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Abstract: Ground moving targets (GMT), due to the existence of velocity in range and azimuth di-

rection, will lead to the deviation from their true position and defocus in the azimuth direction dur-

ing the synthetic aperture radar (SAR) imaging process. To address this problem and compress the 

amount of echo data, a sparse SAR imaging method for ground moving targets is proposed. Specif-

ically, we first constructed a two-dimensional sparse observation model of the GMT based on 

matched filter operators. Then, the observation model was solved by a deep network, GMT sparse 

imaging network (GMTSI-Net), which was mainly obtained by unfolding an iterative soft threshold 

algorithm (ISTA)-based iterative solution. Furthermore, we designed an adaptive unfolding module 

in the imaging network to improve the adaptability of the network to the input of echo data with 

different sampling ratios. The proposed imaging network can achieve faster and more accurate SAR 

images of ground moving targets under a low sampling ratio and signal-to-noise ratio (SNR). Sim-

ulated and measured data experiments were conducted to demonstrate the performance of imaging 

quality of the proposed method. 

Keywords: synthetic aperture radar (SAR); ground moving targets (GMT); sparse imaging; iterative 

soft threshold algorithm (ISTA); GMT sparse imaging network (GMTSI-Net) 

1. Introduction

Synthetic aperture radar (SAR), as a kind of all-day, all-weather active high-resolu-

tion radar imaging system, has been rapidly developing since its birth [1]. Therefore, SAR 

has been widely used in the fields of Earth remote sensing, military reconnaissance, and 

marine survey. With the development of SAR imaging technology, people are no longer 

satisfied with imaging stationary targets on the ground, but hope that SAR can also image 

ground moving targets (GMT) [2–4]. However, when conventional imaging algorithms 

for stationary targets are used for moving targets, the result will be defocus and deviation. 

Therefore, the study of SAR imaging methods for GMT is of great value [5,6]. 

Traditional imaging methods for ground moving targets are based on estimating the 

velocity parameters (range and azimuth direction) or Doppler parameters of the moving 

target (center and rate) [7,8], and then designing the matching filter function to compen-

sate for the phase error or distance migration generated by the ground moving target, so 

as to achieve the focus of the GMT. In general, GMT imaging methods can be divided into 

transformation-based methods and optimization-based methods. The transformation-

based methods mainly include the Keystone transform method [9,10] and the time-fre-

quency transform method [11,12]. Li et al. [9] use the keystone transform to solve the cou-

pling problem between azimuth and range velocities, thus achieving a focused SAR image 

under high SNR. The time-frequency method uses transform methods (such as Hough 

transform, fractional FFT, Radon transform, etc.) to estimate the Doppler modulation and 
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center frequency to construct a reference function to achieve matching filtering pro-

cessing. Optimization-based methods generally characterize moving target imaging as a 

problem to solve optimization [13–16]. Gu [15] proposed a parametric sparse representa-

tion method to achieve parameter estimation and imaging under low pulse repetition fre-

quency (PRF) conditions. Chen et al. [16] used the parametric sparse representation ap-

proach to solve the phase error compensation function directly, avoiding the estimation 

of velocity parameters and reducing the number of operations for parameter iteration 

while improving the imaging quality. Zhang [17] proposed an iterative minimum entropy 

algorithm (IMEA) based on the extraction of the region of interest (ROI) to achieve the 

estimation and imaging of moving target parameters. However, the above methods have 

the following two problems: (1) The transform methods require high integrity of the echo 

signal and low accuracy of parameter estimation under low SNR conditions, and (2) the 

optimization methods have large iterative computation and long imaging time, making it 

difficult to meet the requirements of real-time SAR imaging. 

In recent years, the application of compress sensing (CS) theory to SAR imaging has 

been rapidly developed [18–22]. In general, the number of moving targets in a SAR obser-

vation scene is finite, and thus the GMT echo signal satisfies sparsity, which allows the 

use of CS theory for imaging or parameter estimation of the compressed echo data. Wu 

[19] proposed a multi-channel SAR imaging framework for moving targets based on CS 

theory. The method achieves parameter estimation and imaging of moving targets by ex-

tracting GMT through sparse decomposition and then estimating the velocities using 

sparsity as a constraint. Zhang et al. [22] proposed an efficient imaging algorithm for 

GMT. However, these methods suffer from high computational complexity or low accu-

racy of parameter estimation. 

With the development of deep learning, its application in SAR imaging and interpre-

tation has also received the attention of many scholars at home and abroad [22–26]. Mu et 

al. [27] proposed a moving target imaging network based on convolutional neural net-

work (CNN), which takes a defocus moving target image as input and learns the focus of 

the moving target through the network. An imaging method for GMT based on improved 

U-Net is proposed in [28]. Deep unfolded network (DUN) [29,30] can provide an approach 

to solving the linear inverse problem by unfolding iterative optimization algorithms. 

DUN-based SAR imaging methods are proposed to reconstruct SAR images with good 

quality in [31,32]. Zhao et al. [33] proposed an end-to-end imaging network that enables 

SAR imaging in larger scenes. However, these methods often require retraining of the 

network when facing imaging requirements with different downsampled echo signal in-

puts, which undoubtedly increases the computational expense. 

To solve the problems of slow imaging speed and high computational complexity of 

traditional GMT imaging algorithms, and at the same time improve the imaging perfor-

mance after compressing the GMT echo signal data, a novel sparse SAR imaging method 

for GMT via ground moving targets sparse imaging network (GMTSI-Net) is proposed in 

this paper. Similar to the traditional method of designing the compensation function by 

estimating the moving target echo moving parameters, the proposed method is to input 

the Doppler modulation and center frequency and the associated imaging matrix into the 

imaging network as learnable variables, construct the corresponding labels at the same 

time, and obtain more accurate Doppler modulation and center frequency and imaging 

matrix by using the supervised learning of the network. In addition, we designed an adap-

tive unfolding module to improve imaging performance with different sampling ratio in-

puts. Firstly, we derived the imaging method for GMT based on constructing an echo sig-

nal model. Then, due to the sparsity of moving target echoes, we constructed a two-di-

mensional sparse observation model, confirm the learnable parameters, and unfold the 

solution algorithm of the model into a network. When the training of the network is com-

pleted, the reconstructed SAR images of GMT can be obtained by inputting the moving 

target echoes with any sampling ratio. The simulated and measured data experiments 
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show that the proposed method can achieve high-quality SAR-GMT images at different 

sampling ratios or SNRs. 

The rest of this paper is organized as follows. Section 2 establishes the SAR ground 

moving target echo signal model and provides the imaging algorithm. Section 3 derives 

the sparse observation model for GMT and constructs the GMTSI-Net. Section 4 provides 

the results and analysis of the simulated and measured experiments. The conclusion is 

drawn in Section 5. 

2. Imaging Model and Algorithm of SAR-GMT 

In this section, we first provide the imaging geometric model of SAR-GMT in Section 

2.1 and derive the expression of its echo signal. Then, based on Section 2.1, we deduced 

the SAR moving target imaging algorithm based on the known velocity or Doppler pa-

rameters. 

2.1. SAR-GMT Echo Signal Model 

Figure 1 shows the geometric relationship between the airborne SAR platform and 

the GMT. We set the radar imaging system to operate under the positive side-looking and 

strip map mode. To facilitate the analysis, we considered a single point target in the scene 

to obtain the general form of the GMT echo signal. 

 

Figure 1. The geometry of the side-looking SAR platform and a ground-moving target. 

It is assumed that the platform is moving with a uniform velocity p
v  along the x-

axis (azimuth direction) at a height H above the ground and that there is a ground-moving 

target on the ground whose initial position is at the center of the observation scene with 

coordinates 0 0 0
( , , )x y z . The target is moving on the ground with ( , )

x y
v v , and x

v  

and y
v  denote the azimuth and range velocity, respectively. 

0
R  is the slant range from 

the platform to the center of the observation scene. mt  represents the slow time series, 

and p p p( , , )x y z  and 
1 1 1( , , )x y z  denote the instantaneous position of the platform and 

target, respectively. Then we can get: 
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Substituting Equation (2) into Equation (1) and expanding ( )mR t  into the Taylor series 

at =0mt  achieves: 

2
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We can also obtain the Doppler modulation and center frequency of the GMT accord-

ing to the definition of Doppler as: 
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 (5) 

Combined with Equations (5) and (3), this can also be written as: 

2 2

0 1 2 0

1
(

2 2 4
mR t +  +  +  − ) = m m dc m a m

λ λ
R R t R t = R f t K t  (6) 

Where dcf  and aK  denote the Doppler center and modulation frequency of the GMT, 

respectively. 

Assuming that the radar transmits a chirp signal, based on the above analysis, the 

GMT echo signal received by the SAR platform can be expressed as: 

2

m
m

2 ( ) 2 ( )
( , ) = ( - ) ( ) exp - 4 (t ) exp -

c
m c

echo k m r k a m k

R t f R t
S t t w t w t j π R jπγ t

c c

     
       

     

 (7) 

where c
f  is the carrier frequency, k

t  is the fast time series, c  is the speed of the light, 

and γ  is the tuning frequency of the chirp signal. r
w  and a

w  represent the envelope 

of the range and azimuth direction, respectively. 

2.2. Traditional SAR-GMT Imaging Method 

Through the analysis in Section 2.1, the expression of the SAR-GMT echo signal is 

obtained. By substituting Equations (3) and (4) into Equation (7) and performing a two-
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dimensional (2-D) FFT transform (ignoring the envelope of range and azimuth direction), 

the 2-D frequency domain expression of the echo signal can be written as: 

22
21 1

0 3
2 22

2 2

2 2

4 1
( , ) = exp - - exp - - exp 2

2 2

exp exp -
2 2

r a
echo r a r a

a a r

c c
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where 
r

f  and 
a

f  denote the frequency domain of range and azimuth direction, respec-

tively. From Equation (8), it can be seen that the moving target leads to the introduction 

of a new frequency modulation (FM) component of the echo signal in the 2-D frequency 

domain. Then, we constructed the corresponding range compression function to eliminate 

the effect of the component, and the specific expression can be written as: 

2 2
2 1

1 3
22

41
( , ) exp

22
a r

r a r

c

cf πf R
H f f j f j

γ c RR f

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 (9) 

Multiplying Equation (9) with Equation (8), we get: 

1 1

2 21
0

2 2 c 2 c
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2 2
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It can be seen that there is also a quadratic coupling term in the range and azimuth 

frequency domain in Equation (10), which will cause the curvature of the range migration 

curve, so it is necessary to perform a range migration correction on 
1
( , )

r a
S f f . Hence, 

the range migration correction function is given as: 

 
=  

 

2

2

2 c
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c
H f f j f f
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Multiplying Equations (11) and (10) yields: 
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4
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Transforming Equation (12) to the range-Doppler domain yields: 

 2 2

20 1

2 2 c
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2
= exp 2 exp

2

rk a f r a

r k a a
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Since there is a second frequency modulation term in the azimuth direction in Equa-

tion (13), it will cause the defocus of the point target. Therefore, the azimuth compression 

function needs to be constructed, and its expression is given as: 

( )2

3

2 c

( ) exp exp 2
2a a ref a

c
H f j f j R f

R f




 
= −  − 
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 (14) 

where 
1 2 0

/
ref

R R R x= − . Multiplying Equations (13) and (14) and converting the re-

sults back to the time domain yields: 
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where 
r

B  and 
a

B  are the signal bandwidth and Doppler bandwidth, respectively. It can 

be seen from Equation (15) that the moving target is finally focused at 
0 0

( , )R x . It is 

worth noting that the above imaging algorithm requires a known Doppler center and 

modulation frequency or 2-D velocity of the GMT. The flow of the imaging algorithm is 

shown in Figure 2. 

 

Figure 2. Flow chart of SAR-GMT imaging algorithm. 

3. Approximate Observation Model and GMTSI-Net for Ground Moving Target 

In this section, we derived a 2-D sparse observation model based on the imaging al-

gorithm in Section 2.2 and the sparsity of the GMT echo signal in Section 3.1. Then, we 

constructed the GMTSI-Net and determine the learnable parameters of the network. This 

helps the GMT imaging algorithm obtain better imaging performance at a low sampling 

ratio and SNR. 

3.1. 2-D Sparse Observation Model Based on Matched Filter Operators 

Since the number of the ground moving targets is limited in the whole observation 

scene and the echo signals satisfy the sparsity, a 2-D sparse SAR-GMT observation model 

based on the inversion of the matched filtering algorithm in Section 2.2 can be established. 

The algorithm and Figure 2 in Section 2.2 is expressed with a matrix multiplication 

form as follows: 

( ) 1 1

G( )

=

echo

echo

− −     a 2 a r 1 r 3

Ξ S

F H F S F H F H
 (16) 

where G( )  is the imaging operator of the GMT, and 
×N MΞ  is the result of GMT 

imaging, i.e., an approximate estimate of the real scattering coefficients. 
×N M

echo
S  is 

the echo signal of GMT. N and M indicate the sampling points of slow time and fast 

time, respectively.   N M
1 2 3

H ,H ,H  are the matrix forms of 
1
( , )

r a
H f f , 

2
( , )

r a
H f f , and 

3
( )

a
H f  in Section 2.2, respectively.  1 M M− 

r r
F ,F  are the range 
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FFT and IFFT matrices, respectively, and  1 N N− 
a a

F ,F  are the azimuth FFT and 

IFFT matrices, respectively.  denotes the Hadamard product. 

Due to the operation of Equation (16) are all reversible, and the echo of GMT can be 

gained by the inverse process of Equation (16): 

( ) 

1

1 * * * 1

 G ( )

=

echo

−

− −     a 1 a 3 r 2 r

S Ξ

F H F Ξ H F H F
 (17) 

Where 
*( )  denotes the conjugate of the matrix. To reduce the amount of echo data, we 

collected the echo data by random sampling, which is essentially a sampling of the echo 

at a sampling rate lower than Nyquist’s sampling theorem. The sampling matrix is de-

scribed by the formula that each column or row vector has only one non-zero element 

with a value of 1. In addition, the positions of the elements are random. We denote the 

azimuth and range sampling matrix as 
ˆ ×N N  and 

ˆ×ΦM M
. The sampling ratios are 

1
ˆ ˆ/ ( )N N N < N =  and 2

ˆ ˆ/ ( )M M M < M = , respectively. Then joint sampling ratio 

is expressed as 1 2
  = . The specific form is as follows: 

ˆ ×

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0
N N

 
 
 
  =
 
 
 
  ˆ×

0 0 1 0 0

0 1 0 0 0

Φ

1 0 0 0 0
M M

 
 
 
 =
 
 
 
 

 (18) 

Then, combining Equations (17) and (18), the downsampled GMT echo signal can be 

written as: 

1Φ = G ( ) Φ
ds echo

−=   S S Ξ  (19) 

According to the theory of compress sensing, the solution of Equation (19) can be 

transformed into the following optimization problem: 

2
1

2

1ˆ  = arg min ΨG ( )Φ
2 ds p

− 
− + 

 Ξ

Ξ S Ξ Ξ  (20) 

Where 
2

2
 denotes the l2-norm, 

p
 Ξ  is the regularized constraint terms, and   is 

the regularization parameter. The effect of this constraint term is to make the reconstruc-

tion problem of Equation (20) obtain an optimal solution. Equation (20) is a typical least 

absolute shrinkage and selection operator (LASSO) problem, which can be obtained by an 

iterative optimization search with many algorithms (e.g., ISTA, ADMM). Taking the ISTA 

algorithm as an example [34], the main steps are as follows: 

1 H 1 1 Hˆ ˆG[Ψ ( ΨG ( )Φ)Φ ]t t t

ds
− − −= + −O Ξ S Ξ  (21) 

( )ˆ  = soft( , ) = sign( ) max ,0t t t tT T−Ξ O O O  (22) 

where tO  is the operator after the t -th iteration update, 1ˆ t−Ξ  is the imaging result of 

the previous estimation, and H( )  represents the transpose operation of a matrix. ρ  and 

T  denote the threshold and step size of the iteration, respectively. 
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3.2. Sparse Imaging Network for Ground Moving Target (GMTSI-Net) 

In this subsection, GMTSI-Net is proposed in Section 3.2.1, which takes SAR-GMT 

echoes as input and outputs a focused SAR image of a moving target. In addition, we give 

the training strategy of this network in Section 3.2.2. 

3.2.1. Network Structure 

In theory, we can reconstruct the imaging results of GMT focus by iterating Equations 

(21) and (22) in Section 3.1. However, the Doppler or velocity parameters of the GMT are 

unknown, and thus the three imaging matrices 
1

H , 
2

H , and 
3

H  contained in G in 

Equation (21) cannot be accurately obtained. Hence, the iterative algorithm of Equations 

(21) and (22) cannot be effectively applied. 

To address the above problems, we propose a ground moving target sparse imaging 

method that unfolds the ISTA algorithm into a network form. Specifically, the single-layer 

topology of GMTSI-Net consists of three parts: the Operator Update Module, the Target 

Reconstruction Module, and the Adaptive Unfolding Module, as described below. 

Operator Update Module (OUM): In this module, the main function is to implement 

Equation (21), where 
iρ  is the output of the Adaptive Unfolding Module, and then the 

output of the OUM at the layer i  of the network is defined as: 

1 1

OUM

1 H 1 1 H

ˆЛ ( , ,G,G )

ˆ ˆ= G[Ψ ( ΨG ( )Φ)Φ ]

i i i i

i i i

ds

ρ

ρ

− −

− − −

=

+ −

O Ξ

Ξ S Ξ
 (23) 

Since some parameters (e.g., 
1

R , 
2

R ) of 
1

H , 
2

H , and 
3

H  in G  are related to the 

Doppler center and tuning frequency of the GMT, they can be used as learnable parame-

ters of the GMTSI-Net, labeled as = { , , }
dc a

f K
1 2 3

H ,H ,H , where   denotes the set of 

learnable parameters. It should be noted that in the conventional ISTA algorithm, the 

value of 
iρ  is generally fixed in each iteration, whereas in GMSTI-Net, the 

iρ  is differ-

ent in each layer of the network and related to the sampling ratio  . 

Target Reconstruction Module (TRM): Similar to Equation (22), the function of TRM 

is mainly to achieve the reconstruction of the GMT and side lobe and noise suppression. 

The output of TRM is the GMT imaging result, which can be expressed as: 

( )
TRM

ˆ Л ( , )

= sign( ) ReLU ,0

i i i i

i i i

T

T

 =

−

O

O O
 (24) 

where i iT ρ= , ReLU denotes the Rectified Linear Units activation function. 

Adaptive Unfolding Module (AUM): The function of AUM is to enable the GMTSI-

Net to adapt to tasks with different sampling ratios and improve imaging performance at 

the same time. We designed the AUM. AUM uses the sampling ratio   as input and 

output differently iρ . We implemented the AUM by setting up two fully connected lay-

ers, where the first layer uses ReLU as the activation function and the last uses Softplus, 

and the number of nodes in each hidden layer is 64. With this design, GMTSI-Net is still 

able to image GMT at a low sampling ratio. The AUM can be simply written as: 

1 2

AUM
Л ( ) = { , ,..., }L     (25) 

where L  denotes the number of network layers. 

In GMTSI-Net, each layer of the network contains the same topology, which consists 

mainly of OUM, TRM, and AUM. To further improve the imaging performance of GMTSI-

Net, we constructed the corresponding labels for the supervised training. This training 
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approach allows the network to autonomously learn the non-linear mapping relationship 

from the GMT echo to the target scattering coefficient. The topology of GMTSI-Net is 

shown in Figure 3. 

 

Figure 3. The architecture of GMTSI-Net. 

3.2.2. Training Strategy 

Similar to traditional deep neural networks, the proposed network can be trained in 

a data-driven error back-propagation manner for end-to-end supervised training. 

Loss Function 

In general, we can measure the quality of the image reconstruction by the mean 

square error (MSE). In this paper, the loss function of GMTSI-Net is designed as follows: 

total

2
label

N 2
2

1 22 1 2label1total
2

ˆ
1 ˆ ˆ( )

N

i

i i

i

Loss =
2

 
=

 
− 

 + − 
 
 


Ξ Ξ

Ξ Ξ
Ξ

 (26) 

ˆ arg min ( )Loss


 =   
(27) 

where ˆ iΞ  is the output of GMTSI-Net, labelΞ  is the label of scattering coefficients, and 

total
N  denotes the total number of SAR-GMT echo training samples. 

1
  and 

2
  are the 

tuning parameters to weigh the MSE against l2 and l1 constraints, respectively. These two 

constraints are introduced for two purposes: firstly, to ensure convergence of the network 

parameters, and secondly, to improve the imaging quality under low sampling ratio con-

ditions. In this paper, we set the initial values of 
1
 and 

2
 to be 0.1 and 0.005, respec-

tively. The derivation of the loss function gradient can be found in Appendix A. 

Backpropagation and Gradient Update 

Similar to a deep neural network, the update of learnable parameters in GMTSI-Net 

can be implemented by many optimizers, such as SGD, Adagrad, Adam, etc. In this paper, 

we selected Adam as the optimizer for GMTSI-Net. SAR-GMT echoes are complex data, 

but in the network the data are propagated as real. We divided the complex data into real 

and imagery parts to implement the processing of SAR-GMT echo data; the specific 

method can be found in Ref. [35]. It is worth noting that the network learnable parameters 

Trainable 
Parameters

{ fdc,Ka,H1(R1,R2),
H2(R2),H3(R1,R2)}

GMT SAR 
Echo data

OUM TRM OUM TRM … OUM TRM

AUMƞ
ρ1 ρ2 ρL

Layer 1 Layer 2 Layer L

0Ξ̂ Ξ̂L

 labelΞ

S
u

p
e

rv
ise

d

Initialization

Error Backpropagation

Reconstruction

-
2

1
=

λ
dc

R f

2
2

= -
λ

a
R K
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can be updated at each layer, i.e., the value of updated learnable parameters by backprop-

agation of the network at i -th layer is used as the initial value of the input of 1i + -th 

layer. The specific training process is shown in Algorithm 1. 

Algorithm 1 Training of GMTSI-Net 

Input: Downsampling SAR-GMT echo 
ds
S ; sampling ratio and matrix η , Ψ , Φ ; 

number of layers L ; imaging labels 
labelΞ ; learnable parameter set  ; tuning pa-

rameters 
1

 , 
2

  

Output: GMT imaging result Ξ̂  

1: Initialize 0 0 0 0 0 0 0 4

1 2 3
ˆ[ ], , 1

dc a
= f K e − =, ,H ,H ,H Ξ  

2: for i L  do 

3:  Update the operator iO  via OUM 

4:  Estimate the result of GMT imaging ˆ iΞ , and calculate the ( )Loss   

5:    if ( ) <Loss   

6:      output the result ˆ iΞ  

7:    else 

8:      Update the parameters 
1i+  by Equation (27) and Adam optimizer 

9:      1i i= +  

10: end for 

4. Experimental Results and Analysis 

In this section, we test the imaging performance of the GMTSI-Net with different 

SNRs and sampling ratios through simulation and measure data experiments, and com-

pare them with other imaging algorithms to verify the effectiveness and superiority of the 

proposed method. GMTSI-Net was implemented in the Tensorflow framework and accel-

erated with an NVIDIA GeForce RTX 3060. 

Meanwhile, we used MSE, peak signal-to-noise ratio (PSNR), image entropy (IE), and 

target-to-background ratio (TBR) as evaluation metrics to measure the imaging results of 

different algorithms. The related definitions are shown below: 

( )-
2 2

ˆ

ˆ

1 ˆ ˆ= ln ln
m,n m,n

m,n

  
+   

   
 Ξ

Ξ

IE Ξ Ξ  (28) 

2

T
2

2

B
2

ˆ

= 20 lg
ˆ

 
 

 
 
 

Ξ
TBR 

Ξ

 (29) 

where 
2

ˆ
2

ˆ =
Ξ

Ξ , ˆ
m,n
Ξ  indicates the pixel value of the imaging result Ξ̂  at coordinate 

( )m,n . 
T

 and 
B

 are the region of the target and background, respectively. 

4.1. Point Target Simulation Experiment 

In this subsection, we set up a scenario containing 100–300 moving targets. The pa-

rameters of the SAR platform were set as follows: the platform traveled at a constant ve-

locity of 100 m/s; the carrier frequency was 10 GHz; the bandwidth was 150 MHz; the 

pulse repetition frequency and duration were set to 500 Hz and 1.5 μs, respectively; the 

observation scene size was 256 m × 256 m; and the range and azimuth resolution were 

both 1 m. 
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In the process of generating the training set, we generated the training set 
GMT Echo−
S  

of GMT echoes by randomly sampling the echo signal (sampling ratio between 0.1 and 

0.9) and adding Gaussian white noise with a random SNR (SNR between −15 dB and 20 

dB). The total number of echo samples was 
total

N 5000= . Each echo sample consisted of 

100–300 moving point targets randomly distributed within the observed scene and their 

velocities were also random in 2-D directions. The range velocity y
v  was randomly dis-

tributed between 1 m/s and 20 m/s and the azimuth velocity y
v  was randomly distrib-

uted between 5 m/s and 20 m/s. Note that the velocity of moving targets was different in 

different echo samples, whereas the velocity of moving targets was the same in each echo 

sample. Note that we only considered differences in moving target velocities between dif-

ferent echo samples and ignored the case where the moving targets in a single echo sample 

had different velocities. In the initialization of network parameters, the initialization of 

the learnable parameter set 
0  was set as follows: the Doppler center frequency 0

dc
f  

and Doppler tuning frequency 0

a
K  were set to −5 and −10, respectively, and the imaging 

matrices 0

1
H , 0

2
H  and 0

3
H  were initialized by Equations (9), (11) and (14); the layer of 

GMTSI-Net was set as 12L = ; and the learning rate, batch size, and epoch number were 

set to 52 e− , 32, and 150, respectively. 

When testing the network, the trained network parameters were fed into the GMTSI-

Net. The imaging results of the moving target were output by a single feed-forward oper-

ation of the network. A tank model was chosen to verify the imaging performance of the 

GMTSI-Net, which consists of 211 independent points with 16=xv  m/s and 8=yv  

m/s. Figure 4 shows the schematic diagram of a tank model. We performed simulated 

experiments under different SNRs and different sampling ratios η  to verify the effec-

tiveness and superiority of the proposed method. 

 

Figure 4. Schematic diagram of a tank model. 

4.1.1. Comparison of Different Sampling Ratios 

In this subsubsection, we use the tank model to verify the imaging performance of 

the proposed method at different sampling ratios of 0.5, 0.25 and 0.1, respectively. The 

SNR of SAR-GMT was 15 dB. 

Figure 5 gives a comparison of the proposed method with other algorithms for dif-

ferent sampling ratios, where the first, second, and last rows show the imaging results for 

sampling ratio 0.5,0.25, and 0.1η = , respectively. It can be seen that the method in [8] 

did not give more accurate imaging results at lower η , and the method in [17] could 

achieve focused moving targets but had a high side lobe. Besides, the proposed GMTSI-
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Net effectively focused on the ground-moving targets while achieving the suppression of 

the side lobe at a low sampling ratio. The proposed method showed a small number of 

moving targets disappearing at =0.1η . The possible reason for this is the influence of the 

two constraint terms in Equation (26), but the overall outline of the tank model was pre-

served. 

 

(a)                       (b)                       (c)                       (d) 

Figure 5. Imaging results of three methods with different sampling ratios. (a) SAR-GMT echo sig-

nals with different sampling ratios; (b) Imaging results of the method in [8]; (c) Imaging results of 

the method in [17]; (d) Imaging results of the proposed method. 

Table 1 gives the values of the evaluation indicators for the three algorithms. GMTSI-

Net outperformed the method in [8] and the method in [17] to a relatively large extent in 

imaging quality and time. 

Table 1. Evaluation of different sampling ratios. 

Sampling  

Ratio 
Method MSE PSNR IE TBR 

Imaging  

Time (s) 

0.50 

Method in [8] 558.07 20.66 4.0879 9.36 6.581 

Method in [17] 60.75 30.29 2.8309 28.58 138.52 

Proposed 50.73 31.08 2.4221 30.26 0.924 

0.25 

Method in [8] 967.18 18.27 5.6964 3.72 4.865 

Method in [17] 113.69 27.57 4.0006 20.76 98.25 

Proposed 74.08 29.43 2.3598 28.31 0.641 

0.10 

Method in [8] 2672.73 13.86 6.9410 −5.63 3.021 

Method in [17] 330.75 23.94 4.6569 15.38 50.86 

Proposed 109.61 27.73 2.2150 29.05 0.402 

0.50

0.25

0.10
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4.1.2. Comparison of Different SNRs 

To test the robustness of the proposed method to noise, we added −15 dB to 20 dB of 

Gaussian white noise to the test echo signal in 2 dB steps. In the meantime, the echo signal 

was randomly down sampled with = 0.5η . The imaging results of the three methods are 

given in Figure 6 for SNRs with −15 dB, 0 dB, and 15 dB, respectively. It can be seen that 

in the method in [8], the moving target was completely drowned in noise, and the method 

in [17] also failed to obtain clear results due to noise interference, whereas the proposed 

method achieved clearer focused SAR images of the moving target under low SNR. 

          

(a)                        (b)                          (c) 

Figure 6. Imaging results of three methods with different SNRs. (a) Imaging results of the method 

in [8]; (b) Imaging results of the method in [17]; (c) Imaging results of the proposed method. 

The imaging performance curves for different evaluation metrics versus SNR are 

given in Figure 7. As can be seen from Figure 7, the imaging performance of the method 

in [8,17] deteriorated sharply (IE, TBR) as the SNR decreased. On the contrary, the IE of 

the proposed method remained basically unchanged, and the TBR in the proposed 

method, although showing a downward trend as SNR decreased, was generally better 

than the other two algorithms, which indicates the robustness of GMTSI-Net. Overall, the 

performance of the proposed method in terms of TBR, IE, and other related evaluation 

indicators was superior to the other two methods at the same SNR. Performance curves 

in Figure 7 demonstrate the effectiveness and robustness of the proposed method. 

  

15 dB

0 dB

−15 dB
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(a) (b) 

Figure 7. Performance curves of (a) ENT. (b)TBR versus SNR of three methods with sampling ratio 

= 0.5η . 

4.2. Measured Data Experiment 

We further verified the imaging performance of the proposed method using the 

measured data of the Gaofen-3 satellite (GF-3), which is a remote sensing satellite of 

China’s Gaofen Special Project. It is a radar remote sensing satellite with a resolution of 1 

m. The corresponding radar parameters were set as follows: The operating carrier fre-

quency was 10 GHz, the bandwidth was 150 MHz, the pulse repetition frequency was 

2500 Hz, and the distance from the center of the scene was 10,000 m. Due to the lack of 

enough SAR moving target datasets in terms of training, we used the SAR Ship Detection 

Dataset (SSDD) [36] as the training set. The two-dimensional velocity distribution of the 

ship target in SSDD was set as (0,15]xv  , (0,20]yv  . 

In the testing stage, the measured data of GF-3 was used as the test set. Figure 8 shows 

the result of imaging the measured data of GF-3 using the stationary target RD imaging 

algorithm. It can be seen that the ship was out of focus due to the motion. 

  

(a) (b) 

Figure 8. Imaging result of two ship targets from GF-3 measured data with traditional RDA. (a) Ship 

1; (b) ship 2. 

To obtain the focused SAR images of moving targets, we used the method in [8,17], 

and the proposed method to image two types of ship targets. The experimental conditions 

were the same as in Section 4.1.1. The imaging results are shown in Figures 9 and 10. From 

a longitudinal comparison of Figures 9 and 10, as the sampling ratio decreased, the imag-

ing quality of the method in [8,17] gradually decreased. On the contrary, the proposed 

−− − −
−

− −
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method could still image moving ship targets with a low sampling ratio. From the hori-

zontal comparison, all three methods could focus accurately on moving targets at high 

sampling ratios, but the proposed method was more effective in suppressing interference 

from the side lobe and had better image quality. Besides, Table 2 gives the values of the 

relevant evaluation indicators for the measured data experiments. It should be noted that 

evaluation indicators such as MSE, PSNR, and TBR did not apply to this experiment due 

to the lack of corresponding labels. It can be seen that for two types of ship targets and 

different sampling ratios, the GMTSI-Net outperformed the method in [8,17] on IE to a 

great extent. In addition, after the learnable parameters in the proposed method are fixed 

by supervised training, a simple matrix multiplication operation is all that is required to 

obtain a focused SAR image of the moving target, which significantly reduces the time 

required for imaging. 

 

(a)                             (b)                             (c) 

Figure 9. Imaging result of ship 1 from GF-3 measured data with different methods. (a) Imaging 

results of the method in [8]; (b) Imaging results of the method in [17]; (c) Imaging results of the 

proposed method. 

0.50

0.25

0.10
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(a)                            (b)                            (c) 

Figure 10. Imaging result of ship 2 from GF-3 measured data with different methods. (a) Imaging 

results of the method in [8]; (b) Imaging results of the method in [17]; (c) Imaging results of the 

proposed method. 

Table 2. Evaluation of measured experiments. 

Target Sampling Ratio Method IE Imaging Time (s) 

Ship 1 

0.50 

Method in [8] 4.6600 12.081 

Method in [17] 2.5668 407.526 

Proposed 2.1603 1.453 

0.25 

Method in [8] 4.9943 9.574 

Method in [17] 3.1532 295.186 

Proposed 1.8823 0.973 

0.10 

Method in [8] 5.5729 5.158 

Method in [17] 3.8129 209.26 

Proposed 1.5493 0.843 

Ship 2 

0.50 

Method in [8] 4.4520 10.835 

Method in [17] 2.6330 296.37 

Proposed 1.4246 1.102 

0.25 

Method in [8] 4.5323 6.421 

Method in [17] 2.8376 173.15 

Proposed 1.3702 0.932 

0.10 

Method in [8] 4.6231 4.113 

Method in [17] 3.5268 96.64 

Proposed 1.3325 0.762 

0.50

0.25

0.10
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5. Conclusions 

In this paper, a SAR-GMT sparse imaging network, GMTSI-Net, is proposed that can 

effectively improve the imaging quality and computational efficiency under the condition 

of a low sampling ratio or SNR. Firstly, based on the derivation of the echo signal model 

of SAR-GMT, the imaging algorithm under the condition of known Doppler or 2-D veloc-

ity parameters was deduced. Then, based on the sparsity of SAR-GMT echo signal, a 2-D 

sparse observation model based on the matched filter operator was established, and the 

solution process of the observation model was mapped to each layer of the neural network 

and the unknown parameters such as the Doppler center and tuning frequency were set 

to learnable network parameters. Through supervised training, the GMTSI-Net could ob-

tain imaging parameters with better imaging quality. Furthermore, we added an adaptive 

unfolding module to improve the flexibility of the GMTSI-Net while ensuring image qual-

ity. At the same time, two regularization constraints 
1 1

ˆ i
 Ξ  and 

2

2 2

ˆ i
 Ξ  were added 

to the training loss function to further ensure the quality and sparsity of the imaging re-

sults without affecting the parameter convergence. Finally, based on the simulated and 

GF-3 measured data, we conducted experiments and comparisons under different sam-

pling ratios (as low as 0.1) and SNRs (as bad as −15 dB) conditions to verify the effective-

ness and reliability of the proposed method. 

It should be noted that, however, the proposed method failed to solve the imaging 

problem of multiple moving objects. This is because when imaging multiple targets, the 

Doppler parameters or the velocities of each moving target are different. It is not possible 

to focus imaging on multiple moving targets with GMTSI-Net alone. Therefore, how to 

accurately estimate the Doppler parameters of each moving target in the network and 

achieve the focusing result of multiple moving targets will be the focus of our future re-

search work. 
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Appendix A 

For the convenience of derivation, we ignored the constant term in Equation (26), and 

represented the matrix in it as a vector: 

( ) 
   

 − + −   
   

2 2
label

1 2
2 1 2

ˆ ˆ ˆ( ) vec vec veci i iLoss' = Ξ Ξ Ξ Ξ  (A1) 

The first term in (A1) can be expanded as: 

( ) 
− = + − − 

 

2
label label label label label

2

ˆ ˆ ˆ ˆ ˆvec vec ( ) ( ) ( ) ( )i i H i H i H H iΞ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ  (A2) 

where H  is the conjugate operation of the matrix. Then, the gradient of (A2) can be ex-

pressed as: 

 
 − − 

 

2
label label

2

ˆ ˆvec =vec[2( )]i iΞ Ξ Ξ Ξ  (A3) 
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Then, we calculated the gradient of the second and last terms in Equation (26). Take 

the second item as an example. Since the second term is the L1 norm, it can be approxi-

mated as: 

( ) ( )= +
1

ˆ ˆ ˆvec vec ( )i i H iΞ Ξ Ξ  (A4) 

where   is a small smoothing parameter. Based on the above formula, we can get the 

gradient of the second term as: 

( ) ( )− = 1

1

ˆ ˆvec veci iΞ D Ξ  (A5) 

where 
−1D  is a diagonal matrix, which can be specifically expressed as: 

= +
2

ˆdi iΞ  (A6) 

We can also get the gradient of the last term in Equation (26) as follows: 

 
 = 

 

2

2

ˆ ˆvec vec( )i iΞ Ξ  (A7) 

Hence, the gradient of the loss function can be written as: 

 

 

−

−

   − − +
 

 = − + −
 

label 1

2 1

1 label

2 1

ˆ ˆ ˆ( ) = vec 2( )

ˆ ˆvec (2 2

i i i

i i

Loss' Ξ Ξ Ξ D Ξ

)Ξ D Ξ Ξ
 (A8) 
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