatically
reduced the spread of fires during periods of high temperature, as supported by relevant
researchers [72]. Among terrain factors, altitude was the most crucial factor affecting the
spread of forest fires in the study area. An increase in altitude slows the fire spread to
some extent. Due to the particularity of the low-pressure and low-oxygen environment at
high altitudes, insufficient oxygen reduces the speed of fire spread. The terrain aspect was
less important than elevation. This may be because, in the study’s area terrain, the solar
radiation differences caused by variations in the aspect were not very different, resulting in
the terrain aspect having a small impact [73,74]. The type of combustible is an indicator that
directly determines whether the forest is combustible, and directly affects the process of fire
spreading [26,39]. Therefore, its importance was higher, second only to relative humidity
and temperature. It has been shown that the spread of forest fires can be related to human
activities and surface structures [75,76]. Therefore, this study collected data on the presence
or absence of railways, roads, residential areas, and water in the fires analyzed. Surface
structures, such as roads and water, belonging to human factors, have a blocking effect on
the spread of forest fires to a certain extent. Due to human factors, the spread of forest fires
may slow down, or the direction of the spread might change. Moreover, due to artificial
surface structures, the population density and the degree of population aggregation could
affect the spread process [77]. However, the results showed that these land cover type
variables were of relatively low importance compared to other variables, similar to the
results of previous studies [78,79]. This may be related to the low population density in the
study area, with most of the population concentrated in areas with developed industries
and low forest coverage. However, due to the uncontrollable characteristics of human
factors, further attention should be given to such factors in managing and preventing forest
fires in the future.

The vegetation coverage before and after fire in the study area was calculated, and the
relationship between vegetation coverage and dNBR was explored. The pre-fire VFC was
obviously proportional to the dNBR, and the post-fire VFC was inversely proportional to
the dNBR. This indicates that the lower the vegetation coverage, the lower the fire severity,
and vice versa. Moreover, the higher the fire severity, the poorer the vegetation recovery
ability is after the fire. VFC recovery effects differed in different degrees of burned areas
based on dVFC distribution (Figure 7c,d). The VFC in the low-intensity burned area could
return to its original state after a certain period of time, and might even exceed the pre-fire
VFC. This is because low-intensity fires can have a certain vegetation promoting effect on
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forests [80,81]. In the burned area with moderate intensity, there was still a certain gap
between the original VFC and the natural recovery after a long period of time. However,
in the high-intensity burned area, even after a long time of recovery, there was still a
large difference compared to the original VFC. This is because moderate-intensity and
high-intensity fires destroy the forest structure, making it difficult for the forest to recover
quickly [82,83]. Therefore, it is imperative to reduce forest fire occurrence and monitor the
spread and development of fire in time to protect forest resources.

At present, a single source of remote sensing data cannot simultaneously meet the tem-
poral resolution and spatial resolution requirements of fire spread monitoring, which affects
its efficiency and timeliness [84]. To solve this problem, this study collected multi-source
image data widely used in forest fire monitoring to improve forest fire spread monitoring.
Many studies have used remote sensing data for forest fire spread monitoring [35–39].
Such approaches have the advantages of a wide monitoring range and high precision.
However, monitoring the development and spread of small and short-duration forest fires
is still difficult. How to fully combine multi-source remote sensing data to give full play
to the advantages of various types of forest fire spread monitoring is an urgent problem
to be solved. The lack of forest fire spread monitoring may directly lead to the inability
to comprehensively analyze the process and regular characteristics of forest fire spread,
resulting in delays and errors in the judgment and management of forest fires.

5. Conclusions

In this study, the forest fires in Muli County and Jingjiu Township, Sichuan Province,
were monitored with multiple satellite remote sensing image data, and the importance
of forest fire factors was investigated and quantified. In addition, the dNBR was used to
identify the burned area and forest fire intensity. The relationship between the vegetation
coverage before and after the fire and forest fire intensity was analyzed. The results
show that by combining the remote sensing data obtained by multi-source satellite remote
sensing, the monitoring and quantitative analysis of the dynamic spread of wildfires can
be carried out. This enables an accurate and macroscopic analysis of regular fire spread.
For the forest fires in Sichuan Province studied here, meteorological factors had the most
significant impact on their spread compared with other forest fire factors. Among all
variables, relative humidity was the most important factor affecting forest fire spread,
followed by temperature. The linear regression results showed that VFC before and after
fire and dNBR were significantly correlated, and VFC recovery varied according to fire
severity. Such results can also be used to supplement the rescue efforts of forest firefighters.
In this study, only the forest fire spread data of Sichuan Province were collected, and the
results obtained are only applicable to the study area, but still have important reference
value for other regions. In the future, forest fire data from other places will also be collected
to further develop a comprehensive understanding of forest fires across the country. To
conclude, the results of this study not only provide information about the fires in Sichuan
Province, they can also be implemented as a technical reference for wildfire remote sensing
spread monitoring and emergency response.
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