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Abstract: Traditional forest inventories are based on field surveys of established sample plots, which
involve field measurements of individual trees within a sample plot and the selection of proper
allometric equations for tree volume calculation. Thus, accurate field measurements and properly
selected allometric equations are two crucial factors for providing high-quality tree volumes. One
key problem is the difficulty in accurately acquiring tree height data, resulting in high uncertainty
in tree volume calculation when the diameter at breast height (DBH) alone is used. This study
examined the uncertainty of tree height measurements using different means and the impact of
allometric models on tree volume estimation accuracy. Masson pine and eucalyptus plantations in
Fujian Province, China, were selected as examples; their tree heights were measured three ways:
using an 18-m telescopic pole, UAV Lidar (unmanned aerial vehicle, light detection and ranging)
data, and direct measurement of felled trees, with the latest one as a reference. The DBH-based and
DBH–height-based allometric equations corresponding to specific tree species were used for the
calculations of tree volumes. The results show that (1) tree volumes calculated from the DBH-based
models were lower than those from the DBH–height-based models. On average, tree volumes were
underestimated by 0.018 m3 and 0.117 m3 for Masson pine and eucalyptus, respectively, while the
relative root-mean-squared errors (RMSEr) were 24.04% and 33.90%, respectively, when using the
DBH-based model; (2) the tree height extracted from UAV Lidar data was more accurate than that
measured using a telescopic pole, because the pole measurement method generally underestimated
the tree height, especially when the trees were taller than the length of the pole (18 m in our study);
(3) the tree heights measured using different methods greatly impacted the accuracies of tree volumes
calculated using the DBH–height model. The telescopic-pole-measured tree heights resulted in a
relative error of 9.1–11.8% in tree volume calculations. This research implies that incorporation of
UAV Lidar data with DBH field measurements can effectively improve tree volume estimation and
could be a new direction for sample plot data collection in the future.

Keywords: field measurement; allometric equation; tree volume; UAV Lidar

1. Introduction

Forests play important roles in maintaining global carbon cycling and biodiversity.
Regular forest inventories at certain time intervals are the main approach to quantifying
forest resources and monitoring their dynamics. Generally, forest inventory involves the
field measurement of individual trees within preset plots based on sampling theory. The
sample plot is a basic unit for providing information on both individual tree levels and
forest stand levels [1]. In recent years, remote sensing technology has been widely applied
in forest surveys across large areas, and a variety of remotely sensed data including optical,
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radar, and Lidar with different modeling approaches from simple linear regression to
complicated deep learning have been used to estimate forest attributes [2–6]. No matter
what remotely sensed data or algorithms are used, sample plot data aggregated from single
trees are required for both model development and model validation [7]. By building
relationships between remote sensing-derived variables and forest attributes of in situ plots,
the continuous distribution of the forest attributes in a study area can be predicted [6,8].
Therefore, accurate measurements of sample plots are crucial for both traditional forest
inventories and remote sensing-based modeling approaches.

Forest stock volume is a main element of a forest inventory. The total forest stock vol-
ume for a given area is estimated based on the volumes of a large number of representative
sample plots, while the forest volume of a sample plot is the sum of the volumes of all
individual trees within the plot, expressed as the volume per area unit. The individual-tree
volume is calculated using species-specific allometric equations based on tree diameter at
breast height (DBH) or the combination of DBH and tree height, which are measured in
the field. Thus, the measurement precision of tree parameters and the choice of allometric
equations highly affect the data quality of sample plots. Generally, there are two broad
categories of allometric equations: single-entry equations with DBH alone as predictor
(DBH-based) and double-entry equations with both DBH and tree height as predictors
(DBH–height-based).

Current national forest inventories in China uniformly use DBH-based volume tables
to calculate tree volumes for easy comparison between consecutive surveys. These DBH-
based volume tables are specific to a province or local area and are derived from the
standard DBH–height-based volume tables according to the local site conditions and
forest growth situations [9,10]. Studies have shown that the accuracy of a stem volume
estimated from a DBH–height-based model is generally higher than that from a DBH-based
model when only considering the uncertainty caused by the allometric models [11,12]. A
comparison of the volume estimates using DBH-based and DBH–height-based models
for Masson pine (Pinus massoniana) and Chinese fir (Cunninghamia lanceolata) indicated
that the relative errors were between 40% and 60% at tree level [13]. In addition to the
estimation accuracy, the variance in volume estimates using a DBH–height-based model
is smaller than that using a DBH-based model, indicating a higher stability of volume
estimation [14]. However, when tree height is added into an allometric equation, the
uncertainty of volume estimates caused by height measurements is much higher than
that caused by DBH alone. There have been reports showing more accurate volume
estimates using a DBH-based model than using a DBH–height-based model due to the high
uncertainty in height measurements [15]. This is due to the fact that measuring DBH is
much easier and more precise than measuring tree height in the field. Therefore, obtaining
accurate tree height is crucial when using a DBH–height-based model to calculate tree
volume. However, it is not easy to measure the heights of standing trees accurately in
forests, especially in mountainous regions.

Common methods to used measure tree heights involve the use of instruments such
as telescopic poles, laser altimeters, clinometers, and hypsometers [16], among which the
telescopic pole is the easiest to operate just by lifting the top of a pole to the same level as
the top of the tree. This method is suitable for small trees because of the limited pole length
(18 m in our study). When the tree height is higher than the pole length, the tree height
measurement may have large errors. Moreover, it is hard to judge whether the top of a pole
is at the same level as the top of a tree in dense forests. Another common method is to use
a laser altimeter, which is based on the triangulation relationship between the distances
from the altimeter to the tree base and treetop [17]. However, using a laser altimeter is also
a challenge in a forest site due to the complex and dense canopy structures, especially in
sites with steep slopes in mountainous regions.

Lidar techniques, particularly airborne Lidar, with their powerful capability of captur-
ing accurate 3-dimensional (3D) information of ground features, are proven to be important
means for providing accurate vertical forest structures, and are widely used to assist tradi-
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tional in-situ forest inventories [18,19] or to estimate various forest structure parameters,
including tree height [17], canopy height [20], canopy density [20,21], species diversity [22],
above-ground biomass [23], and stock volume [6]. Unmanned aerial vehicles (UAVs), as an
alternative remote sensing platform, have advantages over manned aircrafts or satellites
in real-time applications, such as easy operation and low costs [24]. UAVs equipped with
precise GPS fly at remarkably low altitudes, offer very high-spatial resolution optical im-
ages or high-density Lidar point clouds, from which different tree attributes are retrieved
accurately [25,26]. In particular, UAV Lidar with a high point density can accurately depict
the 3-D structure of individual trees and has been regarded as an important data source for
extracting tree height in recent years [27,28]. For instance, Dalla Corte et al. [27] analyzed
the correlation between direct tree height measurements and Lidar-derived tree heights
at the individual tree level, and obtained a correlation coefficient of 0.91 and a relative
root mean square error of 7.9%; Cunha Neto et al. [29] examined the impact of Lidar point
densities on height extraction accuracies of Araucaria angustifolia trees in an urban Atlantic
rain forest, and found no significant differences when the point density was greater than
25 point/m2. Those studies demonstrated the potential of UAV Lidar systems for measur-
ing forest plantations, reducing field workloads, and providing an important tool to assist
in decision making for forest management.

The importance of incorporating tree height with DBH for tree volume calculation is
recognized, but rarely has research examined the uncertainty between using or not using
tree height in the allometric equations for calculating volume. Therefore, this research
aimed to (1) improve the understanding of using UAV Lidar in extracting tree height
through comparative analysis with tree height measurements using a telescopic pole and
direct measurement of felled trees; (2) understand the effects of using accurate tree height
measurements on tree volume calculations; (3) understand the necessity of using DBH–
height-based allometric equations by comparing them with DBH-based ones in providing
high-quality tree volume data.

2. Materials and Methods
2.1. Study Area

Two experimental sites—Yuanling Forest Farm in Yunxiao County and Baisha Forest
Farm in Shanghang County, Fujian Province, China (Figure 1)—were selected. This region
has a subtropical monsoon climate with an average annual temperature of 19–21 ◦C and
average annual precipitation of 1730 mm. These two sites have undulating terrains with
elevations between 34 and 730 m and slopes between 15 and 50 degrees. Eucalyptus is the
dominant tree species in the Yuanling Forest Farm, and Masson pine and Chinese fir are
the dominant tree species in the Baisha Forest Farm.
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Figure 1. Locations of the experimental sites: Baisha (upper right) and Yuanling (lower right). CHM
represents canopy-height model data generated from UAV Lidar.

2.2. Field Measurements of Individual Trees

Field surveys were conducted in July and August 2021. One eucalyptus plot and one
Manson pine plot measuring 20 m × 20 m each were set up. The geographic coordinates
of each corner of the plots were precisely located using real-time kinematic (RTK) global
positioning system (GPS). Topographic characteristics such as elevation, slope, and aspect
were also described. The DBH of each tree within a plot was measured using a diameter
tape, while the heights of the selected trees were measured using an 18-m telescopic pole
before cutdown. For trees taller than 18 m, the portions above 18 m were estimated visually.
The location of each tree was recorded using RTK GPS; the sketch of tree positions relative
to one another was drawn in the field, and the precise tree spatial distribution map, based
on the RTK records, was created later in the laboratory. After trees were felled, the heights
of all felled trees (used as reference data) were measured again using an adequately long
tape. Table 1 presents counts of all trees within plots, number of trees measured using the
telescopic pole, and numbers of felled trees, as well as the ranges of DBH and height of the
felled trees for each species.

Table 1. Plot characteristics of eucalyptus and Masson pine.

Plot

Number of
All Trees

within the
Plot

Number of Trees
Measured with
the Telescopic

Pole

Number of
Felled
Trees

DBH of
Felled Trees

(cm)

Height of
Felled Trees

(m)

Eucalyptus 51 17 50 5.1–25.2 6.5–26.6
Masson
pine 37 30 35 13.1–27.6 11.4–22.8

Note: DBH, diameter at breast height.

2.3. Collection of UAV Lidar Data and Extraction of Individual Tree Heights

UAV Lidar data were acquired in July and August 2021. The RT470 multirotor UAV
carrying the R1350 Lidar system flew at a height of 150 m over predesignated areas in
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Yuanling and Baisha Forest Farms. Point clouds with a density of 40–80 pts/m2 covering
a total area of about 18 km2 were obtained for these sites (Figure 1). The major process
of the UAV Lidar point clouds included filtering, denoising, normalizing, and generating
canopy-height model (CHM) data [30]. The data providers classified Lidar point clouds
into ground and nonground points by a filtering process. Denoising included removal
of low points, air noise, and isolated points. Meanwhile, we manually identified power
lines and deleted them from the Lidar data. Based on ground and nonground points,
DEMs (digital elevation models) and DSMs (digital surface models) at different pixel sizes
(0.3–1.0 m) were generated using inverse-distance-weighted interpolation, and the CHMs
were obtained by subtracting DEM from DSM.

In order to extract individual tree heights from Lidar data, one critical step was to
generate a single-tree crown image through a proper segmentation approach. Commonly,
there are two approaches used for single-tree segmentation based on point clouds and in
Lidar-derived CHM [31–34]. The CHM-based method is to identify single trees through a
pixel growth algorithm; it is fast and efficient. However, during the process of generating
CHM, some information is lost, leading to missing trees beneath the canopy [35]. The seg-
mentation based on Lidar point cloud data adopts a local-maximum method and produces
a tree crown based on seed points, avoiding the loss of data. Corresponding to the segmen-
tation methods for individual trees, there are two ways to extract individual tree height:
the maximum CHM data within each segment or the maximum point clouds within the
same tree crown [36]. Of the various segmentation algorithms, such as marker-controlled
watershed, mean-shift clustering, graph-cut segmentation, and the tree-crown boundary-
transformation method based on fishing net dragging, the marker-controlled watershed
method based on CHM has been widely used in single-tree crown segmentation [37–39].
Thus, we also used it in this research. In addition, different cell sizes were tested, and an
optimal resolution of 0.4 m was identified for CHM segmentation. The maximum value
of the CHM within a segmented tree crown was taken as the height of that tree. For the
understory trees, the crowns of which could not be detected by tree segmentation, treetop
positions were determined by visually examining the normalized Lidar point clouds from
different views around the tree locations recorded by RTK on the tree distribution map.
Once the treetop positions were identified, the tree heights were determined, which were
equal to the values of normalized Lidar points at the treetop positions.

2.4. Evaluation of Tree Height Measurement Results

The felled-tree height measurements were used as reference data, and the tree height
values obtained using a telescopic pole and UAV Lidar were evaluated through comparative
analysis of the assessment factors—Pearson correlation coefficient (r), bias (bias), relative
deviation (bias%), root mean square error (RMSE), and relative root mean square error
(RMSEr) [16]. For this purpose, the tree heights measured from 17 felled eucalyptus trees
and 30 felled Masson pine were used as validation samples because only those trees were
measured using all three height-measuring methods.

2.5. Calculation of Tree Volumes for Different Tree Species

The objective of accurately measuring DBH and height is to calculate tree volume using
a suitable allometric equation for a specific tree species. In general, the allometric equations
can be based on DBH alone or on the combination of DBH and height. Previous research
has shown that the DBH–height-based equations produce higher accuracies and more
reliable results than the DBH-based ones if the tree height is accurately measured [12,40].
In order to understand the uncertainty caused by using or not using the tree height variable
in the allometric equations, this research selected the following two equations to calculate
volume for eucalyptus and Masson pine, respectively:

V = a × Db (1)

V = a × Db × Hc, (2)
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where V is the single-tree volume, D and H are DBH in cm and tree height in m; a, b, and c
are model parameters for specific tree species as summarized in Table 2.

Table 2. Coefficients of the allometric equations for different tree species.

Tree Specie Allometric
Equation a b c Reference

Eucalyptus DBH-based 0.00019854 2.35261
DBH–height-based 0.000071748 1.897944 0.839915 [41]

Masson pine DBH-based 0.00013881 2.48492
DBH–height-based 0.000066937 1.941140 0.90485 [42]

Note: DBH, diameter at breast height; a, b, and c are model parameters for specific tree species.

2.6. Impacts of Tree Height on Tree Volume Calculation

In order to examine the impact of tree height on volume calculation, we designed
different scenarios, as summarized in Table 3. The individual-tree volumes calculated using
the DBH–height-based allometric equations based on the tree heights from the felled trees
were used as volume reference data. Bias and RMSE were used to evaluate the accuracy of
single-tree volume results based on DBH alone, or tree heights from the telescopic pole and
Lidar data.

Table 3. Scenarios of examining the role of the tree height variable in calculation of single-tree volume.

Role of Height Allometric Equation Description

Using height or not
DBH-based equation vs.
DBH–height-based equation by
using reference height

Understanding the role of tree
height variable in improving
calculation accuracy of
single-tree volume

Using the measurement
methods to obtain tree
height

(1) DBH–height-based equation
by using a telescopic pole vs.
using reference height

(2) DBH–height-based equation
by using Lidar-derived height
vs. using reference height

Understanding the impacts of
different tree height
measurement methods on
calculation accuracy of
single-tree volume

Note: DBH, diameter at breast height.

3. Results
3.1. Comparative Analysis of Tree Heights Measured Using Different Approaches

The comparative analysis of tree heights from different measurement methods indi-
cated that the Lidar-derived tree heights were much closer to the reference heights than
the measurements using the telescopic pole. As shown in Figure 2, the Lidar-derived tree
height had an R2 value of 0.95 compared with only 0.65 using the telescopic pole for Masson
pine, and 0.99 vs. 0.93 for eucalyptus, implying the advantage of using UAV Lidar over
a telescopic pole. One important finding shown in Figure 2 is that underestimation was
obvious using the telescopic pole as the tree height increased, especially when the tree
height was greater than 18 m (the maximum length of the telescopic pole), implying that
the individual-tree volume was underestimated when using the conventional tree height
measurement method, while using UAV Lidar data could avoid this problem.
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Quantitative comparison of bias and RMSE (Table 4) indicated that the tree height
using a telescopic pole was underestimated by 4.8% for Masson pine and 6.7% for eucalyp-
tus, while the tree height using UAV Lidar was slightly overestimated by 1.6% and 0.6%,
respectively. Overall, the RMSE was 1.6 m for Masson pine and 2.0 m for eucalyptus using
a telescopic pole, while the RMSE was reduced to approximately half a meter for both
tree species using UAV Lidar. The results imply the advantage in using UAV Lidar over a
traditional tree height measurement approach. Table 4 also indicates that eucalyptus had
higher measurement errors than Masson pine using a telescopic pole, but the inverse was
true using Lidar data, implying that the crown sizes and shapes of different tree species
may have affected the measurement accuracy, depending on the methods used.

Table 4. Evaluation of measured tree heights using different methods.

Forest
Type

Number of
Trees

Telescopic Pole vs. Felled Tree Lidar vs. Felled Tree

Bias (m)
(Bias%)

RMSE (m)
(RMSEr%)

Bias (m)
(Bias%)

RMSE (m)
(RMSEr%)

Masson
pine 30 −0.84

(−4.8%)
1.57

(9.0%)
0.27

(1.6%)
0.56

(3.2%)

Eucalyptus 17 −1.31
(−6.7%)

1.96
(9.9%)

0.11
(0.6%)

0.54
(2.7%)

Note: Bias%, relative deviation; RMSE, root mean square error; RMSEr, relative root mean square error.

The tree height was another factor influencing measurement accuracy. When trees
taller than the length of a telescopic pole were measured, the uncertainty of the height
was much higher than that of the shorter trees using a telescopic pole; however, the Lidar-
based method provided robust tree height measurement with no significant difference in
uncertainty between tall and short trees, as shown in Table 5. This situation implies the
advantage in using Lidar data over a telescopic pole (Tepo in Table 5), especially for tall
trees.
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Table 5. Evaluation of measured tree height results based on different height ranges.

Height Range (m)

Masson Pine Eucalyptus

Lidar vs. Felled Tree Tepo vs. Felled Tree Lidar vs. Felled Tree Tepo vs. Felled Tree

RMSE
(m)

RMSEr
(%)

RMSE
(m)

RMSEr
(%)

RMSE
(m)

RMSEr
(%)

RMSE
(m)

RMSEr
(%)

≤18 0.33 2.1% 1.05 6.6% 0.30 2.28% 0.96 7.26%
>18 0.76 3.9% 2.06 10.7% 0.61 2.70% 2.25 10.0%

Note: RMSE, root mean square error; RMSEr, relative root mean square error; Tepo, telescopic pole.

3.2. Impacts of Different Allometric Equations on Calculation Accuracies of Single-Tree Volumes

Because double-entry models usually produce more accurate volumes than single-
entry models, we took the volumes from the DBH–height-based models as references for
comparisons (Table 6). The results show that the DBH-based models underestimated the
tree volumes by 0.071 m3 for Masson pine and 0.034 m3 for eucalyptus; the corresponding
relative errors were 21.18% and 23.86%, while the RMSEr were 24% and 33.9%, respectively.
This situation implies the preference for using DBH–height-based models for tree volume
calculation.

Table 6. Comparison of single-tree volumes based on different allometric equations.

Forest Type Number of Trees Bias (m3)
(Bias%)

RMSE (m3)
(RMSEr (%))

Masson pine 35 −0.071
(−21.18%)

0.081
(24.04%)

Eucalyptus 50 −0.034
(−23.86%)

0.048
(33.90%)

Note: Bias%, relative deviation; RMSE, root mean square error; RMSEr, relative root mean square error.

The comparison of individual-tree volumes indicates that the volumes from the DBH-
based and DBH–height-based models had a strong linear relationship for both species
(Figure 3), but the volumes from the DBH-based model were lower than those from the
DBH–height-based models, and the discrepancies became larger as the volume increased,
especially when the volume was greater than 0.45 m3 for Masson pine (Figure 3). The
strongly linear relationship in Figure 3 indicates that a simple linear regression model
can be developed to calibrate the tree volume resulting from the DBH-based model, as
expressed in Equations (3) and (4).

Ymp =1.1748x + 0.0249, r2 = 0.96 (3)

Yeu = 1.3119x + 0.0002, r2 = 0.99, (4)

where Ymp and Yeu are the calibrated volume values of Masson pine and eucalyptus, and
x is the volume from the DBH-based model. When the volume was relatively small, for
instance, less than 0.45 m3, the simple regression model could effectively calibrate the
underestimation problem caused by the DBH-based model. However, when the volume
was higher, here greater than 0.45 m3, as shown in Figure 3, the calibration effect became
poor because of the high variation in volumes. This implies the need to use DBH–height-
based models for tall-tree volume estimation.
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3.3. Impacts of Tree Height Measurement Approaches on the Calculation Accuracies of
Tree Volumes

Comparison of individual-tree volumes calculated using DBH–height-based model
and the heights measured by different approaches (Table 7) indicates that the single-tree
volume was underestimated by 4.9% for Masson pine and 6.7% for eucalyptus using the
tree height from a telescopic pole, but it was overestimated by 1.4% and 0.9%, respectively,
using the tree height from the Lidar data. Overall, the RMSEr was 9.1% and 11.8% for
Masson pine and eucalyptus, respectively, using a telescopic pole, but it decreased to only
3.4% and 2.4% using the Lidar-derived tree height, implying that the improved tree height
measurement accuracy could considerably reduce tree volume estimation errors.

Table 7. Evaluation of single-tree volume results based on different tree height measurement methods.

Forest
Type

Number of
Trees

Telescopic Pole vs. Felled Tree Lidar vs. Felled Tree
Bias (m3)
(Bias%)

RMSE (m3)
(RMSEr%)

Bias (m3)
(Bias%)

RMSE (m3)
(RMSEr%)

Pine 30 −0.014
(−4.9%)

0.025
(9.13%)

0.004
(1.36%)

0.010
(3.40%)

Eucalyptus 17 −0.012
(−6.66%)

0.021
(11.81%)

0.002
(0.86%)

0.004
(2.35%)

When the telescopic pole was used for measuring tree height, tall trees had much
higher volume estimation errors than shorter trees (e.g., lower than the length of the
telescopic pole) (see Table 8), but the Lidar-based height did not have this problem, implying
the advantage of using Lidar technology to estimate tree volumes over the conventional
tree height measurement method.
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Table 8. Evaluation of single-tree volume results based on different height ranges.

Height Range (m)

Masson Pine Eucalyptus

Lidar vs. Felled Tree Tepo vs. Felled Tree Lidar vs. Felled Tree Tepo vs. Felled Tree

RMSE
(m3)

RMSEr
(%)

RMSE
(m3)

RMSEr
(%)

RMSE
(m3)

RMSEr
(%)

RMSE
(m3)

RMSEr
(%)

≤18 0.005 2.31% 0.011 5.14% 0.001 2.19% 0.003 6.82%
>18 0.013 3.59% 0.036 9.9% 0.005 2.12% 0.024 10.70%

Note: RMSE, root mean square error; RMSEr, relative root mean squatter error; Tepo. telescopic pole.

4. Discussion
4.1. The Importance of Obtaining Accurate Tree Heights

Tree height and DBH are two critical factors used in allometric equations, thus, their
measurement accuracies directly affect the calculation accuracy of single-tree volumes.
In general, DBH can be measured accurately in the field, but tree height measurement
is challenging, especially for tall trees with large crown sizes and in dense tree canopies
in mountainous regions [43]. Conventional tree height measurement using a telescopic
pole can provide accurate height values when trees are relatively short [44,45]. However,
when trees are taller than the measuring tool, the estimated height values may have large
uncertainties, as shown in our research: the RMSEr was over 10% when the tree heights
were greater than 18 m. In addition, using a telescopic pole to measure tree height in the
field is time-consuming and labor-intensive, especially in mountainous regions with dense
canopies and steep slopes. The crown sizes and shapes of different tree species also affect
measurement accuracy using a telescopic pole because of the difficulty in judging treetops
from the ground. Alternatively, UAV Lidar data provide much more accurate tree height
values, especially in sites where field measurements are difficult to implement. The top-
down measurement makes up for the disadvantages of the conventional tree measurement
method. Lidar data can quantitatively and accurately determine the sizes of individual
treetops.

Our research shows that UAV Lidar data provided tree heights with an RMSE of
0.54–0.56 m, relatively high errors compared to what some previous research reported [46,47].
The main reason includes the DEM quality and identification accuracy of individual trees
due to the point cloud density. A point cloud density of about 40 pt/m2 can effectively
estimate the tree height of a single tree but may not be sufficient for obtaining precise DEM
for sites with dense understories. A high density of point clouds may be needed for dense
forests to accurately capture DEM. Another reason may be the underestimated heights of
felled trees due to ignoring the stump height and the broken treetops for some felled trees.

We have shown that UAV Lidar data can accurately and effectively measure tree
heights and has advantages over the conventional telescopic pole method; for instance,
it is not affected by different kinds of tree species with various crown sizes and shapes.
However, measuring tree DBH, which is critical for volume estimation, is difficult with
UAV Lidar [48]. The synergy of UAV Lidar and terrestrial laser scanning (TLS) data may
provide a new way to obtain the parameters of individual trees, because TLS can accurately
measure tree DBH, while UAV Lidar can provide more accurate tree heights, especially for
tall trees. The adoption of UAV and TLS in forest inventory can facilitate the rapid and
accurate retrieval of forest parameters and reduce fieldwork but may raise the cost due to
the expensive Lidar equipment. More research is needed to explore the integration of UAV
Lidar and TLS data to accurately extract single-tree attributes.

4.2. The Importance of Using DBH–Height-Based Allometric Equations to Improve Tree Volume
Calculation Accuracy

Forest inventories based on sample plots generally use a DBH-based model to calculate
the tree volume because of the difficulty in measuring tree height in forest sites [10].
Previous research has indicated that the use of improper allometric equations for biomass
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or growing stock volume estimation may account for 30–70% of the total uncertainty, and
is the primary error source [49,50]. For instance, using a DBH-based model to estimate
Chinese fir volume yields a relative error between 32% and 60% for individual trees, and
between 34% and 34% for sample forest stock volume [13]. Our research also confirmed
this big difference between using DBH-based and DBH–height-based models and indicated
the necessity of using DBH–height-based models if accurate tree height data are available.

The relationship between DBH and volume is closely related to tree characteristics
such as species, age, and density in a unit and external factors such as soil and terrain
conditions, all of which affect tree growth. Different sites have various influences on DBH
and height growth. For instance, two trees of a specific tree type with the same DBH
could have different height growths due to one growing on a mountain ridge or summit
and the other one growing in a valley or at the foot of the mountain. Because of the
difference in site indices in a large area, the same DBH-based model may produce high
uncertainties if it is applied directly to different regions. However, the DBH–height-based
model can considerably reduce this problem because of the improved relationship between
volume and DBH-height. In reality, DBH–height-based models have not been extensively
employed for tree volume calculation. The major reason is the difficulty in precisely
measuring tree height in forested regions, in addition to the intense labor requirement
and high measurement errors. As UAV technology is gradually being used more in forest
inventories, tree height can be more precisely and easily obtained than with conventional
tree measurement approaches; thus, the use of DBH–height-based models will be common
in the future. Our research indicates the necessity of using the DBH–height-based models,
in particular, when individual-tree volume is relatively high.

5. Conclusions

This research selected two typical sites in a subtropical region of China to examine the
impacts of tree heights and allometric equations on tree volume calculation accuracy for
Masson pine and eucalyptus. The tree height measurements of felled trees were used as
reference data to evaluate the measurement accuracy of a telescopic pole and UAV Lidar
data, indicating the importance of using UAV Lidar technology to obtain accurate tree
height. In particular, UAV technology has advantages over telescopic poles in forest sites
with complex forest stand structures. The comparison of the DBH-based and DBH–height-
based allometric equations showed the necessity of using a DBH–height-based model for
tree volume calculation, especially for tall trees. This research shows that the DBH-based
model underestimated tree volume by 23.77% for Masson pine and 33.84% for eucalyptus.
UAV technology provides a new tool for reducing this uncertainty, which is a critical data
source for forest biomass and carbon studies. More research is needed in combining TLS
and UAV Lidar data to accurately extract tree parameters without the onus of in-field
measurements.
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