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Abstract: The development of convolution neural networks (CNNs) has become a significant means
to solve the problem of remote sensing scene image classification. However, well-performing CNNs
generally have high complexity and are prone to overfitting. To handle the above problem, we present
a new classification approach using an mmsCNN–HMM combined model with stacking ensemble
mechanism in this paper. First of all, a modified multi-scale convolution neural network (mmsCNN)
is proposed to extract multi-scale structural features, which has a lightweight structure and can avoid
high computational complexity. Then, we utilize a hidden Markov model (HMM) to mine the context
information of the extracted features of the whole sample image. For different categories of scene
images, the corresponding HMM is trained and all the trained HMMs form an HMM group. In
addition, our approach is based on a stacking ensemble learning scheme, in which the preliminary
predicted values generated by the HMM group are used in an extreme gradient boosting (XGBoost)
model to generate the final prediction. This stacking ensemble learning mechanism integrates
multiple models to make decisions together, which can effectively prevent overfitting while ensuring
accuracy. Finally, the trained XGBoost model conducts the scene category prediction. In this paper,
the six most widely used remote sensing scene datasets, UCM, RSSCN, SIRI-WHU, WHU-RS, AID,
and NWPU, are selected to carry out all kinds of experiments. The numerical experiments verify that
the proposed approach shows more important advantages than the advanced approaches.

Keywords: remote sensing scene image classification; deep learning; CNN; hidden Markov
model (HMM)

1. Introduction

Remote sensing image analysis is the understanding and research of surface semantic
content. For the past few years, a great deal of remote sensing images with extremely
high-quality clarity are easier to obtain, which promotes the development of many studies,
such as remote sensing scene image classification [1], geographic image retrieval [2], and
automatic target recognition [3]. As a significant topic, remote sensing image classification
uses the computer to analyze various ground objects in the remote sensing image, select
the features, and then label the category of the given image. Unlike ordinary images,
remote sensing images are more difficult to process. For instance, remote sensing images
include all kinds of classes of objects, which vary in scale, tint, and position. Apart from
that, due to the interference of external factors during the collection process of remote
sensing images, there are large intraclass differences and interclass similarities between
them [4]. For example, as can be seen in Figure 1, a school area may be composed of
various geographical structures, including playgrounds, baseball field, and squares, while
they belong to disparate categories. All of these make it hard to accurately classify remote
sensing scene images.
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Figure 1. Several sample images from the AID datasets [5].

Presently, with the development of artificial intelligence, deep learning has become an
absolutely important tool, and has been applied in many aspects, including image recogni-
tion [6,7] and speech enhancement [8]. In particular, CNN is one of the commonly used ap-
proaches for image classification on account of its vigorous feature extraction ability [9–11].
Many neural networks with different structures have been proposed for remote sensing
scene image classification over the past few years [12–14]. For instance, ref. [15] proposed an
efficient combined structure to take advantage of the strengths of CNN and CapsNet. Liang
introduced a new two-stream architecture that combines CNN and graph convolutional
network (GCN) [16]. In addition, ref. [4] proposed a self-compensated CNN to improve
the speed of the model with low computational complexity. However, the performance of
traditional CNNs in remote sensing scene image classification is not satisfactory.

To improve the performance of the CNN model in complex environments, it is of
great significance to extract rich and representative features. Therefore, the multi-scale
convolution neural network (msCNN) was proposed. At present, multi-scale convolutional
neural networks can be divided into two types. The first is multi-scale convolutional neural
network based on multi-scale images. This type of model usually inputs images of different
scales into the same network model to obtain the features of images of different scales,
and then fuses them to obtain multi-scale features. Researchers obtain multi-scale images
in different ways. For example, the original image was transformed by Laplace pyramid
in [17], and ref. [18] directly scaled the original image at different scales. Although msCNN
based on multi-scale images has achieved good experimental results, its network structure
consumes a lot of memory and cannot adapt to larger and deeper networks. The second
is a convolutional neural network model based on multi-scale feature maps, such as the
single-shot multibox detector (SSD) network in target detection tasks [19]. The SSD network
uses multiple feature maps to perform location regression and classification, which can
handle the problem of poor detection results caused by small objects on large-scale feature
maps. Compared with the first type, the msCNN models based on multi-scale feature
maps generally have lower memory requirements. However, due to the introduction of
convolution kernels of various sizes, the number of parameters of the second msCNN
explodes, which is more likely to lead to the gradient vanishing problem.

As is well known to us all, HMMs are usually used to model one-dimensional data.
Recently, they have been used in computer vision, including texture segmentation [20],
face finding [21], object recognition [22], and face recognition [23]. Specifically, ref. [24]
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gave a detailed and in-depth introduction to HMMs. The ability to extract signal context
information makes HMMs perform better than some traditional methods in the above
applications. However, the effect of using the HMM alone is inferior to the current popular
deep learning method. Therefore, we consider combining an HMM with a convolutional
neural network to make full use of its feature extraction ability.

Ensemble learning is a technology that uses a variety of compatible learning algorithms
to perform a single task in order to obtain better prediction performance [25]. To be specific,
ensemble learning first uses the basic learners to extract a set of features and perform
various transformations. Based on these learned features, a variety of basic learners produce
preliminary prediction results. Finally, the top-level learner fuses the information from
the above results and achieves better prediction performance through an adaptive voting
scheme. Currently, common types of ensemble learning include bootstrap aggregating
(bagging) [26], boosting [27], Bayesian model combination [28], and stacking [29]. As the
most efficient ensemble learning method that can effectively resist overfitting, stacking is
selected in this paper. In addition, HMMs in the HMM group are natural basic learners,
which is consistent with the stacking framework in the ensemble.

In this paper, we design an mmsCNN–HMM combined model with stacking ensemble
scheme, where the multi-scale features are extracted by mmsCNN, while the context
information of the previously extracted features is mined by the hidden Markov model.
The main contributions are as follows:

• A new framework of an mmsCNN–HMM combined model with stacking ensemble
mechanism is presented.

• In view of the large computational complexity of the existing msCNN, we introduce
the mechanism of shortcut connections, deriving from the residual network, into
msCNN and propose a modified msCNN (mmsCNN). The mmsCNN model can
effectively extract multi-scale structure features with less computational complexity,
and avoid the gradient vanishing problem.

• An appropriate HMM is designed to mine the context information of the extracted
features by mmsCNN, which can obtain abundant hidden structural feature informa-
tion. For different categories of scene images, the corresponding HMM is trained and
all the trained HMMs form an HMM group. Then, for each sample, the trained HMM
group can give the preliminary prediction result.

• The proposed approach is based on a stacking ensemble learning scheme, in which
the prediction results generated by the trained HMM group are used by the XGBoost
model to generate the final prediction. This stacking ensemble learning scheme uses
HMMs as natural basic learners, which could take advantage of the feature extraction
ability of HMMs and prevent overfitting while ensuring accuracy.

The rest of this article is organized as follows. Section 2 gives a detailed introduction
of the modified multi-scale convolution neural network, hidden Markov model, and
stacking ensemble mechanism. In Section 3, we make several numerical experiments
and comparisons on six remote sensing scene datasets, i.e., UCM [30], RSSCN [31], SIRI-
WHU [32], WHU-RS [33], AID [5], and NWPU [34]. Finally, Section 4 summarizes our work
and discusses our plans for the future.

Before the discussion, the mathematical symbols in this paper are explained. Boldface
letters denote matrices or vectors. Lowercase letters denote scalars. In addition, the
following mathematical symbols are used:

• Conv[(m, n), i, j]: convolution neural networks with convolution kernel size = m× n,
padding = i, and stride = j.

• Pooling[(m, n), i, j]: pooling layers with filer size = m× n, padding = i, and stride = j.

2. Methodology

The processing flowchart of our model, i.e., an mmsCNN–HMM combined model
with stacking ensemble mechanism, is shown in Figure 2. It consists of the following three



Remote Sens. 2022, 14, 4423 4 of 26

parts: the modified msCNN (mmsCNN), hidden Markov model (HMM), and the stacking
ensemble mechanism.

Figure 2. The basic framework of our model.

2.1. mmsCNN

Presently, multi-scale convolutional neural networks (msCNNs) mainly include two
different types. The first is the msCNN model, on the basis of multi-scale images. This
type of model usually inputs images of different scales into the same network model to
obtain the features of images of different scales, and then fuses them to obtain multi-scale
features. The second is the msCNN model based on multi-scale feature maps, which utilizes
convolution kernels of different sizes to process images of the same size. Although msCNN
based on multi-scale images has achieved good experimental results, its network structure
consumes a lot of memory and cannot adapt to larger and deeper networks. Additionally,
the existing msCNN models based on multi-scale feature maps are not perfect either, which
introduces convolution kernels of various sizes, causing an explosion in the number of
parameters. Therefore, we present a lightweight msCNN model based on multi-scale
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feature maps to extract multi-scale features with fewer parameters and less calculation, as
shown in Figure 3.

Figure 3. The specific structure of the modified msCNN (mmsCNN) model.

Recently, ref. [35] showed that the shallow large-kernel CNNs have a larger effective
receptive field and are more consistent with the human perception mechanism. In addition,
since the large-kernel CNNs need to update more parameters, the gradient vanishing
is more likely to occur when the depth is as deep as the small-scale convolution kernel.
The above two cases inspire us to introduce the mechanism of shortcut connections into
large-kernel CNNs, which are derived from the residual network. First of all, we input
the sample images into four different kernel CNNs, i.e., Conv[(1, 1), 0, 1], Conv[(3, 3), 1, 1],
Conv[(5, 5), 2, 1], and Conv[(7, 7), 3, 1]. Unlike the traditional msCNN based on multi-
scale feature maps, we perform shortcut connections on the CNNs above. Specifically,
we, respectively, invalidate the first 1, 2, and 3 convolution layers of Conv[(3, 3), 1, 1],
Conv[(5, 5), 2, 1], and Conv[(7, 7), 3, 1], as shown in the blue dotted box in Figure 3. In
the following description, we refer to the network in the blue dashed box in Figure 3 as
the invalid layer, which is exactly the network we skipped. To ensure the same size of
different convolution layers during fusion, we adjust the pooling scale in the network of
the next layer of the invalid convolution layer. Concretely speaking, the pooling layer
after the invalid layer in Conv[(3, 3), 1, 1] is set to Pooling[(4, 4), 0, 4], that after the invalid
layer in Conv[(5, 5), 2, 1] is set to Pooling[(8, 8), 0, 8], and that after the invalid layer in
Conv[(7, 7), 3, 1] is set to Pooling[(16, 16), 0, 16]. Obviously, the number of layers of large-
kernel CNNs and parameters in the model are greatly reduced in the mmsCNN. Numerical
experiments verify that the proposed mmsCNN can effectively extract multi-scale features
with less computational complexity, and prevent the occurrence of gradient vanishing.
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Next, multi-scale features are merged at the feature fusion layer. Since the size of
features with different scales is consistent in the previous processing, these features can be
added directly in the feature fusion layer. After feature merging, the output of the model
contains both the signal details of the high-frequency features extracted from the small-scale
feature maps and the low-frequency local feature information extracted from the large-
scale feature maps. At the end of the mmsCNN, we utilize the fully connected network
to synthesize the previously extracted features. Notably, the export of the mmsCNN
is the multi-scale feature sequence and will be fed into the subsequent HMM as the
observation sequence.

2.2. HMM

A hidden Markov model (HMM) is a machine learning model used to describe a
Markov process [24]. In this section, we utilize the HMM to further mine the context
information (or “hidden state evolution laws”) between the features extracted from the
mmsCNN. Specifically speaking, we use the HMM to improve the semantic scores of highly
correlated related features and weaken the semantic scores of unrelated features. Then, the
HMM gives the preliminary prediction result of the sample, which is fed into XGBoost.

Firstly, we give a description of what the “context information” of HMM mining is.
Each remote sensing scene image is composed of several salient regions according to the
object composition logic. The hidden states of these salient regions show certain order laws,
which can reflect the characteristics of object composition. Different objects have various
compositional logics, so the salient regions of different objects have state evolution laws (or
“context information”) in different orders. As shown in Figure 4, “Beach” scene images can
be roughly divided into three regions: “sandbeach”, “wave”, and “seawater”. The “Pond”
scene images can be roughly divided into three regions: “land”, “lake”, and “land”. The
“Port” scene images can be roughly divided into three regions: “land”, “vessels”, and “sea”.
The “Playground” scene images can be roughly divided into three regions: “arc rubber
runaway”, “soccer field”, and “arc rubber runaway”. There is a certain order law between
those regions. For example, “wave” must be in between “sandbeach” and “seawater”. This
is the universal logic of objects such as “Beach”, and this logic is reflected in the change of
hidden state, as shown in Figure 5.

Figure 4. Three regions of different remote sensing images from the AID datasets [5].
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Figure 5. The HMM with three states for a “Beach” image.

What the HMM mines is the state evolution laws hidden behind features, and then it
achieves the purpose of classification. Figure 6 shows the “hidden state evolution laws” or
“context information” obtained by the HMM according to several different remote sensing
images shown in Figure 4. Before designing the HMM, we use k-means to determine that
there are eight hidden states for each event type signal. Figure 6a–d, respectively, show
the hidden state evolution diagrams of three salient regions in the four scene images of
“Beach”, “Pond”, “Port”, and “Playground”, which are obtained according to the Viterbi
algorithm. As we can see, “Beach” and “Port” present three different hidden states, while
the states of the first and third regions of “Pond” and “Playground” are the same, which is
consistent with the image we observed.

Figure 6. The “hidden state evolution laws” obtained by the HMM according to several different
remote sensing images shown in Figure 4.

In this part, we discuss the importance of the features’ priority exploited by the HMMs.
In this paper, we first use the mmsCNN model to extract the features of each salient region
in the image, and convert it into a feature sequence according to the order of the salient
regions. Then, it is used as the observation sequence of the HMM to learn the internal state
evolution law of the object, further excavate the composition logic of the object, and finally
classify the image of the object. Therefore, the priority of features is important, and it needs
to be arranged in the order of salient regions before it can be used to mine the changing
laws of hidden states. In order to prove the importance of the priority of features, we use
the “Beach” in Figure 4 as a sample to carry out comparative experiments. As shown in
Figure 4, the sample contains three salient regions.

In this experiment, in the first step, the trained mmsCNN is used to extract a feature
vector for the sample. In the second step, the mmsCNN feature vector, originally organized
according to the channels, is rearranged as the feature sequences arranged in the order of
the position of the salient regions of the sample. Specifically, this part of the work is mainly
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to connect the features of all channels corresponding to the same position of the sample
together as the features of the position. The mmsCNN feature sequence finally obtained in
this step includes three subsequences, which correspond to the mmsCNN feature vectors
of the three salient regions of the sample in turn. The third step is the most critical step,
because the difference processing in this step constitutes the control of this experiment. The
mmsCNN feature sequence output in the second step is directly used as the input of the
control group, while the shuffled mmsCNN feature sequence is used as the input of the
experimental group. To be specific, the processing of the experimental group in this step
refers to exchanging the second subsequence and the third subsequence of the mmsCNN
feature sequence. Although the internal order of each subsequence has not changed, the
order of the exchanged mmsCNN feature sequence cannot be consistent with the position
order of the salient region of the sample. In other words, after the exchange occurs, the
features’ priority of the feature sequence of the experimental group has been destroyed. In
the fourth step, we input the feature sequence of the experimental group and the feature
sequence of the control group into the HMM model corresponding to the trained “Beach”
object. Then, we compare the prediction probabilities of the output of the HMM model
in the experimental group and the control group, as shown in Table 1. In addition, the
state evolution diagrams of the experimental group and the control group are shown in
Figure 7.

Table 1. Comparison of two feature sequences in different order.

Methods The Probability of HMM (%)

The experimental group (the features’ priority is destroyed) 56.31
The control group (the features’ priority is retained) 95.26

Figure 7. The “hidden state evolution laws” obtained by the HMM according to two different
feature sequences.

As shown in Figure 7, compared with Figure 6a, there is a significant difference
between the state evolution diagrams of the experimental group (the features’ priority is
destroyed) and the state evolution diagrams of the typical “Beach” sample, while there
is no difference from the control group (the features’ priority is retained). This indicates
that when the features’ priority in the observation sequence of HMM is destroyed, the
object composition logic contained in the observation sequence changes markedly. As
reported in Table 1, the probability of HMM output in the experimental group (features’
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priority is destroyed) is significantly lower than that in the control group (features’ priority
is preserved). As we know, the higher the output probability, the more likelyit is that the
HMM model thinks it belongs to this category. This proves that it is difficult for HMM to
accurately classify according to the observation sequence when the features’ priority in
the observation sequence of HMM is destroyed. Based on the above two points, features’
priority is extremely important for the HMM model to correctly match the internal structure
logic of objects and thus correctly classify them.

Next, we explain how HMM works. The features output by the mmsCNN are fed into
the HMM as the observation sequence, which are described as

o = [o1, o2, . . . , oM], (1)

assuming there are M observation states in the Markov chain. In the training phase, the
HMM parameters of each kind of image are initialized to

λ = (π, A, B). (2)

Specifically, π = [πn] is the original probability of each hidden state,

πn = P(qt = sn), 1 ≤ n ≤ N (3)

where N is the number of hidden states in the Markov chain and qt denotes the hidden state
variable. In addition, A = [anh]N×N is denoted as the state transition probability matrix,

anh = P(qt+1 = sh|qt = sn), 1 ≤ n, h ≤ N (4)

which describes the transition probability between states in HMM. B = (bnm)N×M is the
probability matrix of the observation,

bnm = P(pt = om|qt = sn), 1 ≤ n ≤ N, 1 ≤ m ≤ M (5)

where pt denotes the observation variable. The matrix B is generally obtained by a Gaussian
mixed model (GMM). Particularly, the more Gaussian models there are in a GMM, the
better the effect of fitting the model, but the greater the computational complexity. The
HMM structure is shown in Figure 6.

The main task in the training phase is to update parameter λ by using the feature
vector output by mmsCNN. (We arrange the feature vectors extracted by mmsCNN into
feature sequences in the order of salient regions. This step is mainly realized by flattening
and rearranging the features of each channel). To be specific, λ is updated according
to the Baum–Welch algorithm [36] to obtain the highest probability P(o|λ). We consider
the probability P(o|λ) to reach its maximum value when the probability obtained in two
consecutive iterations is almost equal. In the experiment, the convergence of training loss
can be ensured after 10 iterations, which means that the difference of probability is close
to 10−8. In summary, for a large number of observation sequences of each kind of image,
we learn the context characteristics of this kind of image and obtain the parameters of the
optimal HMM. Similarly, other HMMs for the scene images of other categories can be built
in the same way. Ultimately, the HMMs of all kinds of images form an HMM group, which
is used to discriminate all different scene images.

In the test phase, first of all, every image is transformed into a multi-scale feature
sequence with the mmsCNN, which is then fed into the HMM group as a observation
sequence. Subsequently, the HMMs in the HMM group score the matching degree accord-
ing to the image features extracted by mmsCNN and the state evolution laws behind the
features. In other words, we calculate the posteriori probability of observation sequence
in each HMM on the basis of forward–backward algorithm [37], and then judge that the
model with maximum probability is the image category. It is worth mentioning that if it is
only feature matching or state evolution laws matching, the HMM will not obtain a high
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probability value. Only when both the feature sequence and the state evolution law are
matched with the parameters of the HMM can a high probability value be obtained and
the scene category be determined. Figure 8 shows the recognition process of the HMM.
Overall, for each sample image, the trained HMM group gives the preliminary prediction
results and inputs them into XGBoost as training data.

Figure 8. The recognition process of the HMM group.

At present, in addition to HMM, there are some other classification methods based
on feature sequences, such as RNN. However, the RNN is black box since the hidden
evolution routes of the signal are difficult to demonstrate, in which the improvement can
only be seen from the final classification results, while in the HMM model, the sequential
relationship can be also externally demonstrated, and it gives the reason why the model
works. In addition, the use of the HMM for classification requires the construction of the
HMM group, which naturally coincides with our stacking mechanism. The HMMs in the
HMM group can be used as basic learners in the stacking mechanism to further improve the
classification ability of the model; that is why we choose the HMM model at the beginning.
Presently, we cannot prove that the performance of our model will be better or worse if the
HMM is replaced with an RNN or LSTM model. The purpose of our work in this article is
to use the HMM to find the state evolution laws of remote sensing image feature sequences
and classify them. This is a start, and numerical experiments demonstrate that the effect
of our model is considerable. In fact, one of our main tasks in the future is to focus on
comparing the roles of HMM, RNN, and LSTM in our model, and find the best model.

2.3. Stacking Ensemble Mechanism

Ensemble learning is a technology to complete learning tasks by building and combin-
ing multiple learners [25]. At present, the three widely used ensemble learning methods are
bagging, boosting and stacking. The core idea of bagging is to train a series of independent
models in parallel, and then aggregate the output results of each model according to a
certain strategy. The main idea of boosting is to train a series of dependent models serially.
In other words, the latter model is used to correct the output results of the previous model.
The main idea of stacking is to train a series of independent basic learners in parallel, and
then combine the output results of each model by training a top-level learner.

In order to select the optimal ensemble learning scheme, we implement the above
three ensemble learning methods on the UCM dataset. Presently, the bagging method
and boosting method are widely accepted representative algorithms—random forest and
XGBoost. Stacking is used as an algorithm framework, and researchers design the details of
the top-level learner by themselves, with a higher degree of freedom. Therefore, we directly
use mmsCNN–randomforest, mmsCNN–XGBoost and mmsCNN–stacking frameworks for
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comparison. It is worth mentioning that the trained HMMs in the HMM group are used as
the basic learners and XGBoost is used as the top-level learner to construct a single-layer
stacking framework. The experimental results are shown in Table 2, which proves that
higher classification accuracy can be obtained by using stacking, which is the reason why
we choose stacking.

Table 2. Comparison of ensemble learning methods on the UCM dataset.

Methods OA (80/20)

mmsCNN–randomforest 98.41± 0.13
mmsCNN–XGBoost 99.12± 0.21
mmsCNN–stacking 99.81± 0.05

In the stacking ensemble mechanism, the HMMs in the HMM group are natural basic
learners and the top-level learner is the XGBoost model. If the HMM group consists of m
different HMMs in Section 2.2, the number of basic learners is m. Then, for each sample,
the HMM group will obtain m different probability values. Finally, these probability
values and the label of the sample will be fed to the XGBoost model as training data, as
shown in Figure 9. Different from traditional stacking ensemble mechanism, the proposed
model naturally takes advantage of the differences of each HMM in the HMM group and
does not rigidly link several models together, which can take advantage of the feature
extraction characteristics of the HMMs in the HMM group. This stacking ensemble learning
mechanism integrates multiple models to make decisions together, which can effectively
avoid overfitting while ensuring accuracy. In addition, this stacking mechanism can handle
several problems that basic learners cannot solve. For example, when two or more HMMs
in the HMM group give the same highest score to the sample picture, the HMM group
cannot judge the category of the sample picture. In this case, the trained XGBoost model in
the stacking mechanism can still work.

Figure 9. The process of the stacking ensemble mechanism.

In this paper, the XGBoost model is used as the top-level learner of the stacking framework,
and the mmsCNN–HMM + XGBoost model is constructed. To demonstrate the validity of
the XGBoost model, we performed ablation experiments on the UCM dataset. Specifically, we
took the following two models as the control test of the mmsCNN–HMM + XGBoost model
proposed in this paper: the first is mmsCNN–HMM, and the second is mmsCNN–HMM +
SVM. As shown in Table 3, the experimental results prove that selecting the XGBoost model in
stacking can result in higher classification accuracy.
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Table 3. XGBoost ablation experiments on UCM dataset.

Methods OA (80/20)

mmsCNN–HMM 97.21± 0.17
mmsCNN–HMM + SVM 98.92± 0.21

mmsCNN–stacking 99.81± 0.05

The basic idea of the extreme gradient boosting (XGBoost) model is to stack the outputs
of diverse weak classification models to form a strong classification model. The stacking
method adds the results of each weak classifier, i.e., classification and regression tree
(CART), which is a typical binary decision tree. In the training phase, XGBoost trains the
first tree with the training set to obtain the predicted value and the error with the sample
truth value. Next, the second tree is trained, whose goal is to fit the residual of the first tree,
and this procedure is the same as the first step except that the truth value is replaced by the
residual of the first tree. After the second tree is trained, the residual of each sample can be
obtained again, and then the third tree can be further trained, and so on. In the test phase,
for each sample in the test set, each tree will have an output value, and the sum of these
output values is the final predicted value of the sample. Then, the category of sample will
be obtained on the basis of the final predicted value. Particularly, ref. [38] gave a detailed
introduction to XGBoost.

3. Experiment

In this section, the six most widely used remote sensing scene datasets, UCM [30],
RSSCN [31], SIRI-WHU [32], WHU-RS [33], AID [5], and NWPU [34], are selected to carry
out all kinds of experiments. In addition, the proposed model is compared with several
advanced approaches. To guarantee the validity of experiments, every model is performed
using the same hyperparameters and equipment.

3.1. Datasets

In order to show the effect of our model, several experiments are carried out on the
above six datasets. Table 4 reports the details of the six datasets. On account of the various
image sizes in the datasets, in order to prevent memory overflow, we utilize the nearest
neighbor interpolation approach to resize training images to 256× 256. Figures 10 and 11
show several images in the UCM and AID datasets.

Table 4. Detailed introduction of six different datasets.

Datasets
Number of
Images per

Class

Number of
Classes

Number of
Images in

the Dataset

Spatial
Resolution

(m)
Images Size

UCM 100 21 2100 0.3 256 × 256
RSSCN 400 7 2800 - 400 × 400

AID 200∼400 30 10,000 0.5∼0.8 600 × 600
NWPU 700 45 31,500 0.2∼30 256 × 256

WHU-RS 50 19 1005 0.5 600 × 600
SIRI-WHU 200 12 2400 2 200 × 200
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Figure 10. Several images in UCM dataset.

Figure 11. Several images in AID dataset.

3.2. Setting of the Experiments

In dataset partitioning, the stratified sampling method is used to avoid sampling bias.
Specifically, we set a random seed such that the images are the same in all experiments.
Apart from that, 20 independent repeated tests are conducted for all experiments, and the
average results of 20 tests are taken as the final results. For the division of datasets, we
follow the default guidelines as in other previous papers. Concretely, the UCM dataset is
set to train:test = 8:2; the RSSCN dataset is set to train:test = 5:5; the SIRI-WHU dataset is
set to train:test = 5:5 and train:test = 8:2; the WHU-RS dataset is set to train:test = 4:6 and
train:test = 6:4; the AID dataset is set to train:test = 2:8 and train:test = 5:5; and the NWPU
dataset is set to train:test = 1:9 and train:test = 2:8.

For the parameter setting of the mmsCNN, the learning rate is set to 0.01. Table 5
reports the structure parameters of the mmsCNN model. The batch size is 10 and the
momentum during training is set to 0.9. For the parameter setting of HMM, λ = (π, A, B)
needs to be initialized. Firstly, we randomly initialize π and A under the condition that the
sum of probability is equal to 1. As for B, Gaussian HMM is adopted and the number of
Gaussian models in GMM is set to 8. In addition, the threshold value of the HMM is set to
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10−8, which means that when the difference of probability P(o|λ) is equal to 10−8 in two
adjacent iterations, the Baum–Welch algorithm stops iteration. For the parameter setting of
XGBoost, the learning rate is initialized to 0.01. The maximum depth of the tree is 6 and
the maximum number of iterations is initialized to 100. Additionally, the sampling rate of
training samples when generating the next tree is set to 1.

Table 5. Structure parameters of the mmsCNN.

Type Number Filter Size Pad Stride

Conv1 + ReLU 64 1× 1 0 1
Max Pooling - 2× 2 0 2

Conv2 + ReLU 128 (1/3)× (1/3) 0/1 1
Max Pooling - (2/4)× (2/4) 0 2/4

Conv3 + ReLU 256 (1/3/5)× (1/3/5) 0/1/2 1
Max Pooling - (2/4/8)× (2/4/8) 0 2/4/8

Conv4 + ReLU 512 (1/3/5/7)× (1/3/5/7) 0/1/2/3 1
Max Pooling - (2/4/8/16)× (2/4/8/16) 0 2/4/8/16

Fully Connected
Network + ReLU 100 1× 1 - -

3.3. Experimental Results

In order to show the effect of our method, the overall accuracy (OA) and confusion
matrix are selected as the evaluation indicators for comparison.

3.3.1. Experimental Results on the UCM Dataset

The first experiment is conducted on the UCM dataset. The methods from 2019
to 2021 are selected for comparison, and Table 6 reports the overall accuracies of them.
Compared with the advanced classification methods, the proposed model achieved the
highest accuracy of 99.81%, which is superior to all methods. Specifically, the accuracy of
our method is 1% higher than the aggregated deep Fisher feature [39], 0.52% higher than
the LCNN–BFF method [40], and 0.29% higher than LCNN–CMGF [41].

Table 6. OA comparison on UCM dataset.

Methods OA (80/20) Year

Fine-Tune MobileNetV2 [42] 98.13± 0.33 2019
VGG-16-CapsNet [15] 98.81± 0.12 2019

AResNet + WSPM-CRC [43] 97.95 2019
Feature Aggregation CNN [44] 98.81± 0.24 2019

Aggregated Deep Fisher Feature [39] 98.81± 0.51 2019
LiG with Sigmoid Kernel [45] 98.92± 0.35 2020

Contourlet CNN [46] 98.97± 0.21 2020
MobileNet [47] 96.33± 0.15 2020

EfficientNet [48] 94.37± 0.14 2020
Positional Context Aggregation [49] 99.21± 0.18 2020

LCNN–BFF Method [40] 99.29± 0.24 2020
DDRL-AM Method [50] 99.05± 0.08 2020

Skip-Connected CNN [51] 98.04± 0.23 2020
Gated Bidirectiona + Global Feature [52] 98.57± 0.48 2020

HABFNet [53] 99.29± 0.35 2020
VGG-VD16 with SAFF [54] 97.02± 0.78 2020
EfficientNetB3-Attn-2 [55] 99.21± 0.22 2021

LCNN–CMGF [41] 99.52± 0.34 2021
Proposed 99.81 ± 0.05 2022

The confusion matrix of our model on the UCM dataset is shown in Figure 12. The
accuracies of almost all categories reached 100%, except the classification accuracies of two
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scenes of “dense residential” and “medium residential” which were 98%. It is likely that
similar buildings in “dense residential” and “medium residential” scenes led to misclas-
sification. The high classification accuracy of all scenarios verifies that our method has
excellent performance on the UCM dataset.

Figure 12. Confusion matrix of our model on UCM dataset.

3.3.2. Experimental Results on SIRI-WHU Dataset

The second experiment is conducted on the SIRI-WHU dataset with train:test = 5:5 and
train:test = 8:2, and the overall accuracies of all kinds of methods are reported in Table 7. It
is obvious that our method shows the best classification accuracy among all comparison
methods. To be specific, when train:test = 5:5, the accuracy of the proposed method is
7.11% higher than DMTM [32], 5.19% higher than SRSCNN [56], 1.67% higher than SE-
MDPMNet [42], and 0.55% higher than the SCCNN method [4]. When train:test = 8:2,
the accuracy of the proposed method is 9.83% higher than LPCNN [57], 4.64% higher
than pretrained-AlexNet-SPP-SS [58], 4.95% higher than SRSCNN [56], 0.94% higher than
SE-MDPMNet [42], and 0.34% higher than the SCCNN method [4].

Table 7. OA comparison on SIRI-WHU dataset.

Methods OA (50/50) OA (80/20) Year

DMTM [32] 91.52 - 2016
LPCNN [57] - 89.88 2016
SICNN [59] - 93.00 2016

Pretrained-AlexNet-SPP-SS [58] - 95.07± 1.09 2017
SRSCNN [56] 93.44 94.76 2018

Siamese ResNet-50 [60] 95.75 97.50 2019
Siamese AlexNet [60] 83.25 88.96 2019
Siamese VGG-16 [60] 94.50 97.30 2019

Fine-tune MobileNetV2 [42] 95.77± 0.16 96.21± 0.31 2019
SE-MDPMNet [42] 96.96± 0.19 98.77± 0.19 2019

The SCCNN Method [4] 98.08± 0.45 99.37± 0.26 2021
Proposed 98.63 ± 0.15 99.71 ± 0.21 2022
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The confusion matrix of our model on the SIRI-WHU dataset is shown in Figure 13.
The accuracies of almost all categories reached 100%, except the classification accuracies of
three scenes of “meadow”, “residential”, and “river”. Several “residential” and “industrial”
scenes are confused as they both include some buildings and grass, which leads to high
class similarity. In addition, some “river” images are incorrectly classified as “water”,
which may be due to the fact that the “river” image contains water. However, our model
still achieves high accuracy on SIRI-WHU dataset.

Figure 13. Confusion matrix of our model on SIRI-WHU dataset (train:test = 8:2).

3.3.3. Experimental Results on RSSCN Dataset

The third experiment is conducted on the RSSCN dataset with train:test = 5:5, and
Table 8 reports the final results. Compared with the advanced models proposed recently,
the proposed model in this paper shows the highest accuracy. Specifically, the accuracy of
our model is 1.37% higher than VGG-16-CapsNet [15], 2.04% higher than positional context
aggregation [49], and 0.52% higher than LCNN–CMGF [41].

Table 8. OA comparison on RSSCN dataset.

Methods OA (50/50) Year

VGG-16-CapsNet [15] 96.65± 0.23 2019
SPM-CRC [43] 93.86 2019

AResNet + WSPM-CRC [43] 93.60 2019
Aggregated Deep Fisher Feature [39] 95.21± 0.50 2019

SE-MDPMNet [42] 92.46± 0.66 2019
Variable-Weighted Multi-Fusion [61] 89.1 2019

Contourlet CNN [46] 95.54± 0.17 2020
Positional Context Aggregation [49] 95.98± 0.56 2020

LCNN–BFF Method [40] 94.64± 0.12 2020
LCNN–CMGF [41] 97.50± 0.21 2021

Proposed 98.02 ± 0.10 2022

The confusion matrix of our model on the RSSCN dataset is shown in Figure 14. As
can be seen, the classification accuracies of all categories reach 97% or higher, and the
accuracy of “Resident” can reach 100%. On account of the strong class similarity among
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“Grass”, “Forest”, and “Field”, the accuracy of “Field” is the lowest. Overall, Figure 14
demonstrates the effectiveness of our model on the RSSCN dataset.

Figure 14. Confusion matrix of our model on RSSCN dataset.

3.3.4. Experimental Results on AID Dataset

The fourth experiment is performed on the AID dataset with train:test = 2:8 and
train:test = 5:5, and Table 9 reports the experiment results. Compared with the advanced
classification approaches, the proposed method shows more important advantages.

Specifically, when train:test = 2:8, the accuracy of our model is 1.15% higher than
aggregated deep Fisher feature [39], 0.66% higher than InceptionV3 [62], and 0.30% higher
than LCNN–CMGF [41]. When train:test = 5:5, the accuracy of the proposed method is
2.36% higher than feature aggregation CNN [44], 1.06% higher than SRSCNN [56], and
0.27% higher than LCNN–CMGF [41].

Table 9. OA comparison on AID dataset.

Methods OA (20/80) OA (50/50) Year

Feature Aggregation CNN [44] - 95.45± 0.11 2019
Bidirectional Adaptive Feature Fusion [63] - 93.56 2019

Aggregated Deep Fisher Feature [39] 92.78± 0.57 95.26± 0.84 2019
MobileNet [47] 88.53± 0.17 90.91± 0.18 2020

EfficientNet [48] 86.56± 0.17 88.35± 0.16 2020
InceptionV3 [62] 93.27± 0.17 95.07± 0.22 2020

MG-CAP with Bilinear [64] 92.11± 0.15 95.14± 0.12 2020
LCNN–BFF [40] 92.06± 0.36 94.53± 0.24 2020

DDRL-AM Method [50] 91.56± 0.49 94.08± 0.35 2020
GBNet [52] 90.16± 0.24 93.72± 0.34 2020

GBNet + Global Feature [52] 92.20± 0.23 95.48± 0.12 2020
HABFNet [53] 93.01± 0.43 96.75± 0.52 2020

VGG-VD16 with SAFF Method [54] 92.05± 0.34 95.98± 0.70 2020
ResNet50 [62] 92.39± 0.15 94.69± 0.19 2020
VGG19 [62] 87.73± 0.25 91.71± 0.24 2020

Skip-Connected CNN [51] 91.10± 0.15 93.30± 0.13 2020
EfficientNetB3-Attn-2 [55] 92.48± 0.76 95.39± 0.43 2021

LCNN–CMGF [41] 93.63± 0.10 97.54± 0.25 2021
Proposed 93.93 ± 0.15 97.81 ± 0.04 2022
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The confusion matrix of our method on the AID dataset is shown in Figure 15. The
accuracies of all classes reached 90% or higher. Particularly, the results of “Desert”, “Pond”,
“River”, “Square”, and “StorageTanks” reach 100%. The “School” scene shows the low
classification accuracy of 94%. The reason is that “BaseballField”, “Playground”, and
“Square” often appear in “School” scenes. Overall, Figure 15 shows the effectiveness of our
model on this dataset.

Figure 15. Confusion matrix of our method on AID dataset (train:test = 5:5).

3.3.5. Experimental Results on WHU-RS Dataset

The fifth experiment is performed on the WHU-RS dataset with train:test = 4:6
and train:test = 6:4, and Table 10 reports the experiment results. Compared with the
other models, our model shows more important advantages. Concretely speaking, when
train:test = 4:6, the accuracy of our model is 3.52% higher than VGG-VD-16 [5], 0.73%
higher than two-stream deep fusion framework [65], 0.5% higher than SE-MDPMNet [42],
0.48% higher than TEX-Net-LF [52], and 0.31% higher than the SCCNN method [4]. When
train:test = 6:4, the accuracy of our model is 1.03% higher than DCA by addition [66], 0.81%
higher than two-stream deep fusion framework [65], 0.76% higher than SE-MDPMNet [42],
0.85% higher than TEX-Net-LF [52], and 0.22% higher than the SCCNN method [4].

The confusion matrix of our method on the WHU-RS dataset is shown in Figure 16.
Obviously, most of the scene categories reach 100% except “forest” and “river”. It is the
large class similarity between “forest” and “river” that results in their low classification
accuracy. For instance, a large number of trees may appear in “forest” and “river” scenes,
which leads to the wrong classification of “river” as “forest”. However, our method still
achieves good classification results on the WHU-RS dataset.
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Table 10. OA comparison on WHU-RS dataset.

Models OA (40/60) OA (60/40) Year

CaffeNet [5] 95.11± 1.20 96.24± 0.56 2017
VGG-VD-16 [5] 95.44± 0.60 96.05± 0.91 2017
GoogLeNet [5] 93.12± 0.82 94.71± 1.33 2017

DCA by addition [66] - 98.70± 0.22 2017
Two-stream Deep Fusion

Framework [65]
98.23± 0.56 98.92± 0.52 2018

Fine-tune MobileNetV2 [42] 96.82± 0.35 98.14± 0.33 2019
SE-MDPMNet [42] 98.46± 0.21 98.97± 0.24 2019

TEX-Net-LF [52] 98.48± 0.37 98.88± 0.49 2020
The SCCNN Method [4] 98.65± 0.45 99.51± 0.15 2021

Proposed 98.96 ± 0.25 99.73 ± 0.27 2022

Figure 16. Confusion matrix of our model on WHU-RS dataset (train:test = 6:4).

3.3.6. Experimental Results on NWPU Dataset

The sixth experiment is performed on the NWPU dataset with train:test = 1:9 and
train:test = 2:8, and the experiment results are reported in Table 11. It is obvious that our
method shows the highest classification accuracy among all comparison methods. To be
specific, when train:test = 1:9, the accuracy of our model is 4.21% higher than discriminative
+ VGG16 [67], 8.38% higher than VGG-16-CapsNet [15], 1.87% higher than MSDFF [68], and
0.90% higher than the SCCNN method andLCNN–CMGF [41]. When train:test = 2:8, the
accuracy of our model is 3.62% higher than discriminative + VGG16 [67], 4.48% higher than
R.D [69], 1.96% higher than MSDFF [68], and 1.12% higher than the SCCNN method [4].

The confusion matrix of the proposed model with the NWPU dataset is shown in
Figure 17. As can be seen, the classification accuracies of most classes reach more than
90%. The lowest classification accuracies are “dense residential” and “medium residential”,
which reach 89% and 88%, respectively. The reason is that similar buildings exist in “dense
residential”, “medium residential”, “tennis court”, and “church” scenes, which results
in large class similarity among them. Nevertheless, the proposed model still achieves
excellent classification results on the NWPU dataset.
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Table 11. OA comparison on NWPU dataset.

Models OA (10/90) OA (20/80) Year

Discriminative + VGG16 [67] 89.22± 0.50 91.89± 0.22 2018
Discriminative + AlexNet [67] 85.56± 0.20 87.24± 0.12 2018

VGG-16-CapsNet [15] 85.05± 0.13 89.18± 0.14 2019
R.D [69] - 91.03 2019

Contourlet CNN [46] 85.93± 0.51 89.57± 0.45 2020
MG-CAP with Biliner [64] 89.42± 0.19 91.72± 0.16 2020
LiG with RBF Kernel [70] 90.23± 0.13 93.25± 0.12 2020

EfficientNet [48] 78.57± 0.15 81.83± 0.15 2020
LiG with Sigmoid Kernel [45] 90.19± 0.11 93.21± 0.12 2020

ResNet50 [62] 81.34± 0.32 83.57± 0.37 2020
VGG19 [62] 86.23± 0.41 88.93± 0.12 2020

InceptionV3 [62] 85.46± 0.33 87.75± 0.43 2020
MobileNet [47] 80.32± 0.16 83.26± 0.17 2020

Skip-Connected CNN [51] 84.33± 0.19 87.30± 0.23 2020
LCNN–BFF Method [40] 86.53± 0.15 91.73± 0.17 2020

VGG-VD16 with SAFF Method [54] 84.38± 0.19 87.86± 0.14 2020
MSDFF [68] 91.56 93.55 2020

LCNN–CMGF [41] 92.53± 0.56 94.18± 0.35 2021
The SCCNN Method [4] 92.02± 0.50 94.39± 0.16 2021

Proposed 93.43 ± 0.25 95.51 ± 0.21 2022

Figure 17. Confusion matrix of our model on NWPU dataset (train:test = 2:8).

3.3.7. Complexity Analysis

In this section, we compare the parameter quantity of our model with other models.
Apart from that, floating point operations per second (FLOPs) are used to measure the time
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complexity of the model. We give the parameter quantities and FLOPs of each model on
the RSSCN dataset, as shown in Table 12.

Table 12. Complexity comparison on RSSCN dataset.

Methods OA (50/50) Parameter
Quantities FLOPs

VGG-16-CapsNet [15] 96.65± 0.23 130 M 1.01 G
SPM-CRC [43] 93.86 23 M 856 M

AResNet + WSPM-CRC [43] 93.60 25 M 727 M
Aggregated Deep Fisher Feature [39] 95.21± 0.50 23 M 513 M

SE-MDPMNet [42] 92.46± 0.66 5.2 M 3.27 G
Variable-Weighted Multi-Fusion [61] 89.1 53 M 334 M

Contourlet CNN [46] 95.54± 0.17 21.6 M 2.1 G
Positional Context Aggregation [49] 95.98± 0.56 28 M 8.6 G

LCNN–BFF Method [40] 94.64± 0.12 7 M 24.6 M
Proposed 98.02 ± 0.10 19 M 198 M

Compared with other models, although the number of parameters of our model is
not the lowest, it is less than most models. Specifically, we have 13.8 M more parameters
than SE-MDPMNet [42], but our accuracy is the highest. In addition, compared with
VGG-16-CapsNet [15] and variable-weighted multi-fusion [61], the number of parameters
of our model is greatly reduced. Compared with SPM-CRC [43], AResNet + WSPM-
CRC [43], aggregated deep Fisher feature [39], Contourlet CNN [46], and positional context
aggregation [49], the number of parameters of the proposed model is about 5 M fewer.
According to the last column of Table 12, the FLOPs of our method are still fewer than most
models. Overall, the proposed model achieves a good balance of parameters complexity
and accuracy.

3.3.8. Visual Analysis of the Model

To demonstrate the feature extraction ability of our model, two different visual meth-
ods are implemented to evaluate our model. First of all, the T-distributed stochastic
neighbor embedding visualization algorithm (T-SNE) [71] is selected to visualize feature
representations learned by the proposed model. The T-SNE algorithm is a machine learning
method for dimension reduction, which generally reduces the high dimensions to 2D
space. In this section, the T-SNE algorithm is performed on the AID and UCM datasets,
as shown in Figures 18 and 19. It is obvious that our method has brilliant global feature
representations and can clearly distinguish various remote sensing scene categories. We
believe this is due to the mmsCNN–HMM in our model, which enables our model to extract
rich structural feature information. Apart from that, the stacking ensemble learning scheme
in the proposed model effectively prevents overfitting while ensuring accuracy.

Subsequently, the class activation map (CAM) method [72] is adopted to evaluate our
model. The CAM method can highlight the part of the object with recognition detected
by the CNN. In this section, the CAM method is performed on the AID dataset, as shown
in Figure 20. We find that the proposed method can accurately find objects and has a
wide highlight range. We believe this is because of the shortcut connect mechanism in the
mmsCNN that enables our model to have a larger effective receptive field. In addition, the
HMM enables our model to further utilize context information.
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Figure 18. The T-SNE algorithm visualization results of our model on AID dataset.

Figure 19. The T-SNE algorithm visualization results of our model on UCM dataset.
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Figure 20. The CAM method visualization results of our model on AID dataset.

4. Conclusions

In this paper, a new classification approach using an mmsCNN–HMM combined
model with stacking ensemble mechanism is proposed to classify remote sensing scene
images. First of all, a lightweight mmsCNN with the shortcut connections mechanism
is designed to extract multi-scale structural features from remote sensing images, which
can avoid high computational complexity and gradient vanishing. Next, an appropriate
HMM is designed to mine the context information of the extracted features by mmsCNN,
which can obtain richer hidden structure information. For different categories of scene
images, the corresponding HMM is trained and all the trained HMMs form an HMM
group. Additionally, our method is on the basis of a stacking ensemble learning scheme,
in which the prediction generated by the basic learning method is used by the top-level
method to generate the final prediction. Specifically, the preliminary prediction results
generated by the trained HMM group are fed into the extreme gradient boosting (XGBoost)
model to conduct the scene class prediction, which can effectively avoid overfitting while
ensuring accuracy. A great deal of experiments were performed on the six most widely
used datasets. The numerical experiments verify that the proposed approach shows more
important advantage than the advanced approaches. Finally, our future work aims to
design a more efficient and lightweight convolutional neural network.
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