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Abstract: Advancements in remote sensing have led to the development of Geographic Object-
Based Image Analysis (GEOBIA). This method of information extraction focuses on segregating
correlated pixels into groups for easier classification. This is of excellent use in analyzing very-
high-resolution (VHR) data. The application of GEOBIA for glacier surface mapping, however,
necessitates multiple scales of segmentation and input of supportive ancillary data. The mapping of
glacier surface facies presents a unique problem to GEOBIA on account of its separable but closely
matching spectral characteristics and often disheveled surface. Debris cover can induce challenges
and requires additions of slope, temperature, and short-wave infrared data as supplements to enable
efficient mapping. Moreover, as the influence of atmospheric corrections and image sharpening
can derive variations in the apparent surface reflectance, a robust analysis of the effects of these
processing routines in a GEOBIA environment is lacking. The current study aims to investigate
the impact of three atmospheric corrections, Dark Object Subtraction (DOS), Quick Atmospheric
Correction (QUAC), and Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH), and
two pansharpening methods, viz., Gram–Schmidt (GS) and Hyperspherical Color Sharpening (HCS),
on the classification of surface facies using GEOBIA. This analysis is performed on VHR WorldView-2
imagery of selected glaciers in Ny-Ålesund, Svalbard, and Chandra–Bhaga basin, Himalaya. The
image subsets are segmented using multiresolution segmentation with constant parameters. Three
rule sets are defined: rule set 1 utilizes only spectral information, rule set 2 contains only spatial and
contextual features, and rule set 3 combines both spatial and spectral attributes. Rule set 3 performs
the best across all processing schemes with the highest overall accuracy, followed by rule set 1 and
lastly rule set 2. This trend is observed for every image subset. Among the atmospheric corrections,
DOS displays consistent performance and is the most reliable, followed by QUAC and FLAASH.
Pansharpening improved overall accuracy and GS performed better than HCS. The study reports
robust segmentation parameters that may be transferable to other VHR-based glacier surface facies
mapping applications. The rule sets are adjusted across the processing schemes to adjust to the change
in spectral characteristics introduced by the varying routines. The results indicate that GEOBIA for
glacier surface facies mapping may be less prone to the differences in spectral signatures introduced
by different atmospheric corrections but may respond well to increasing spatial resolution. The
study highlighted the role of spatial attributes for mapping fine features, and in combination with
appropriate spectral features may enhance thematic classification.

Keywords: geographic object-based image analysis; atmospheric correction; pansharpening;
WorldView-2; Ny-Ålesund; Chandra–Bhaga basin; glacier surface facies
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1. Introduction

Glacial systems are dynamic. This dynamicity revolves around the intricate depen-
dence of the glacier’s health on its immediate environment and long-term climate. Glaciers
serve not only as sources of fresh water but also as drivers for socio-economic and industrial
growth [1,2]. Continuous monitoring of these systems is not only important for their indi-
cations of climate variations [3], but also for their cascading impact on human life. Remote
sensing (RS) is one of the most effective mechanisms for near-continuous monitoring of
the ever-changing cryosphere. Satellite multispectral sensors have an advantage, as the
derivable reflectance from these sensors enable the identification of various supraglacial
features [4]. Glacier surface facies are easily distinguished based upon variations in surface
reflectance [5]. These facies are formed by the natural aging and movement of snow and
its melting, refreezing, and intermixing with dust and debris. The spatial distribution of
facies can be incorporated into distributed mass balance models [6] and used for validating
existing three-dimensional models. Development of a recent open-source cryospheric
model, the Snow Multidata Mapping and Modeling (S3M) 5.1, may allow for assimilation
of glacier surface facies [7].

Multispectral remote sensors capture scenes which necessitate processing routines to
derive usable information from raw data. These processing routines exert an influential
impact on the consequent information extraction methods [8]. Moreover, the method
of information extraction plays an important role in developing a sustainable mapping
mechanism. Traditional pixel-based image analysis (PBIA) focuses on assigning a thematic
class to each pixel, while object-based image analysis (OBIA) groups homogenous pixels
into objects for classification [9] and is reported to be superior for remote sensing classi-
fication [10]. Hay and Castilla [11] define the primary aim of Geographic Object-Based
Image Analysis (GEOBIA) as a discipline to develop theory, methods, and tools to replicate
human interpretation of RS imagery through automated/semi-automated mechanisms.
GEOBIA differs from OBIA in that it is solely focused on RS of the Earth and its surface.

GEOBIA

The foundation of OBIA is image segmentation [12]. Segments are groups/objects
of similar pixels determined by criteria of homogeneity. Segmentation decreases image
detail, reduces spectral complexity, and enhances understanding of image content [13].
These criteria result in additional features such as mean values per band, minimum and
maximum values, relationships to neighbor objects, spatial topology, and geometric de-
scriptions [14]. Thus, segmentation operations and their resultant features are suggested
to be comparable to building a database with information of the objects. The subsequent
classification of the objects can be reviewed as a database query [15]. Studies testing the
capacity of OBIA in various applications have resulted in intriguing research problems
related to selection of segmentation parameters, classification methods, and validation of
end results. For example, Kim et al. [16] investigated multi-scale and single-scale segmen-
tation and incorporation of a texture-derived grey-level co-occurrence matrix (GLCM) at
different quantization levels. Their results suggest that multi-scale segmentation offers the
highest accuracy when combined with GLCM for classification of features in a salt marsh
environment. Verhagen and Dragut [17] utilized OBIA to perform predictive archaeological
mapping using a digital elevation model (DEM). They suggest that geomorphological
analysis using additional contextual features may enable better mapping and highlight the
necessity of expert knowledge for interpretation of image objects. This implies that expert
knowledge may drive the success or failure of segmentation and sequential classification.

Among GEOBIA for glaciological applications, Höfle et al. [18] identified ice, firn,
snow, and crevasses using airborne laser scanning point cloud and intensity data through
segmentation and subsequently supervised classification. Rastner et al. [9] comparatively
assessed pixel-based image analysis (PBIA) and OBIA for mapping clean snow, ice, and
debris-covered ice. Robson et al. [19] classified clean ice and debris-covered ice, by com-
bining Synthetic Aperture Radar (SAR) and optical and topographic data in an OBIA
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environment. Sharda and Shrivastava [20] mapped snow, ice, and a glacial lake on the
Siachen Glacier using band ratios and thresholds on indices. Jawak et al. [21] comparatively
assessed PBIA and OBIA for mapping glacier surface facies in the Chandra–Bhaga basin,
Himalaya, using a multi-index approach. GEOBIA was also tested for change detection of
seasonal snow cover [22]. More recently, Mitkari et al. [23] mapped debris cover using a
multi-scale segmentation approach utilizing ancillary datasets for mapping glacial lakes,
exposed ice, debris cones, rills, crevasses, snow, ice-mixed debris, and supraglacial debris.

Much of the research involving GEOBIA for glacier mapping involves multi-scale
segmentation and incorporation of ancillary data for delineating features. However, little
to no research is conducted on the impact of basic image-processing routines on GEOBIA
classification. The influence of atmospheric corrections and image sharpening can induce
variations in the final thematic outputs of surface facies maps [8]. This study is a subsequent
part of Jawak et al. [8]. Therefore, the previous work is referred to as “paper 1” henceforth.
Hence, the current study aims to fill this research gap by analyzing the effects of variable
processing schemes on the resultant thematic GEOBIA classification of glacier surface facies
in two distinct study areas: Ny-Ålesund, Svalbard, and Chandra–Bhaga basin, Himalaya.

2. Study Areas and Data Used
2.1. Study Sites

Svalbard lies between 75◦ to 82◦N and 10◦ to 35◦E. The rate of warming experienced
by this region is almost twice that of the global average [24]. Ny-Ålesund houses a research
hub for international researchers and some of the most well-studied glaciers. The glaciers
selected for this study include Vestre Brøggerbreen (VB), Austre Lovénbreen (AL), Austre
Brøggerbreen (AB), Midtre Lovénbreen (ML), Edithbreen (EB), Botnfjellbreen (BB), Peders-
breen (PB), and Uvérsbreen (UB). The second site is the Chandra–Bhaga basin, which falls in
the Lahaul and Spiti district of Himachal Pradesh, India. It lies between 32◦05′N to 32◦45′N
and 76◦50′E to 77◦50′E. This basin hosts India’s Himalayan research base, Himansh. The
glaciers selected are Samudra Tapu (ST), CB1, CB2, CB3, CB4, CB5, and CB6. Figure 1
highlights the geospatial location of the study sites, whereas Supplementary Table S1 high-
lights the area of each glacier and their Global Land Ice Measurements from Space (GLIMS)
reference ID [25].

2.2. Satellite and Elevation Data

The primary data of this study were LV2A-processed images from Digital Globe (now
Maxar Technologies), Inc., Westminster, CO, USA [26]. The Himalayan image was acquired
on 16 October 2014 (WorldView-2 © 2014 Maxar Technologies, Pasadena, CA, USA). It has
a multispectral (MSL) resolution of 2 m and a panchromatic (PAN) resolution of 0.5 m. The
Svalbard image was acquired on 10 August 2016 (WorldView-3 © 2016 Maxar Technologies).
This product has an at-nadir spatial resolution of 1.24 m, whereas the SWIR bands and
PAN band had resolutions of 3.7 m and 0.31 m, respectively. The datasets had a radiometric
resolution of 16 bits per pixel. The spectral resolution of WorldView-2 (WV-2) consisted
of the bands PAN (0.45–0.80 µm), Coastal (0.40–0.45 µm), Blue (0.45–0.51 µm), Green
(0.51–0.58 µm), Yellow (0.585–0.625 µm), Red (0.63–0.69 µm), Red Edge (0.705–0.745 µm),
near-infrared 1 (NIR 1) (0.770–0.895 µm), and near-infrared 2 (NIR 2) (0.86–1.04 µm). The
projection and datum of the Svalbard image are WGS 1984 UTM Zone 33N, and the
Himalayan image are WGS 1984 UTM Zone 43N.

Elevation data consisted of 30 m Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) and Global Digital Elevation Model (GDEM) v2 [27] for the
Chandra–Bhaga basin, and 5 m Arctic DEM [28,29] for Ny-Ålesund.
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Figure 1. Geospatial location of the study areas. The 3D elevated surfaces are pansharpened images
draped on digital elevation models. The insets of ML (WorldView-3 © 2016 Maxar Technologies) and
ST (WorldView-2 © 2014 Maxar Technologies) are highlighted using the digitized boundary. The
top image showing the global position of Svalbard and Chandra–Bhaga basin was prepared using
Natural Earth (free vector and raster map data @ naturalearthdata.com).

3. Research Methodology
3.1. Experimental Setup

This study aims to map surface facies using a multi-rule set GEOBIA approach on
selected glaciers in Ny-Ålesund, Svalbard, and Chandra–Bhaga basin, Indian Himalaya,
using visible to near-infrared (VNIR) very-high-resolution (VHR) WV-2 data. Three at-
mospheric corrections, Dark Object Subtraction (DOS), Fast Line-of-Sight Atmospheric
Analysis of Hypercubes (FLAASH), and Quick Atmospheric Correction (QUAC) are used to
obtain reflectance, followed by pansharpening via Gram–Schmidt (GS) and Hyperspherical
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Color Sharpening (HCS). Glacial extents are defined by digitizing over the pansharpened
raised images as 3D surfaces using an ASTER GDEM v2 and Arctic DEM for the two areas.
The results are then examined using error matrices and by comparison with published
literature. The multiple rule sets and data processing are elaborated in the subsequent
sections. In summary, we apply three rule sets in a GEOBIA domain to determine the
variation induced by different processing routines on the classification of glacier surface
facies. The nomenclature used in the study is described in Table 1 and the methodology is
depicted in Figure 2.

3.2. Processing Routines
3.2.1. Deriving Reflectance: Radiometric and Atmospheric Corrections

Deriving reflectance from multispectral imagery entails a two-step routine: (a) conver-
sion of digital numbers/brightness values to at-sensor spectral radiance; (b) application
of an atmospheric correction model to calculate apparent spectral reflectance. The Envi-
ronment for Visualizing Images (ENVI) 5.3 includes a calibration tool which was used to
perform the first step. The radiometrically calibrated images were then subjected to three
different atmospheric corrections. (1) The FLAASH correction is a dual-step module that
simulates the atmosphere at the moment of image capture. This is performed by utilizing
aerosol description and water column amount along with sensor and image data in an
atmosphere model [30] and aerosol model [31]. According to Abreu and Anderson [32],
the atmospheric model was set to tropical for the Himalayan image and subarctic summer
for the Ny-Ålesund image. Similarly, the aerosol model was set as tropospheric for the Hi-
malayan image and maritime for the Ny-Ålesund image [32]. Other input parameters such
as pixel size, aerosol height, CO2 mixing ratio, water column multiplier, zenith angle, sensor
altitude, and scene center location were computed automatically upon selection of image
and sensor. (2) The DOS correction is built upon the principle that atmospheric scattering
upwells path radiance in the dark pixels of an image [33]. Removal of this contribution to
the path radiance can be performed using the value of a single dark pixel [34]. Following
paper 1 and Rumora et al. [35], Top of Atmosphere (TOA) reflectance values of user-defined
dark pixels were used as an input to the DOS correction. Supplementary Table S2 consists
of the spectral-band-wise at-sensor reflectance values of selected dark pixels for the DOS
correction. (3) Similar to DOS, the QUAC model is an in-scene approach, utilizing no
model computations, rather using central wavelengths and the first step of sensor calibra-
tion [36]. The process involves direct input of the image into the QUAC module without
any user intervention.

Table 1. Nomenclature of processing schemes and classifications used in the current study.

Nomenclature/Abbreviation Description/Definition

DOS DOS-corrected

FLAASH FLAASH-corrected

QUAC QUAC-corrected

GS_DOS DOS followed by GS sharpening

GS_FLAASH FLAASH followed by GS sharpening

GS_QUAC QUAC followed by GS sharpening

HCS_DOS DOS followed by HCS sharpening

HCS_FLAASH FLAASH followed by HCS sharpening

HCS_QUAC QUAC followed by HCS sharpening

DOS_Rule Set 1/2/3 DOS followed by classification by any of the three rule sets

FLAASH_ Rule Set 1/2/3 FLAASH followed by classification by any of the three rule sets

QUAC_ Rule Set 1/2/3 QUAC followed by classification by any of the three rule sets
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Table 1. Cont.

Nomenclature/Abbreviation Description/Definition

GS_DOS_ Rule Set 1/2/3 DOS followed by GS followed by classification by any of the
three rule sets

GS_FLAASH_ Rule Set 1/2/3 FLAASH followed by GS followed by classification by any of
the three rule sets

GS_QUAC_ Rule Set 1/2/3 QUAC followed by GS followed by classification by any of the
three rule sets

HCS_DOS_ Rule Set 1/2/3 DOS followed by HCS followed by classification by any of the
three rule sets

HCS_FLAASH_ Rule Set 1/2/3 FLAASH followed by HCS followed by classification by any of
the three rule sets

HCS_QUAC_ Rule Set 1/2/3 QUAC followed by HCS followed by classification by any of the
three rule sets
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Figure 2. Methodology of the proposed study. MS: multispectral image; FLAASH: Fast Line-of-Sight
Atmospheric Analysis of Hypercubes; QUAC: Quick Atmospheric Correction; DOS: Dark Object
Subtraction; GS: Gram–Schmidt; HCS: Hyperspherical Color Sharpening; GEOBIA: Geographic
Object-Based Image Analysis. The blue arrows from GS and HCS highlight the individual image
subsets post pansharpening.
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3.2.2. Pansharpening and Glacier Extent Delineation

HCS replaces the intensity component of MS data in the Hyperspherical color space
with the intensity-matched form of the PAN band [37]. This was performed in ERDAS
IMAGINE. GS predicts the panchromatic data based on the spectral response function
of the sensor [38]. The suitability of generating a 3D surface to determine a glacier’s
boundaries and ice divides is demonstrated in previous studies [21,39]. Hence, the current
study draped GS-pansharpened imagery over the Arctic DEM for Ny-Ålesund, and over
the ASTER GDEM v2 for the Chandra–Bhaga basin to observe and digitize glacial extents.

3.3. Mapping Facies in a GEOBIA Domain

Surface facies were identified on the selected glaciers using visual and spectral charac-
teristics. The characteristics of facies in the Chandra–Bhaga basin and in Ny-Ålesund are
described in detail by Jawak et al. [21] and paper 1. The logic following the identification
of facies is the reduction in reflectance due to mixing of dust, debris, and moisture, along
with comparison against literature performed previously [21] (paper 1). Facies identified
in the Ny-Ålesund image consist of dry snow, wet snow, melting snow, saturated snow,
shadowed snow, glacier ice, melting glacier ice, dirty ice, and streams and crevasses. Facies
observed in the Chandra–Bhaga basin image consist of snow, shadowed snow, glacier ice,
ice mixed debris, debris, and crevasses.

3.3.1. Multiresolution Segmentation

To derive maximum spatial and spectral information from VNIR VHR imagery, the
GEOBIA approach must first focus on identifying the optimal segmentation algorithm and
subsequently its associated parameters. In this study, we utilize the multiresolution seg-
mentation [40] algorithm loaded into eCognition Developer. Multiresolution segmentation
is an iterative process that begins by aggregating highly correlated adjacent pixels into
objects. This cycle repeats until the conditions set by the scale parameter, shape/color, and
compactness are satisfied [41]. The scale parameter determines the size of the resultant
objects, whereas shape regulates the influence of spectral characteristics [41]. Kim et al. [16]
define optimal segmentation as that which generates objects of similar size to that of the
target ground features.

In the current study, we utilized a trial-and-error approach to the scale, shape, and
compactness parameters to determine which setting delivers the most meaningful objects.
For image subsets of both study sites, the best scale parameter was found to be 5, shape was
set at 0.9, and compactness at 0.4. Along with common parameters, the same layer weights
were assigned during the segmentation process. NIR 1 was assigned the highest weight at
3, followed by Blue, Green, Red Edge and Yellow at 2, followed by Coastal, NIR 2, and Red
at 1 each. NIR 1 was assigned the maximum weight as it is the most impacted by moisture,
enabling greater spectral differentiation. The other layers were weighed one at a time in
a repeated iterative process to determine the best weight to deliver meaningful objects.
The segmentation parameters were consistently used to segment all image-processing
schemes from both study sites. Figures 3 and 4 highlight pre and post segmentation as
well as the post classification objects from the atmospherically corrected and pansharpened
subsets, respectively.

3.3.2. Object Features and Rule Sets

Post segmentation, image objects provide much more than just spectral information. In
this study, several object features were identified which were incorporated into rule sets for
enabling classification. The features identified for classification are mean, quantile, standard
deviation, min. pixel value, max. pixel value, edge contrast of neighbor pixels, number of
overlapping thematic objects, relative border to, and customized ratios/arithmetic features.
Table 2 describes each feature and the features per band used in the current study. The
rule sets incorporating these features are developed based on a logic of testing the spectral



Remote Sens. 2022, 14, 4403 8 of 29

and contextual features to determine how much information and which features are more
suitable for mapping surface facies across different processing schemes.

1. Rule Set 1: Only object spectral information This rule set utilizes only spectral informa-
tion from the mean values per band and customized ratios developed from the mean
values to classify objects, the reasoning being to test the level of accuracy achievable
when classifying objects using only spectral properties.

2. Rule Set 2: Inter-object and contextual information This rule set utilizes features that
are not direct object spectral properties or ratioed spectral properties. This rule set
will test classification of segmented objects without direct information on the spectral
properties of the object.

3. Rule Set 3: Combination of spectral and contextual information This rule set will
attempt to combine the features of both rule sets to achieve the best possible classifi-
cation map. Supplementary Table S3 presents the exact rule set post segmentation
for all the processing schemes. Table 3 highlights the best performing rule sets for
the associated processing scheme for both study areas based on individual overall
accuracy and F1 score.
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Table 2. Set of object, class, and customized features used to classify facies in this study. Description
of the features in addition to the specific features used in the current study. Quantile [0.5] refers to
the 50th percentile or middle quartile of the object data per spectral band.

Type of Feature Feature Name Description Features Tested in This Study

Object Features:
Layer Values

Mean Value per
Layer/Band

The mean layer intensity
value of an image object [42]

Coastal, Blue, Green, Yellow, Red, Red Edge,
NIR 1, NIR 2, Brightness, Max. Difference

Object Features:
Layer Values Quantile

The feature value, where a
specified percentage of image

objects from the selected
image object have a smaller

feature value [42]

Quantile [0.5] (Coastal), Quantile [0.5]
(Coastal), Quantile [0.5] (Blue), Quantile [0.5]

(Green), Quantile [0.5] (Yellow), Quantile
[0.5] (Red), Quantile [0.5] (Red Edge),

Quantile [0.5] (NIR 1), Quantile [0.5] (NIR 2)
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Table 2. Cont.

Type of Feature Feature Name Description Features Tested in This Study

Object Features: Layer
Values: Pixel-Based Standard Deviation

The standard deviation of the
feature value from all objects
of the selected image object

domain [42]

Coastal, Blue, Green, Yellow, Red, Red Edge,
NIR 1, NIR 2

Object Features: Layer
Values: Pixel-Based Minimum Pixel Value

The value of the pixel with the
minimum layer intensity

value in the image object [42]

Coastal, Blue, Green, Yellow, Red, Red Edge,
NIR 1, NIR 2

Object Features: Layer
Values: Pixel-Based Maximum Pixel Value

The value of the pixel with the
maximum layer intensity

value in the image object [42]

Coastal, Blue, Green, Yellow, Red, Red Edge,
NIR 1, NIR 2

Object Features: Layer
Values: Pixel-Based

Edge Contrast of
Neighbor Pixels

Refers to the edge contrast of
an image object to the

surrounding volume of a
given size

Coastal(3), Blue(3), Green(3), Yellow(3),
Red(3), Red Edge(3), NIR 1(3), NIR 2(3)

Object Features:
Thematic Attributes

Number of
Overlapping Thematic

Objects

The number of thematic
objects that an image overlaps

with if the scene contains a
thematic layer [42]

Manual Digitized Layer of Shadowed Snow

Class-Related Features:
Relations to Neighbor

Objects
Relative Border To

Is the ratio of the common
border length of an image
object with a neighboring
image object assigned to a
defined class to the total

border length [42]

Classified Objects

Object Features:
Customized Features Arithmetic Feature

Composed of existing features,
variables, and constants,
which are combined via

arithmetic operations [42]

Customized Ratios (using Mean Value)
R_RE = (Red/Red Edge)

CB_CB = (Coastal − Blue)/(Coastal + Blue)
G_C = (Red)/(Coastal)

RC_RG = (Red/Coastal) × (Red/Green)
Max_Min_RE = (Max. Pixel Value Red Edge

−Min. pixel value Red Edge)
Y_C = (Yellow/Coastal)
C_G = (Coastal/Green)

R_C = (Red/Coastal)
C_N1 = (Coastal/NIR 1)

G_RE = (Green/Red Edge)
R_B = (Red/Blue)

R_G = (Red/Green)
N2_Y = (NIR 2/Yellow)

N1_R = (NIR 1/Red)
N1_N2 = (NIR 1/NIR 2)

CN2_CN2 = (Coastal−NIR 2)/(Coastal + NIR 2)
N1N2_N1N2 = (NIR 1−NIR 2)/(NIR 1 + NIR 2)
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Table 3. Best performing rule sets for respective processing scheme for each study site based on
individual overall accuracy and F1 score. Detailed rule sets for all processing schemes are available
in Supplementary Table S3.

Study Site
Rule Set and Processing Scheme

Rule Set 1: FLAASH Rule Set 2: DOS Rule Set 3: QUAC

Ny-Ålesund,
Svalbard

Shadowed Snow
R_RE ≥ 1.15

Rel. Border to Shadowed
Snow > 0
Dirty Ice

CB_CB < −0.17
Rel. border to Dirty Ice > 0.2

G_C ≥ 1.6
Dry Snow

Mean NIR 2 > 0.6
Mean NIR 1 >0.4

Rel. Border to DS ≥ 0.4
Wet Snow

Mean Blue ≥ 0.57
Melting Snow

Mean Red Edge ≥ 0.5
Saturated Snow
RC_RG ≥ 1.2

Rel. Border to SaS > 0.5
Mean Red ≤ 0.3

Rel. Border to SaS > 0.4
Melting Glacier Ice
Mean Red ≤ 0.37

Glacier Ice
Mean Coastal ≤ 0.5

Shadowed Snow
Standard Deviation NIR 2 ≤ 0.006

Min. Pixel Value Blue ≤ 0.25
Rel. Border to Shadowed Snow > 0.1

Dry Snow
Quantile [0.5] Red Edge ≥ 0.8

Quantile [0.5] Yellow ≥ 0.7
Quantile [0.5] NIR 1 ≥ 0.6

Wet Snow
Min. Pixel Value Blue ≥ 0.46

Dirty Ice
Quantile [0.5] Coastal ≤ 0.15
Max. Pixel Value Blue ≤ 0.25

Max. Pixel Value Green ≤ 0.23
Melting Snow

Min. Pixel Value Yellow ≥ 0.32
Streams and Crevasses

Standard Deviation NIR 2 ≥ 0.06
Saturated Snow

Min. Pixel Value NIR 1 ≤ 0.12
Quantile [0.5] NIR 2 ≤ 0.15

Glacier Ice
Min. Pixel Value Coastal ≥ 0.3

Min. Pixel Value Red Edge ≥ 0.28
Melting Glacier Ice

Min. Pixel Value Red Edge < 0.28

Shadowed Snow
G_RE ≥ 1.5

Rel. Border to Shadowed Snow ≥ 0.1
Dirty Ice

R_C ≤ 1.6
Dry Snow

Mean NIR 2 ≥ 0.4
Wet Snow

Mean NIR 1 ≥ 0.36
Melting Snow

Mean Red ≥ 0.3
Standard Deviation NIR 1 ≤ 0.09

Streams and Crevasses
Standard Deviation Yellow ≥ 0.15

Saturated Snow
Mean Green ≤ 0.17

Min. Pixel Value Coastal ≤ 0.05
Melting Glacier Ice
Mean Red ≤ 0.3

Glacier Ice
Min. Pixel Value Green > 0.14

Chandra–Bhaga
basin, Himalaya

Rule Set 1: HCS_FLAASH Rule Set 2: HCS_QUAC Rule Set 3: HCS_FLAASH

Shadowed Snow
No. of Overlapping Objects:

Shadowed Snow = 1
Debris

R_B ≥ 7
Ice Mixed Debris

R_B ≥ 5
N2_Y ≥ 1

Snow
Mean Coastal ≥ 0.7

R_RE ≥ 0.8
Crevasses

R_RE <= 0.8
Mean NIR 2 < 0.6

Glacier Ice
Mean NIR 2 ≥ 0.6

Shadowed Snow
No. of Overlapping Objects:

Shadowed Snow = 1
Snow

Quantile [0.5] (Red) ≥ 0.45
Quantile [0.5] (NIR 1) ≥ 0.45

Min. Pixel Value NIR 2 ≥ 0.45
Crevasses

Standard Deviation Yellow ≥ 0.12
Ice Mixed Debris

0.15 < Max. Pixel Value Green >
0.05

Debris
Max. Pixel Value NIR 1 < 0.15

Glacier Ice
Quantile [0.5](Green) ≤ 0.35

Shadowed Snow
No. of Overlapping Objects:

Shadowed Snow = 1
Debris

R_B ≥ 7
Ice Mixed Debris

N2_Y ≥ 1
Quantile [0.5](Red Edge) ≤ 0.4

Crevasses
Standard Deviation NIR 2 ≥ 0.2

Snow
Quantile [0.5] (Coastal) ≥ 0.7

Quantile [0.5] (Blue) ≥ 0.7
R_RE ≥ 0.8
Glacier Ice

Mean NIR 2 ≥ 0.6
Quantile [0.5] (Coastal) < 0.7

Figure 5 displays the classification results of the rule sets and processing schemes
displayed in Table 3.
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Figure 5. Classification results of the best rule sets from both study sites. Ny-Ålesund classification:
(a) FLAASH_Rule Set 1; (b) DOS_Rule Set 2; (c) QUAC_Rule Set 3. Chandra-Bhaga Basin classification:
(d) HCS_FLAASH_Rule Set 1; (e) HCS_QUAC_Rule Set 2; (f) HCS_FLAASH_Rule Set 3.
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3.4. Accuracy Assessment

Logistical constraints in the field campaign to Svalbard, and harsh field conditions
in the month of image acquisition in the Himalaya, prohibited ground truth collection.
Avoiding bias in the manual assignment of reference data, a total of 1160 points were
selected in an equalized random-sampling approach [42,43] to determine the accuracy of
the thematic results. Error matrices were generated to calculate measures such as precision,
recall, F1 score, overall accuracy (OA), error rate, and specificity [44]. While error rate
is calculated as ‘100-OA’ in terms of percentage, Supplementary Table S4 highlights the
mathematical equations of the measures.

4. Results and Discussion
4.1. Quantitative Analysis of Surface Facies
4.1.1. Area of Surface Facies for Each Processing Scheme

The area of each facies is reported as an average across the rule sets for each individual
processing scheme. Table 4 highlights the area per facies for glaciers ST and ML.

Table 4. Classified area of facies for each processing scheme for the glaciers ST and ML averaged
across all rule sets are summarized here.

Study Sites Facies
Atmospheric Correction GS Pansharpening HCS Pansharpening

DOS QUAC FLAASH DOS QUAC FLAASH DOS QUAC FLAASH

Sa
m

ud
ra

Ta
pu

Snow 30.83 26.01 27.55 28.13 27.23 27.63 27.66 27.51 27.60

Shadowed Snow 2.23 2.24 2.18 2.22 2.21 2.20 2.21 2.21 2.21

Ice-Mixed Debris 1.93 2.09 3.26 2.43 2.59 2.76 2.59 2.65 2.67

Glacier Ice 34.72 40.18 35.72 36.87 37.59 36.73 37.06 37.13 36.97

Debris 1.19 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18

Crevasses 5.11 4.31 6.11 5.17 5.20 5.49 5.29 5.33 5.37

M
id

tr
e

Lo
vé

nb
re

en

Dirty Ice 0.28 0.30 0.30 0.28 0.36 0.31 0.28 0.32 0.29

Dry Snow 0.20 0.29 0.26 0.25 0.19 0.22 0.22 0.20 0.22

Glacier Ice 0.68 0.66 0.75 0.71 0.53 0.68 0.62 0.57 0.84

Melting Glacier Ice 0.87 0.66 0.68 0.78 1.00 0.62 0.73 0.88 0.76

Melting Snow 0.45 0.57 0.80 0.63 0.45 0.59 0.70 0.53 0.50

Saturated Snow 0.90 0.91 0.72 0.80 0.88 1.02 0.97 0.89 0.92

Shadowed Snow 0.78 0.74 0.77 0.73 0.78 0.76 0.67 0.75 0.72

Streams and
Crevasses 0.24 0.25 0.16 0.21 0.18 0.22 0.20 0.20 0.18

Wet Snow 0.36 0.38 0.30 0.37 0.37 0.33 0.35 0.41 0.33

Glaciers in Ny-Ålesund are smaller in size when compared to glaciers in the Chandra–
Bhaga basin. Owing to this, the variances in area of facies are greater for ST classification
than the ML classification. Figure 6 presents the deviations from the average classified
area for all facies across glaciers ML and ST using stacked bar graphs. For the ST glacier,
cumulative variances across all processing schemes highlight that the atmospherically
corrected, non-sharpened imageries (average of DOS, FLAASH, and QUAC) deliver the
highest variance of 2.78 km2. Among the individual subsets, FLAASH provides the least
variance across all facies (0.76 km2). The maximum variation was delivered by the QUAC
subsets. The GS sharpened subsets provide moderate variance with an average of 2.54 km2.
The HCS subsets deliver the least variance in the classified area (13.68 km2) among the facies
for the ST glacier. Within the facies themselves, glacier ice observes the most cumulative
variations in classified area, whereas shadowed snow varies the least.
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Figure 6. Variations in classified area of each facies for the representative glaciers ML and ST. Stacked
columns highlight variances in the classified area between processing schemes for the same facies.

Unlike the ST classifications, the ML facies show an inverse trend of variability accord-
ing to pansharpening. The pansharpened subsets report slightly higher cumulative average
variances for the GS and HCS subsets (0.10 and 0.11 km2) than the non-pansharpened
subsets (0.09 km2). Within the individual subsets the QUAC delivers least variability.
Among the facies, dry snow retains maximum consistency across all processing schemes
with a variance in classified area of 0.02 km2. Glacier ice shows maximum variation at
0.19 km2.

4.1.2. Accuracy Yielded by Each Rule Set

Complete accuracy assessment for the classification is detailed in Supplementary Sheet S1.
Here, we aim to assess the classification results of the rule sets using the F1 score [44] as an
average of all processing schemes/subsets. The aim is to utilize the robustness of the F1
score to determine reliability of the classified surface facies and rule sets. This is followed
by the OA to delineate the order of reliable classification across both study areas and as
an average of both study areas. Figure 7 highlights the F1 score of the classified facies
averaged across all processing schemes for each rule set along with the respective deviation
from the mean.
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Figure 7. F1 score of each facies for the three rule sets as the mean of all processing schemes. The
error bars in blue highlight deviations from the mean F1 score indicating reliability of the rule sets for
the respective facies.

Overall observations suggest that rule set 3 delivered the best performance for both
study sites. In the case of Ny-Ålesund classifications, it is observed that rule set 1 provides
the least variance in mapped facies. However, the inability of spectral information to isolate
fine features such as streams and crevasses is a major limiting factor. Rule set 2, which
primarily utilizes spatial and contextual information, is limited by the large variations in
performance across all processing schemes. An inference is possible here that different
preprocessing routines may influence the spatial and contextual characteristics of objects to
a greater extent than absolute spectral information. Unfortunately, this finding does not
extend to facies in the Chandra–Bhaga basin. Here, rule set 2 delivered the median variance
between rule set 1 and 3. The variance for the Chandra–Bhaga rule set 2 classification is less
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(0.06) than the Ny-Ålesund rule set 2 classifications (0.16). The better performance of the
Chandra–Bhaga classifications suggests that fewer classes with better spectral separability
can result in better thematic classifications across all processing schemes by combining
spatial–spectral attributes. Hence, the implication from these results highlights the decrease
in impact of processing schemes on VHR imagery for facies with larger spectral separability
and a lower number of classes and by utilizing spatial–spectral attributes. Table 5 summa-
rizes the OA and the reliability orders for mapped facies and the study sites. The reliability
orders highlight the best combination of features (Table 3 and Supplementary Table S3)
that enabled mapping of the facies with the highest calculated accuracy.

Table 5. Overall accuracy (OA) of the classification of surface facies across both study sites using the
three rule sets. The OA is calculated as an average across all processing schemes. Reliability orders
based on the OA and variances represent the best rule set for mapping the individual facies.

Rule Sets
Overall Accuracy (in %)

Ny-Ålesund Chandra–Bhaga Basin

Rule Set 1 75.03 80.00

Rule Set 2 69.51 79.08

Rule Set 3 85.06 87.09

Facies Reliability Order

Ny-Ålesund

Dirty Ice rule set 3 > rule set 1 > rule set 2

Dry Snow rule set 1 > rule set 3 > rule set 2

Glacier Ice rule set 3 > rule set 1 > rule set 2

Melting Glacier Ice rule set 1 > rule set 3 > rule set 2

Melting Snow rule set 3 > rule set 1 > rule set 2

Saturated Snow rule set 3 > rule set 1 > rule set 2

Shadowed Snow rule set 1 = rule set 3 > rule set 2

Streams and Crevasses rule set 3 > rule set 2 > rule set 1

Wet Snow rule set 3 > rule set 1 > rule set 2

Chandra–Bhaga
Basin

Snow rule set 3 > rule set 1 > rule set 2.

Shadowed Snow rule set 2 = rule set 3 > rule set 1

Ice-Mixed Debris rule set 3 > rule set 1 > rule set 2

Glacier Ice rule set 3 > rule set 1 > rule set 2

Debris rule set 3 > rule set 1 > rule set 2

Crevasses rule set 3 > rule set 1 = rule set 2

4.1.3. Variable Effect of Atmospheric Corrections

Figure 8 highlights the error rate yielded by each rule set for the atmospherically
corrected image subsets. Rule set 3 delivers the most consistent performance, i.e., the
lowest error rate except for the Himalaya FLAASH_Rule Set 1 classification. The com-
mon highest error rate was observed for both the Ny-Ålesund QUAC_Rule Set 1 and
Ny-Ålesund FLAASH_Rule Set 2 classifications. When based upon variances in the
performance of processing schemes, the reliability order of atmospheric corrections is
DOS > FLAASH > QUAC.
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Rule set 3 delivers the most consistent performance, i.e., the lowest error rate except
for the Himalaya FLAASH_Rule Set 1 classification. The common highest error rate was
observed for both the Ny-Ålesund QUAC_Rule Set 1 and Ny-Ålesund FLAASH_Rule Set
2 classifications. When based upon variances in performance of processing schemes, the
reliability order of atmospheric corrections is DOS > FLAASH > QUAC. The reliability of in-
dividual rule sets based upon the error rate is Ny-Ålesund QUAC_Rule Set 3 > Ny-Ålesund
DOS_Rule Set 3 = Ny-Ålesund FLAASH_Rule Set 3 > Ny-Ålesund DOS_Rule Set 2 > Ny-
Ålesund QUAC_Rule Set 2 > Himalaya DOS_Rule Set 3 > Himalaya FLAASH_Rule Set 1 >
Himalaya DOS_Rule Set 2 = Himalaya QUAC_Rule Set 2 = Himalaya QUAC_Rule Set 3 >
Himalaya QUAC_Rule Set 1 > Ny-Ålesund FLAASH_Rule Set 1 > Himalaya FLAASH_Rule
Set 3 > Ny-Ålesund DOS_Rule Set 1 = Himalaya DOS_Rule Set 1 = Himalaya FLAASH_Rule
Set 2 > Ny-Ålesund QUAC_Rule Set 1 = Ny-Ålesund FLAASH_Rule Set 2.

These findings imply that when combining spatial–spectral properties of objects, the
DOS correction is sufficient for deriving reliable and accurate thematic classifications.
FLAASH is most useful when the mapping procedure relies purely on spectral information.
QUAC and DOS deliver similar performances for rule set 2, and this suggests that GEOBIA
relying heavily on spatial properties between objects would benefit from simpler corrections.
In a comparative assessment using GEOBIA for mapping benthic habitats, Siregar et al. [45]
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suggested that the difference between FLAASH corrected and noncorrected classification is
not significant. However, the profile used to highlight post correction spectral signatures
highlights that the range of reflectance was not resampled from 0 to 1. Moreover, as the
classification was performed using support vector machines (SVM) post segmentation, a
comparison between rule-set-based classification is difficult. While the high performance of
the DOS correction in the current study does not agree with the findings of Phiri et al. [46],
it is likely because the current study utilizes rule sets rather than a classification algorithm
(such as random forest) to classify segmented objects. Moreover, the superior performance
of DOS is due to the combination of spatial and spectral properties, whereas FLAASH
performs better for only spectral properties. This is important because where PBIA relies
solely on spectral properties, GEOBIA can utilize spatial–spectral properties to overcome
computational loads of complex atmospheric corrections.

4.1.4. Impact of Pansharpening

Table 6 depicts the average performance of pansharpened imagery across all three rule
sets utilizing the OA as the assessing measure. Figure 9 highlights the OA for pansharpened,
and non-sharpened images averaged across all the rule sets.

Table 6. Comparative performance of pansharpened and non-pansharpened subsets according to
each rule set using the average overall accuracy across both study areas. Values of the best performing
rule sets in each processing subset are emboldened and italicized.

Rule Sets DOS QUAC FLAASH
GS HCS

DOS QUAC FLAASH DOS QUAC FLAASH

Rule Set 1 76.67 77.78 81.11 75.84 78.34 76.11 73.33 78.62 79.85

Rule Set 2 84.73 83.62 76.12 75.84 76.95 72.22 69.45 69.45 60.28

Rule Set 3 87.19 86.39 83.61 85.00 85.00 89.45 87.50 88.62 81.95

Considering rule set 1, neither GS nor HCS enhanced the OA for DOS and FLAASH
subsets. HCS and GS added minor accuracy improvements to the QUAC subsets. Rule
set 2 displayed the greatest loss in performance after pansharpening. The HCS_FLAASH
reduced in performance by 15.84%. This is a significant decrease in OA. However, rule
set 3 classifications showed enhancements in the OA of GS_FLAASH, HCS_DOS, and
HCS_QUAC. Averaging across rule sets, the performance trend for the pansharpened sub-
sets is GS_QUAC > GS_FLAASH > GS_DOS = HCS_QUAC > HCS_DOS > HCS_FLAASH.
Overall comparison between pansharpening algorithms suggest that GS > HCS. Of all
pansharpened image rule sets, rule set 3 delivered maximum performance and rule set 2
was the most inaccurate. This is surprising, as finer resolution can improve the contrast be-
tween image pixels, allowing for potentially better segregation of homogenous objects [47].
Rule set 2, which relies on the spatial distinction between objects, decreased in accuracy
after pansharpening. Gavankar and Ghosh [48] utilized HCS sharpened Ikonos imagery
to identify buildings in an urban setting. Buildings usually have consistent geometric
shapes; this consistency can be leveraged using shape parameters such as circulometry and
rectangulomtery [48]. A glacier’s surface does not contain consistent geometric patterns,
and this may indicate that segmentation of fine-resolution satellite data does not neces-
sarily translate to improved classification. In a post-earthquake GEOBIA-based mapping
application to identify damaged buildings and temporary relief sites, Omarzdeh et al. [49]
found that damaged buildings which have lost their consistent structure are difficult to
map. This inconsistency due to shape can also be detrimental for glacier facies mapping, as
developing rules to accurately depict textural variations in observed facies is a challenge.
Rule set 2 is testament to the challenges of spatial property-based mapping. The importance
of combined spatial–spectral characteristics is evident, as segmentation can compensate the
pansharpened image with high frequency information inserted during pansharpening [50].
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Figure 9. Overall-accuracy-based assessment of the performance of pansharpened vs. non-sharpened
classifications. The 3D surface summarizes the OA from all three rule sets for (a) DOS vs. GS_DOS
vs. HCS_DOS, (b) QUAC vs. GS_ QUAC vs. HCS_ QUAC, and (c) FLAASH vs. GS_FLAASH vs.
HCS_FLAASH.

4.2. Discussion

In the quest of mapping earth features through GEOBIA, the focus is usually on
multi-level/scale segmentation to highlight finer features. Glacier surfaces have a variety
of undulating and disheveled features such as crevasses and debris which may necessitate
such segmentation. However, in the current study, we focused on attempting to adapt the
object features post segmentation to discern the visible surface facies. Utilizing only spectral
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information, streams and crevasses were not defined in any rule set 1 for Ny-Ålesund. In
the case of Himalayan facies, crevasses were highlighted using all rule sets. This may be
because the crevasses in Himalayan facies are larger and more clearly discernible than in
Ny-Ålesund. Mitkari et al. [23] found some rills that were misclassified with periglacial
debris in their multi-source GEOBIA approach on the Bara Shigri glacier. This is attributed
to the coarser scale of segmentation. In the current study, however, the finer streams and
crevasses were not classified using only spectral information. The contextual and spatial
attributes of rule set 2 and rule set 3 enabled the identification of streams and crevasses.
The standard deviation feature was most useful for discerning the minor streams and
crevasses. This may point towards certain spatial attributes that can overcome the spectral
constraints. Kim et al. [16] found that addition of the GLCM to multi-scale and single-scale
segmentation improved classification performance. Moreover, the same constraint was
found in the current study when mapping the same features using pansharpened images.
Dabiri et al. [51] utilized Landsat images to perform landslide mapping using thresholds
on indices and layer values in OBIA. However, due to acquisition of different images under
different illumination conditions, each image was assigned thresholds independently. In
the current study, differing processing routines cause a change in the derived reflectance
[paper 1]. This therefore implies that the thresholds and object features utilized must be
assigned accordingly. Each rule set for each processing scheme was assigned independently.
It is observed that the maximum variation in rule sets is required in processing schemes for
the Ny-Ålesund image, whereas most of the Himalayan images were classified with similar
features, albeit with changes in the thresholds owing to changes in reflectance. This suggests
that fewer features and larger targets can be extracted with more stable rule sets using
changes in thresholds according to image and scene conditions. However, smaller features
necessitate more rigorous processing. Rastner et al. [9] found that pixel-based mapping
outperformed OBIA when detecting objects with single pixel size such as nunataks, narrow
ridges, and couloirs. However, their analysis was performed on Landsat ETM+, ASTER,
and Landsat TM imagery. In the case of the current study, the streams and crevasses in
Ny-Ålesund were mapped using spatial attributes. A key finding is that improvement in
spatial resolution did not necessitate a change in segmentation parameters. Furthermore,
the same segmentation was applicable on all processing schemes, and this suggests that
irrespective of the processing routines the combination of ‘optimal’ segmentation when
combined with adjusted spatial and spectral attributes is sufficient for mapping glacier
surface facies using VHR data.

In paper 1, we analyzed the variations induced by different processing routines in the
thematic classification of facies using conventional and advanced pixel-based classification
methods. In this study, we analyzed the impact of the same processing routines on GEOBIA
mapping of surface facies. In paper 1, the FLAASH algorithm performed the best, whereas
here, the DOS-based rule sets delivered superior performance. Pansharpening significantly
reduced reliability of PBIA, whereas it selectively improved overall performance in OBIA.
This highlights that segmentation and spatial–spectral attributes have a key advantage
over hard pixel classification using VHR VNIR satellite data.

Significances and Challenges

GEOBIA classifications can be categorized into (a) operator driven (rule sets) and
(b) operator assisted (classification algorithms). Johnson et al. [52] labels these groups as
knowledge driven and automated classification. In the current study, we focus on rule
sets because although semi-automated approaches are reported to be less subjective [52],
rigorous analysis of individual object characteristics to identify meaningful segmentation
and useful spatial–spectral features must be performed to gauge the quality of classification.
Rule sets can be described as an attempt to replicate logical patterns of image interpretation
from the human brain into classification operations [47]. The impact of processing routines
on the modification of rule sets presents an opportunity to identify necessary changes
in feature thresholds. The data of variation in thresholds, applicability of indices, and
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spectral information for each processing routine can also help drive the direction of semi-
automated classification. Deep learning approaches such as SVM [45] and random forest
(RF) [46] can be applied after OBIA to turn the classification into a semi-automatic process.
However, the selection of the preprocessing method, the collection of training data, and
the resultant goal of mapping facies using any GEOBIA method require a foundational
test of the impact of these methods. Rule sets offer the best capacity for object-by-object
analysis for many GEOBIA mapping applications and can be compared with results of
semi-automatic methods. In this study, each rule set was defined by carefully testing all
the parameters associated with the respective facies under consideration and the object
features that can enable clear delineation of the target. For Ny-Ålesund, rule set 1 was not
capable of differentiating streams and crevasses. This class was misclassified between dirty
ice and saturated snow across all processing schemes. Enhancing spatial resolution did
not improve mapping of fine features, although the overall classification did improve in
cumulative accuracy. The variations in rule sets across processing schemes are found to
be greater when the number of surface facies are greater, and the classes have a greater
probability of spectral overlap. In such scenarios, scene-based adjustments are necessary
for more accurate mapping [53]. However, as demonstrated in this study, spatial attributes
may help overcome spectral complexities.

Shadowed areas in the Himalayan images were classified using an overlap of manually
digitized vector data. This was constant throughout the experiment. However, the same
issue did not arise in the classification of shadowed snow in Ny-Ålesund. Unfortunately,
no index or mean threshold parameter was useful in delineating shadowed snow. This
is a persistent problem in mountain glacier classification [54]. Figure 10 displays the
spectral signatures of the shadowed areas on different points on the FLAASH subset
of the glaciers. Figure 11 presents the variations in spectral reflectance of each of the
processing schemes. In Figure 10, spectral pattern 2 shows a combination of saturated
snow and dry/wet snow. Spectral patterns 3 and 4 are combinations of wet snow, melting
snow, and saturated snow. Figure 10b highlights the variations in shadowed snow on
the ST glacier. Figure 10b spectral pattern 2 does not even follow the same trend in
reflectance. Patterns 1, 3, 4, and 5 vary in intensity, and these variations are significant
when derived on other processing schemes (Figure 11). Using the atmospheric corrections
in the current study, shadowed areas could not be divided into their constituent facies.
Ryan et al. [55] and Leidman et al. [56] noted that shadowed areas can cause overestimation
of darker classes. To avoid misclassification between streams and crevasses, dirty ice (the
facies with the lowest reflectance), and the snow facies within the shadow, all shadowed
areas were labelled as shadowed ‘snow’. Shadows induced by larger features present
challenges in the classification of smaller features lying within the shadow area. In such
cases, the presence of more spectral bands and operator innovation is necessary for creative
application of object features [49]. The aim of the current study is to focus on the impact of
basic image-processing routines on GEOBIA mapping of glacier facies. The time needed for
manual assignment of rules is immense. In this case, corrections for shadows were beyond
scope. Moreover, differentiating between glacier features under shadowed areas is more
problematic for large-scale mapping applications. Breaking down the component facies of
shadowed areas on many glaciers would be an engaging challenge for future experiments.
Ancillary layers have been used to supplement GEOBIA [19,23]. This study does not utilize
multi-source datasets and highlights the capabilities of a combination of object features to
map surface facies.
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Figure 10. Complex spectral patterns of the shadowed snow at different points on the glacier. Base
images are the FLAASH corrected images draped on the ArcticDEM for Ny-Ålesund and ASTER
GDEM v2 for Chandra–Bhaga basin. Inset (a) 3D surface of glacier ML, (b) 3D surface of glacier ST.
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Figure 11. Spectral reflectance of shadowed snow derived across all processing schemes. The left
graph shows the reflectance of shadowed snow in Svalbard, whereas the graph on the right shows
the reflectance of shadowed snow in the Himalayas.

The Himalayan image shows a larger distribution of snow for its acquisition period.
Unfortunately, free precipitation data are not available to corroborate this snow cover with
a sudden precipitation event. Currently, free precipitation data for this region are only
available from 1901 to 2002 [57]. Estimation of snow cover areas (SCA) and the trend of
SCA variability for this region may help support any increase in snow cover during the
period of acquisition. Prior to this, it is important to distinguish between SCA and surface
facies mapping. SCA mapping is more often performed at a basin level or larger regional
scale encompassing a coarser resolution for analyzing spatial, hypsographic, and temporal
variability [58]. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS)
global snow cover product MOD10CM outlines SCA at a spatial resolution of 5 km [59].
Glacier surface facies are all the zones of snow and ice which can be distinguished based
on visual and spectral properties. These facies are clearly visible at the end of the summer
season, when almost all the seasonal snow has disappeared. While SCA operations can
consider an entire glacier to be ‘snow’, facies mapping operations may divide snow into
dry, wet, melting, saturated, etc. At the basin level and larger, SCA is reported to have
substantially reduced [60]. However, at the sub-basin level, snow cover is reported to have
greater dynamicity [61]. Rathore et al. [61] analyzed SCA variability and accumulation
and ablation patterns using daily snow cover data from 2004 to 2014 for six sub-basins
of the Chenab basin, which include the Chandra and Bhaga basins of the current study.
The imagery used in the present study covers part of the Chandra and part of the Bhaga
sub-basins. Hence, the name used here is the Chandra–Bhaga (sub)basin of the current
study. Rathore et al. [61] observed an increasing trend in maximum snow cover during
the accumulation period. Sub-basins such as Ravi and Warwan showed greater variability
in the snow cover due to simultaneous accumulation and ablation, whereas the Chandra–
Bhaga area did not display such variability. The larger distribution in snow cover in
Chandra–Bhaga was attributed to the higher elevation of the sub-basin in comparison
to the others. The authors even observed full coverage of snow even at temperatures of
13 ◦C. This is suggested to be because of melt causing a reduction in thickness, but not
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area. Moreover, precipitation data collected using an all-weather station (AWS) in the
Bhaga basin suggests that rainfall (wet precipitation) is decreasing, whereas snowfall (dry
precipitation) is not. SCA for the month of October also highlights a greater distribution of
snow for the year 2014 than 2010–2013 [61]. Sahu and Gupta [62] report similar findings
for seasonal analysis of SCA in the Chandra basin from 2000–2017. The authors observed
that SCA begins increasing from September due to lower temperatures. This effectively
corroborates the large distribution of snow observed and classified in the Chandra–Bhaga
basin in the present study.

Unlike the Chandra–Bhaga basin, glaciers in Svalbard are experiencing accelerated
thinning [63,64]. The ML glacier in Ny-Ålesund contains the longest record of observed
data [65]. The Equilibrium Line Altitude (ELA) determines the transition from accumulation
facies to ablation facies. Average elevation of the maximum snowline in summer can be
used as a representative ELA [65]. The various snow facies in the ML glacier identified
here comprise dry snow, wet snow, melting snow, saturated snow, and shadowed snow.
The facies are based on visual assessments and spectral characteristics with comparisons
against the literature [paper 1]. The image was acquired at the end of the ablation season
in August 2016, and this implies that most of the seasonal snow has disappeared, leaving
the full range of facies. As precipitation largely determines the ELA, it would be lower in
Ny-Ålesund, as the region is closer to the coast [65,66]. The ELA estimated by Pelt et al. [65]
is available until 2012. Recently, Garg et al. [67] mapped radar facies at the same site. They
utilized the boundary of percolation/wet snow and clean ice as the ELA. Their analysis
was performed on seasonal data for the years 2016 to 2020. The year 2016 was marked by
an increase in winter season temperature and spring temperature. This invariably would
cause an increase in the melt of accumulated snow, thus increasing the amount of wet snow
adjacent to dry/perennial snow. This dry snow facies was not discernible in the observation
made by Garg et al. [67]. However, in the current study, dry snow was characterizable
using VHR multispectral characteristics and GEOBIA. The ELA is reported to be shifting
upward due to increasing temperature and reduced precipitation [67]. Precipitation data for
Ny-Ålesund for the month and year of image acquisition [68] show no sudden precipitation
event prior to scene capture. This suggests that the facies maps and the rule sets are not
impacted by any sudden increase in snow.

Increasing temperature in glaciated areas also raises the necessity for identifying
and mapping permafrost. According to the National Snow and Ice Data Center (NSIDC),
permafrost is a layer of soil/rock, at some depth below the surface, where the temperature
has been continuously below 0 ◦C for a few years or where summer heat does not penetrate
to the basal layer of frozen ground [69]. Dabski [70] describes the presence of permafrost in
the periglacial and foreland area of a polythermal glacier. The author further highlights
the difficulty in discerning between glacial and periglacial domains in high mountain and
polar areas [71]. The primary mechanisms for identifying and measuring permafrost are
through physical assessments in boreholes, geophysical sounding, temperature logging,
and modelling [72]. As it is a subsurface phenomenon, permafrost can itself be difficult
to observe using RS data [60]. The observable surface phenomenon is the active layer
(lying above permafrost), which freezes, thaws, and refreezes seasonally. This layer can
be measured either directly or by interpolation of 0 ◦C isotherm derived from borehole
measurements [73,74]. Using data of mean annual ground temperature, depth of zero
annual amplitude, and active layer thickness from the Global Terrestrial Network for
Permafrost (GTN-P) database [75,76], Karjalainen et al. [77] predicted the risks of permafrost
thaw. Much of the data within the GTN-P database comes from the Thermal State of
Permafrost (TSP) Snapshot Borehole Inventory [78,79]. Westermann et al. [80] described two
methods for characterizing permafrost using remote observations: (a) mapping landforms
indicative of the presence of permafrost, and (b) characterizing and isolating physical
variables that correspond to thermal subsurface phenomena. This requires penetrative
radar to account for the freeze–thaw state and modelling of land surface temperature
(LST) [81]. In the current experiment, we only rely on VNIR VHR multispectral data and
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thus can neither model LST nor identify subsurface conditions. Incorporating complex
permafrost modelling into GEOBIA would be a challenge beyond the scope of the current
study. Currently, global permafrost zonation maps are available at a spatial resolution
of 1 km [81]. In this study, digitized glacial boundaries were used to extract the glaciers
from the study sites, and a 3D visualization of ice divides was used to ensure maximum
efficiency. Due to this, it was not necessary to isolate the glacial and periglacial margins.
However, the process of permafrost extraction using a combination of RS datasets can be a
promising, albeit challenging, direction.

We acknowledge the lack of field data for validation. However, the main aim of
the experiment was to test the impact that various processing routines have on the final
classification of glacier surface facies. The comparison between the SCA derived in the
current study against previous findings along with the equalized random sampling ap-
proach and rigorous analysis of performances aid the robustness of the current study. As
travel restrictions due to the COVID-19 pandemic did not permit a field campaign during
the experiment, visual and spectral characteristics of facies were compared against the
literature for their validity [21] (paper 1). A major limitation is the time needed to manually
adjust rule sets for each processing scheme. Nevertheless, this works to our advantage in
analyzing the implementation of GEOBIA for specific processing schemes. To the best of
our knowledge, no study has yet tested the impacts of various processing schemes and rule
sets on the thematic classification of glacier surface facies using GEOBIA. An important
part of GEOBIA is the transferability of methods. Through the current study, we infer that
even for the same sensor over the same glacier, the influence of processing routines dictates
the thresholds of spectral features. However, the segmentation parameters tested here may
be transferable, as they have consistently yielded optimal objects.

5. Conclusions

This study aimed to map glacier surface facies using a multi-rule set GEOBIA approach
utilizing varying image-processing schemes to test the robustness of segmentation and
reliability of rule sets. Three atmospheric corrections and two pansharpening algorithms
were tested on VHR VNIR WV-2 for Ny-Ålesund and Chandra–Bhaga basin, Himalaya. The
atmospheric correction methods included DOS, QUAC, and FLAASH. The pansharpening
methods included GS and HCS. The selected segmentation parameters delivered consistent
results across all processing schemes. A series of object features were identified to create
three rule sets. Rule set 1 focused on only spectral information and rule set 2 relied
on contextual and inter-object features, whereas rule set 3 combined both spatial and
spectral information. Among the atmospheric corrections, DOS delivered the highest
overall accuracy, followed by QUAC, and lastly FLAASH. Pansharpening improved overall
performance with GS delivering greater accuracy than HCS. For the Ny-Ålesund glaciers,
dirty ice, glacier ice, saturated snow, melting snow, wet snow, and streams and crevasses
were best mapped by rule set 3, whereas dry snow and melting glacier ice were best
mapped by rule set 1. For the Chandra–Bhaga basin glaciers, all facies were best mapped
by rule set 3.

The current study highlights the requirement of selection of segmentation parameters.
The incorporation of thresholds differed across rule sets, indicating a more processing-
focused, in-scene, and image-specific approach for mapping applications of surface facies.
Nevertheless, the segmentation parameters may be transferable to other VHR VNIR data.
GEOBIA offers the capability of combining spatial–spectral attributes to glacier surface
facies mapping, which can transcend the distortions in performance induced in PBIA by
variable processing routines. Moreover, the classification is performed entirely devoid of
ancillary data such as slope and temperature, enabling a much deeper understanding of
the potential of VHR VNIR data for mapping glacier surface facies.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14174403/s1, Table S1: The selected glaciers of the study, their
areal extents, and GLIMS reference IDs. The extents were calculated from the delineated shapefiles
using the geometry calculator in ArcGIS; Table S2: Spectral-band-wise at-sensor reflectance values
of selected dark pixels for input into DOS correction module in ENVI 5.3. Table S3: Stepwise rule
sets and threshold delineation for each processing scheme for both study sites. The ratios used here
are highlighted in Table 2. Table S4: Measures of accuracy used in the current study. TP: samples
are those that are in the positive class and are correctly classified, TN: samples that are correctly
classified as negative, FP: samples that are not truly of the positive class but are incorrectly mapped
as positive. FN: samples that are mapped as negative when they are positive. Sheet S1: Precision,
recall, specificity, F1 score. Overall accuracy (OA), error rate (ER) for each processing scheme, rule
sets, facies, and both study sites.
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