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Abstract: Clustering of multi-source geospatial big data provides opportunities to comprehensively
describe urban structures. Most existing studies focus only on the clustering of a single type of
geospatial big data, which leads to biased results. Although multi-view subspace clustering methods
are advantageous for fusing multi-source geospatial big data, exploiting a robust shared subspace
in high-dimensional, non-uniform, and noisy geospatial big data remains a challenge. Therefore,
we developed a method with adaptive graphs to constrain multi-view subspace clustering of multi-
source geospatial big data (agc2msc). First, for each type of data, high-dimensional and noisy original
features were projected into a low-dimensional latent representation using autoencoder networks.
Then, adaptive graph constraints were used to fuse the latent representations of multi-source data
into a shared subspace representation, which preserved the neighboring relationships of data points.
Finally, the shared subspace representation was used to obtain the clustering results by employing
a spectral clustering algorithm. Experiments on four benchmark datasets showed that agc2msc
outperformed nine state-of-the-art methods. agc2msc was applied to infer urban land use types in
Beijing using the taxi GPS trajectory, bus smart card transaction, and points of interest datasets. The
clustering results may provide useful calibration and reference for urban planning.

Keywords: multi-view subspace clustering; geospatial big data; shared nearest neighbor graph;
social sensing

1. Introduction

Multi-source geospatial big data have become increasingly available in the current
era of big data, such as taxi GPS trajectories [1], smart card transactions [2], mobile phone
data [3], social media check-in records [4], and points of interests (POIs) [5]. Geospatial big
data provides a new opportunity for understanding the “human-earth” relationship [6].
Clustering geospatial big data are vital for describing urban structures and understanding
the organization of cities [7]. For example, remote sensing techniques have been widely
used for uncovering urban land use information based on physical characteristics of ground
components (e.g., spectral, shape, and texture) [8]; however, remote sensing techniques are
hard to capture the socioeconomic attributes and human dynamics that are highly related
to urban land use [3]. In contrast, clustering of human mobility data can help understand
urban land use information from the perspective of social function which is an important
complement of remote sensing [6]. Clustering of geospatial big data are also useful for
identifying urban functional structures and human activity patterns, which are useful
for human-centric urban planning [9–11]. For example, the actual functions of a region
may be inconsistent with the original zoning scheme designed by urban planners [12].
Clusters discovered from geospatial big data can reveal the urban function zones naturally
formulated according to human activities, which may provide useful calibration for urban
planners [9]. Clusters discovered from social media check-in records are also useful for
identifying emergency events in a city, which are helpful for maintaining public safety [4].
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Although clustering of geospatial big data has received attention in recent years, most
existing studies focus on a single type of geospatial big data [11,13]. Owing to the bias of
each type of geospatial big data, the clustering results obtained from single-source geospa-
tial big data cannot provide a comprehensive view of urban structures [14]. A few studies
have used a weighted average strategy to fuse multi-source geospatial big data [15,16].
Multi-source geospatial big data usually reflect different or overlapping dimensions of
human activities. Without considering the shared and complementary information among
different types of geospatial big data, the weighted average strategy may introduce unpre-
dictable errors [17]. Multi-view subspace clustering has the potential to fuse the underlying
complementary information of multi-source geospatial big data [18,19]; however, high-
dimensional, non-uniform, and noisy geospatial big data bring two challenges [20–23]:
(1) the quality of the low-dimensional subspace is substantially influenced by the redun-
dant features and noise in the original data; and (2) neighboring relationships of data points
in high-dimensional and non-uniform original data space are difficult to preserve in a
low-dimensional subspace. Therefore, existing multi-view subspace clustering methods
are highly likely to generate an inaccurate subspace, which degrades the clustering perfor-
mance. To overcome the above challenges, this study developed a method with adaptive
graphs to constrain multi-view subspace clustering of geospatial big data from multiple
sources (agc2msc). The main contributions of this work include the following three aspects:

(1) We used a multi-view learning strategy to fuse the information embedded in multi-
source geospatial big data. Compared with the weighted average strategy, multi-view
subspace clustering is more suitable for integrating different and/or overlapping
dimensions of human activities reflected by multi-source geospatial big data.

(2) We used autoencoder networks [24] to map high-dimensional and noisy original
geospatial big data into a latent representation. The latent representation of each
type of geospatial big data was used to construct the low-dimensional subspace.
Therefore, the influence of feature redundancy and noise on subspace construction
can be reduced; moreover, the non-linear relationship between each type of data and
its latent representation can be captured.

(3) We used a shared nearest neighbor method [25] to construct adaptive graphs for
high-dimensional, non-uniform, and noisy geospatial big data. The adaptive graphs
can be used as constraints to obtain a more robust subspace shared by multi-source
geospatial big data. Therefore, the quality of multi-view subspace clustering can
be improved.

Experiments on four multi-view benchmark datasets showed that agc2msc outper-
formed nine state-of-the-art methods. A case study in Beijing showed that agc2msc is a
powerful tool for inferring urban land use types from multi-source geospatial big data
(i.e., taxi GPS trajectory, bus smart card transaction, and POI datasets). The clustering
results may provide useful calibration and reference for urban planning.

2. Related Work

Most existing studies mainly focus on the clustering of a single type of geospatial
big data, e.g., taxi GPS trajectories [1], social media check-in records [4], POIs [13], and
mobile phone data [26]. After extracting clustering features from a certain type of geospa-
tial big data, traditional clustering methods such as k-means [27], spectral clustering [28],
and DBSCAN [29] are used to identify clusters. To consider the dynamic characteristic of
geospatial big data, some online and incremental clustering methods are also currently
available [4]; these methods are useful for understanding the organizations of cities from
the perspective of social functions [7]. Despite these fruitful results, the bias of a single type
of geospatial big data hinders the comprehensive understanding of urban structures [11,17].
To overcome this limitation, clustering of multi-source geospatial big data has received
increasing attention in recent years. For example, some scholars [30] first combined the
taxi trajectory data and public transit records to reveal human mobility patterns, then used
POI features as prior knowledge to extract features of human mobility patterns, and finally
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performed k-means on the extracted features. To consider the contributions of different
types of geospatial big data, the weighted average strategy was employed to fuse the
features of multi-source geospatial big data. The weights of different types of geospatial
big data can be determined based on the proportions of total bus and cab ridership [15] or
the entropy weight approach [16]. The weighted average methods can fuse the information
of multi-source geospatial big data to a certain extent; however, they cannot incorporate
complex interactions and correlations among multi-source geospatial big data. As shown
in Figure 1, we can assume that the cone reflects the socioeconomic information that com-
prehensively describe the urban structures (i.e., the underlying structure of multi-source
geospatial big data). In practice, this socioeconomic information is often embedded in
different types of geospatial data (e.g., triangle and circle). Different types of geospatial data
can be regarded as different views to observe socioeconomic information. The weighted
average strategy does not capture the complementarity of multi-source geospatial big data.
Therefore, the result of the weighted average strategy may be only a simple superposition
of multiple features (i.e., the superposition of triangle and circle in Figure 1). Therefore, the
underlying structure of multi-source geospatial big data cannot be reconstructed by using
the weighted average strategy.

Figure 1. Illustration of the weighted average strategy and multi-view subspace clustering for fusing

multi-source geospatial big data (
{

X(v)
}V

v=1
(V ≥ 2) refer to the features extracted from different

types of geospatial big data).

Compared with the weighted average strategy, multi-view subspace clustering has
the potential to reconstruct the underlying structure of multi-source geospatial data [18,19].
Multi-view subspace clustering assumes that multi-view data points are drawn from a
shared low-dimensional subspace, rather than being uniformly distributed in the original
space [31]. The features of each type of geospatial big data can be reconstructed from the
shared subspace (the cone in the lower right corner of Figure 1). In theory, multi-view
subspace clustering can fuse the shared and complementary information among differ-
ent types of geospatial big data. Existing multi-view subspace clustering methods are
mainly extensions of self-representation-based subspace clustering methods [32,33]. Self-
representation-based subspace clustering assumes that each point xi can be represented
by a linear combination of other points xj (j 6= i) [34–37]. Previous multi-view subspace
clustering methods first calculate a subspace representation for each type of data and then
combine the multiple subspace representations for clustering [21,31,38–40]. Although these
methods can consider the shared and/or specific information of multi-source data, the sub-
spaces reconstructed using the original data are not robust to redundant features and noise
in the original data [41]. To address this limitation, latent multi-view subspace clustering
methods have recently been developed [18,22]; these methods first use dimension reduction
techniques to project the original data features into a latent representation, and then use
the latent representation for subspace clustering. Although latent multi-view subspace
clustering methods can boost the clustering performance of multi-source geospatial big
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data, two challenges should be further addressed: (1) Existing method usually used a linear
projection to transform the original data features into a latent representation [22,41,42];
however, the relationship between each type of data and its latent representation is usually
non-linear [18,43]. Therefore, the inaccurate latent representations obtained by existing
methods may degrade the clustering performance. (2) The neighboring relationships of
data points in high-dimensional, non-uniform, and noisy original data are difficult to
preserve in the shared subspace [36,44]. Some scholars have used neighbor graphs as
constraints to preserve the neighboring relationships of data points in multi-view subspace
clustering [21,45,46]; however, the neighbor graphs defined based on Euclidean distance
and k-nearest neighbor cannot construct appropriate neighboring relationships for high-
dimensional and non-uniform geospatial big data [47,48]. Therefore, existing methods
are highly likely to generate an inaccurate subspace, which will reduce the clustering
quality [49].

To overcome the above challenges, this study developed a method with adaptive graphs
to constrain multi-view subspace clustering of geospatial big data from multiple sources.

3. Method

The framework of agc2msc is displayed in Figure 2. First, a data integration opera-
tion [50] should be performed to match multi-source geospatial big data to pre-defined
spatial units. In this study, we matched each data point to traffic analysis zones according to
their spatial location. Second, different types of features were extracted from multi-source
geospatial big data, and a shared nearest neighbor graph was constructed to model the
neighboring relationships of high-dimensional, non-uniform, and noisy geospatial big data.
Third, an autoencoder network was utilized for encoding each type of original feature into
a latent representation. Fourth, based on the self-representation property, the multiple
latent representations were fused into a shared subspace representation under the con-
straint of the shared nearest neighbor graphs. The self-representation matrix and similarity
matrix can be obtained. Finally, a spectral clustering algorithm [28] was used to obtain the
clustering results with the similarity matrix. The main notations used in this paper are
summarized in Table 1.

Figure 2. Framework of agc2msc (
{

X̂(v)
}V

v=1
(V ≥ 2) refer to the reconstructed multi-view features;{

H(v)
}V

v=1
(V ≥ 2) refer to the latent representations of multi-view features; SNN(p, q) represents the

shared nearest neighbor similarity between points p and q. NN(p) and NN(q) represent the k-nearest
neighbors of p and q).
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Table 1. Main notations and meanings through this paper.

Notations Meaning

Oi
w The number of pick-ups in the ith hour on weekdays

Oi
r The number of pick-ups in the ith hour on weekends

Di
w The number of drop-offs in the ith hour on weekdays

Di
r The number of drop-offs in the ith hour on weekends

NN(xi) k nearest neighbors of xi
N The number of data points
V The number of views

W(v) The adjacency matrix of the vth view
W The unified adjacency matrix
wij The shared nearest neighbor similarity between point xi and point xj
X A multi-view dataset

X(v) ∈ Rdv×N Feature matrix of the vth view

X̂(v) ∈ Rdv×N Output of the decoder network of the vth view
dv The dimension of the feature matrix in the vth view

H(v) Latent representation of the vth view
θ(l,v) Combination of weights and bias in the mth layer of the vth view

M The total number of layers in autoencoder networks
f(m,v)
i Output of the mth layer of the autoencoder in the vth view

W(m,v) The weight of the mth layer of the autoencoder in the vth view
b(m,v) The bias of the mth layer of the autoencoder in the vth view

Z Shared subspace representation matrix
zi The subspace representation of point xi
D Diagonal matrix
S Similarity matrix

α,β trade-off parameters
NTAZ The number of traffic analysis zones

I Indicator function
FD Frequency density
CR Category rate

3.1. Clustering Feature Extraction of Multi-Source Geospatial Big Data

Human mobility and POI data are two important types of geospatial big data [51].
For human mobility data, the temporal dynamics of boarding/de-boarding in each unit
are frequently used to construct clustering features [1–3,52]. Several features have been
developed for various applications. In this study, we inferred urban land use using multi-
source geospatial big data. Existing work has found that the daily pick-up and drop-off
combination vectors are the most suitable for revealing socioeconomic information on
urban land use [1,19]. Therefore, this feature vector was used in this study.[

O1
w, . . . , O16

w , O1
r , . . . , O16

r , D1
w, . . . , D16

w , D1
r , . . . , D16

r

]
, (1)

where Oi
w and Oi

r denote the number of pick-ups in the ith hour on weekdays and weekends,
respectively, and Di

w and Di
r denote the number of drop-offs in the ith hour on weekdays

and weekends, respectively.
For POI data, deep-learning language models have been widely used to extract clus-

tering features related to urban land use [5,13,30]. The entire study area is regarded as a
corpus. Each spatial unit can be considered as a document. The contextual information of
words can be regarded as geographical contextual information of POIs. The shortest path
method, based on a greedy algorithm, was used to construct a spatial unit-based corpus [4].
In this study, to fully consider spatial heterogeneity, Word2vec [53] and Doc2vec [54] were
used to embed POI data into clustering features. Word2vec was used to extract global
geographic context information and Doc2vec was used to extract local geographic context
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information; these two vectors were concatenated to construct a clustering feature (POIvec)
for each spatial unit.

POIvec = POIWord2vec ∪ POIDoc2vec, (2)

where POIWordvec represents the vector embedded by Word2vec and POIDocvec represents
the vector embedded by Doc2vec.

3.2. Construction of Shared Nearest Neighbor Graph

To model the neighboring relationships for high-dimensional and non-uniform geospa-
tial big data, we used the number of shared nearest neighbors to measure the similarity
between data points.

SNN
(
xi, xj

)
= size

(
NN(xi) ∩NN

(
xj
))

, (3)

where NN(xi) and NN
(
xj
)

represent the k nearest neighbors of xi and xj, respectively.
In high-dimensional space, direct similarity (e.g., Euclidean distance and cosine sim-

ilarity) is not accurate because data in high dimensions are very sparse [47]. The shared
nearest neighbor similarity is an indirect similarity that can effectively alleviate the problem
of high dimensionality [55]. In addition, the shared nearest neighbor similarity can effec-
tively alleviate the problem of varying densities. The shared nearest neighbor similarity
can be adaptively adjusted according to the density of data points as it is dependent only
on the number of neighbors that any two points share [56,57]. Figure 3 shows the neighbor
graphs of a 2-dimensional dataset constructed using the distance threshold (Figure 3a),
k-nearest neighbor strategy (Figure 3b), and shared nearest neighbor similarity (Figure 3c).
The neighboring relationships of low-density points cannot be constructed using a distance
threshold. Neighboring relationships constructed using the k-nearest neighbor strategy are
usually inappropriate for outliers and points on the border of the clusters.

Figure 3. Illustration of the neighbor graph of data points. (a) Distance-based neighbor graph
(threshold = 2.5). (b) k-nearest neighbor graph (k = 5). (c) Shared nearest neighbor graph (k = 5).
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For each type of geospatial big data, a shared nearest neighbor graph was constructed
to model the neighboring relationships of the data points. A unified graph was obtained by
fusing multiple shared nearest neighbor graphs:

W =
1
V

V

∑
V=1

W(v), (4)

where W(v) is the adjacency matrix of the vth view and W is the unified adjacency matrix.

3.3. Latent Representation Based on Autoencoder Networks

In actual applications, the projection between an original feature and its latent repre-
sentation is typically nonlinear. An autoencoder network [24] was used to obtain the latent
representation for each type of clustering feature.

Given a multi-view dataset X =
{

X(1), X(2), . . . , X(V)
}

, where X(V) ∈ Rdv×N repre-

sents the feature matrix of the vth view, dv is the dimension of the vth view, and N is
the number of data points, the reconstruction loss of the autoencoder network can be
formulated as:

L = ∑V
v ‖ X(v) − X̂(v) ‖2

F, (5)

where X̂(v) is the output of decoder nertwork of the vth view and ‖ . ‖2
F is the square of the

Euclidean distance.
For each type of data, the output of the hidden layer of the autoencoder network is

regarded as the latent representation, H(v) = [hv
1 , hv

2 , . . . , hv
N]:

hv
n = g

(
θ(M,v)g

(
θ(m,v) . . . g

(
θ(1,v)[x

v
n; 1]

)))
, (6)

where hv
n is the latent representation of the nth sample in the vth view, θ(l,v) is the combina-

tion of weights and bias of the mth layer of the auto-coder networks in the vth view, and
g(.) is the activation function.

3.4. Multi-View Subspace Clustering with an Adaptive Graph Constraint

The shared and complementary information among different types of geospatial big
data was fused based on the self-representation property [33]. Specifically, the latent
representations of multi-source data were fused into a shared subspace representation
under the constraint of the shared nearest neighbor graph:

min
Z

∑V
v L
(

H(v), H(v)Z
)
+ Ω(Z) =‖ H(v) −H(v)Z ‖2

F +Ω(Z), (7)

where L(.) denotes the loss function, Z represents the shared subspace representation
matrix, and Ω(.) represents the graph regularization term that preserves the neighboring
relationships of the data points in the shared subspace.

If a pair of points xi and xj are close in the original space, they should have
similar subspace representations zi and zj , which can be formulated as the form
‖ xi − xj ‖2

2−→ 0 =⇒‖ zi − zj ‖2
2−→ 0, ∀i 6= j . Therefore, the regularization term Ω(Z)

can be expresses as:

Ω(Z) =
1
2 ∑i,j wij ‖ zi − zj ‖2

2= tr
(

ZTDZ
)
− tr

(
ZTWZ

)
= tr

(
ZTLZ

)
, (8)

where wij denotes the shared nearest neighbor similarity between points xi and xj, ‖ zi − zj ‖2
2

represents the square of distances of zi and zj, and tr(.) represents the trace of the matrix.
For a matrix A ∈ Rn×n, tr(A) = ∑n

i=1 Aii. L = W− D is a Laplacian matrix. W is the
unified adjacency matrix, D is the diagonal matrix, and dii = ∑j wij.
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The objective function of agc2msc can be constructed by combining Equations (3)–(8):

min
X̂(v), H(v),Z

1
2

V

∑
v=1

(
‖ X(k) − X̂(v) ‖2

F +α ‖ H(v) −H(v)Z ‖2
F

)
+ βTr

(
ZTLZ

)
, (9)

where α and β are trade-off parameters. The solution and optimization of Equation (8),
are based on the Adam algorithm [58]. The details are presented in Appendix A. Z was
used to construct the similarity matrix S = 1

2

(
|Z|+ |Z|T

)
. A spectral clustering method

was employed to obtain clusters using S. The silhouette coefficient was used to determine
the optimal cluster number [59]. The pseudo code for the proposed method (Algorithm 1)
is as follows:

Algorithm 1 The agc2msc method

Input:
multi-view dataset X =

{
X(1), X(2), . . . , X(V)

}
, unified adjacency matrix W, parameters α

and β.

Initial:
Learning rate: lr = 0.001
Optimizer: Adam
Epoch = 20,000

1: While pre-training not converged do:
2: Update W(m,v), b(m,v) and Z by formula (A3)–(A5) in Appendix A.
3: Obtain Z.
4: End pre-training.
5: While training not converged do:
6: Update W(m,v), b(m,v) and Z by formula (A3)–(A5) in Appendix A.
7: Obtain Z.
8: End training.
9: Return the shared subspace representation matrix Z.
Perform spectral clustering by employing the similarity matrix S = 1

2
(
|Z|+

∣∣ZT∣∣).
Output:

Clustering results.

4. Experiments
4.1. Benchmark Datasets

The performance of agc2msc was first evaluated using four multi-view clustering
benchmark datasets: i.e., ORL, Yale, MSRCV1, and Caltech101-7 [23,39]. agc2msc was
compared to nine state-of-the-art clustering methods. The quality of the clustering results
was evaluated using the six indices, e.g., normalized mutual information (MNI), accuracy
(ACC), F-score, Adjusted Rand index (AR), precision and recall. The results show that
agc2msc outperforms the comparative methods on four benchmark datasets. The parameter
sensitivity and model convergence of agc2msc were also evaluated. The experimental
results are presented in Appendix B.

4.2. Case Study of Beijing Multi-Source Geospatial Big Data
4.2.1. Study Area and Dataset

agc2msc was applied to infer urban land-use types in Beijing from the perspective
of social functions. The clustering results can reveal urban land use naturally formulated
according to human activities, which may provide important complement of remote sens-
ing [30]. Three types of geospatial big data were used in this study: taxi GPS trajectory, bus
smart-card transactions, and POI datasets. The study area is located within the Fifth Ring
Road of Beijing (Figure 4).
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Figure 4. Study area. (a) Traffic analysis zones and administrative boundaries; (b) Beijing land use
planning map (2017).

(1) Traffic analysis zones. The study area was divided into 577 traffic analysis zones
(Figure 4a). A traffic analysis zone is usually a socio-economically homogenous region
that consists of one or more census blocks, block groups, or census tracts [60]. Existing
work have found that traffic analysis zones are the suitable spatial units used in
transportation and urban planning models [5,14,61]. Therefore, this study performs
the clustering methods at the scale (or resolution) of traffic analysis zones. The traffic
analysis zones were defined by the transport and urban planning authority, which
were provided by Beijing Municipal Commission of Planning and Natural Resources.

(2) Land use planning map: Figure 4b displays the governmental land-use map obtained
from the Beijing Municipal Commission of Planning and Natural Resources. The cur-
rent land classification (GB/T 21010-2017) identifies eight land use types: commercial
and business land (CBL), residential land (RUL), tourist attraction and water (TAW),
industrial land (IUL), green space land (GSL), road and transportation land (RTL),
agricultural land (AGL), and education and scientific research land (ESR).

(3) Taxi trajectory and bus smart-card transaction data: We collected GPS trajectories
from more than 33,000 taxis and bus smart-card transaction data from 834 lines
during the week (9:00–24:00 from 9 May 2016 to 15 May 2016). Each taxi trajectory
contains the records of taxi ID, location, the status (occupied or not), and sampling
time. We extracted the origin and destination points from each taxi trajectory. The
numbers of taxi origin and destination pairs on workdays and weekends are 792,497
and 237,441, respectively. Each record of bus smart-card transaction data contains
bus ID, the transaction time, pick-up station and drop-off station. For each bus
smart-card transaction, the pick-up and drop-off stations were identified as the origin
and destination points of that transaction. There are 14,157,913 and 4,157,948 bus
origin and destination pairs on workdays and weekends, respectively. The origin and
destination points of taxi trajectories and bus smart-card transactions were matched
to traffic analysis zones according to their locations. The feature vectors constructed
for the taxi GPS trajectory and bus smart-card transaction data had 64 dimensions;

(4) POI data: POI data were collected from the 2017 Gaode Map. A total of 1,210,197 records
were classified into 23 categories. Each POI record contained five essential attributes:
name, ID, longitude, latitude, and category. For POI data, the information related to ur-
ban land use was extracted using two deep-learning language models, i.e., Word2vec
and Doc2vec. We also matched POIs to traffic analysis zones according to the lo-
cations of POIs. A 64-dimensional feature vector was constructed for each traffic
analysis zone.
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4.2.2. Baseline Methods

We compared our method with the single-view spectral clustering [1], weighted av-
erage spectral clustering [15], and latent multi-view subspace clustering (gLMSC) [18]
methods. The clustering features of the three comparative methods are the same as those
of the proposed method. For the weighted average spectral clustering method, three simi-
larity matrices, Staxi, Sbus, SPOI, corresponding to the three types of data, were integrated
using S = α1Staxi + α2Sbus + α3SPOI. In the experiment, α1, α2 and α3 were set to 3.66%,
96.34%, and 100%, respectively. We classified multi-source geospatial big data into two
categories, i.e., human mobility data (taxi trajectories and bus smart-card transactions)
and POI data. We set equal weights for human mobility data and POI data. Therefore,
α1 + α2 = α3 = 100%. For taxi trajectory data and bus smart-card transaction data, α1 and
α2 were determined according to the proportion of taxi and bus ridership [15].

4.2.3. Clustering Results of agc2msc

For agc2msc, the silhouette coefficient reached its maximum value when the number
of clusters was 10 (Figure 5a). To compare the clustering results, the clustering number of
the other three methods was also set to 10. The clustering results of agc2msc are presented
in Figure 5b. Two strategies were used to annotate the land-use types of identified clusters:

(i) Frequency density (FD) and category rate (CR) of POIs in each cluster (Table 2):

FDij =
number of the ith category of POI in cluster j

the area of cluster j
, (10)

CRij =
number of the ith category of POI in cluster j

the number of POIs in cluster j
× 100%, (11)

(ii) Arriving/leaving transition matrices: As shown in Figure 6, the horizontal axes
represent the time over the day from 8:00 to 24:00, and the vertical axes represent the
clusters for which passengers either arrive or leave. The colour for a grid represents
the number of pick-ups or drop-offs in a cluster.

Figure 5. Clustering results. (a) Silhouette coefficient values with different cluster numbers;
(b) Clustering results of the proposed method (ten clusters).
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Table 2. Frequency Density (FD) and Category Rate (CR) of each cluster.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

POI FD CR FD CR FD CR FD CR FD CR FD CR FD CR FD CR FD CR FD CR

Tourist attraction 7.40 2.36% 0.98 0.15% 1.52 0.18% 1.35 0.16% 0.48 0.07% 0.71 0.24% 0.02 0.00% 0.20 0.15% 0.23 0.06% 0.09 0.01%
Scenic spots 13.73 4.39% 1.63 0.24% 1.88 0.22% 2.42 0.28% 1.23 0.17% 1.16 0.40% 0.95 0.20% 0.49 0.38% 5.41 1.30% 0.22 0.03%

Hot place name 0.19 0.06% 0.01 0.00% 0.02 0.00% 0.01 0.00% 0.04 0.01% 0.00 0.00% 0.04 0.01% 0.00 0.00% 0.01 0.00% 0.01 0.00%
Cultural relics 0.09 0.03% 0.01 0.00% 0.00 0.00% 0.00 0.00% 0.01 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00%

Company/enterprise 27.94 8.92% 81.01 12.14% 125.66 14.97% 80.48 9.35% 26.20 3.64% 156.95 53.62% 49.82 10.46% 18.48 14.17% 7.65 1.85% 62.20 7.54%
Building 1.65 0.53% 4.20 0.63% 5.75 0.69% 5.79 0.67% 1.70 0.24% 7.17 2.45% 1.67 0.35% 0.36 0.28% 2.10 0.51% 0.60 0.07%
Shopping 59.43 18.98% 123.68 18.54% 205.46 24.48% 137.73 15.99% 132.65 18.42% 138.59 47.35% 44.75 9.39% 20.11 15.42% 70.44 16.99% 92.94 11.27%

Shopping mall 0.97 0.31% 7.67 1.15% 6.39 0.76% 4.34 0.50% 2.98 0.41% 2.20 0.75% 0.99 0.21% 0.13 0.10% 1.75 0.42% 0.40 0.05%
Theater 0.25 0.08% 1.32 0.20% 1.82 0.22% 0.97 0.11% 0.82 0.11% 1.72 0.59% 0.36 0.08% 0.07 0.05% 2.32 0.56% 0.60 0.07%

Accommodation 6.93 2.21% 7.63 1.14% 36.71 4.37% 23.21 2.69% 16.73 2.32% 20.95 7.16% 8.52 1.79% 2.40 1.84% 12.96 3.13% 2.10 0.25%
Catering service 87.58 16.74% 186.14 22.18% 87.27 18.31% 44.23 15.11% 23.97 18.39% 142.00 21.29% 91.38 18.90% 67.64 21.60% 96.67 23.32% 75.39 22.57%

Hotel 21.43 2.49% 28.19 3.36% 12.53 2.63% 6.42 2.19% 3.45 2.65% 20.26 3.04% 13.77 1.46% 9.24 2.95% 15.76 3.80% 16.60 2.12%
Dwelling 14.67 4.68% 10.69 1.60% 51.81 6.17% 35.75 4.15% 34.62 4.81% 41.76 14.27% 3.70 0.78% 4.88 3.74% 20.06 4.84% 4.15 0.50%

Courier service 1.37 0.44% 2.49 0.37% 6.01 0.72% 4.50 0.52% 2.24 0.31% 3.95 1.35% 2.84 0.60% 1.35 1.03% 0.88 0.21% 2.88 0.35%
Living service 57.59 18.39% 62.10 9.31% 290.73 34.64% 135.26 15.71% 126.32 17.54% 141.91 48.49% 63.49 13.32% 17.95 13.77% 59.67 14.40% 13.87 1.68%
Hair dressing 15.98 5.10% 29.12 4.37% 80.77 9.62% 29.77 3.46% 34.72 4.82% 37.33 12.75% 18.77 3.94% 3.27 2.51% 13.86 3.34% 13.97 1.69%

Health care treatment 8.15 2.60% 7.96 1.19% 29.38 3.50% 16.36 1.90% 15.60 2.17% 19.17 6.55% 10.67 2.24% 2.78 2.13% 9.84 2.37% 17.10 2.07%
Bank 2.62 0.84% 6.22 0.93% 14.53 1.73% 11.83 1.37% 7.47 1.04% 8.15 2.79% 3.16 0.66% 0.74 0.57% 4.02 0.97% 2.15 0.26%

Courier service 5.09 1.62% 7.42 1.11% 14.95 1.78% 8.75 1.02% 8.15 1.13% 3.44 1.17% 6.35 1.33% 2.14 1.64% 5.60 1.35% 4.74 0.57%
Moving company 1.09 0.35% 0.75 0.11% 2.24 0.27% 3.71 0.43% 1.18 0.16% 2.14 0.73% 1.01 0.21% 0.36 0.28% 1.04 0.25% 0.22 0.03%

Intermediary agency 3.25 1.04% 3.63 0.54% 5.34 0.64% 9.19 1.07% 2.60 0.36% 1.52 0.52% 0.36 0.08% 0.29 0.22% 2.04 0.49% 0.40 0.05%
Doorplate 9.86 3.15% 6.36 0.95% 10.58 1.26% 10.97 1.27% 12.11 1.68% 9.27 3.17% 8.77 1.84% 4.02 3.08% 5.97 1.44% 8.59 1.04%

Recreation place 2.78 0.89% 4.75 0.71% 6.66 0.79% 6.38 0.74% 8.69 1.21% 1.52 0.52% 3.16 0.66% 0.94 0.72% 3.22 0.78% 11.28 1.37%
Clothing factory 11.30 3.61% 20.14 3.02% 68.46 8.16% 28.60 3.32% 28.80 4.00% 4.97 1.70% 42.39 8.90% 1.14 0.87% 15.03 3.63% 5.18 0.63%

Industry 1.25 0.40% 0.59 0.09% 0.67 0.08% 0.33 0.04% 0.33 0.05% 1.05 0.36% 1.84 0.39% 0.45 0.35% 0.39 0.09% 0.33 0.04%
Educational service 12.30 3.93% 30.58 4.58% 43.57 5.19% 43.12 5.01% 31.33 4.35% 7.38 2.52% 15.07 3.16% 21.47 16.46% 22.66 5.47% 8.12 0.98%
Scientific institution 4.28 1.37% 3.27 0.49% 8.54 1.02% 7.16 0.83% 4.61 0.64% 2.19 0.75% 1.29 0.27% 4.63 3.55% 1.81 0.44% 1.17 0.14%

Sports leisure service 9.24 2.95% 20.26 3.04% 28.19 3.36% 23.77 2.76% 26.60 3.69% 6.42 2.19% 12.53 2.63% 3.45 2.65% 15.76 3.80% 3.32 0.40%
Natural place name 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.10 0.02% 0.00 0.00%

Road ancillary facility 2.12 0.68% 2.76 0.41% 3.94 0.47% 4.10 0.48% 3.72 0.52% 1.34 0.46% 1.73 0.36% 1.05 0.80% 5.25 1.27% 11.13 1.35%
Sinopec 0.19 0.06% 0.06 0.01% 0.02 0.00% 0.07 0.01% 0.06 0.01% 0.26 0.09% 0.02 0.00% 0.05 0.04% 0.17 0.04% 0.20 0.02%

Gas station 0.28 0.09% 0.34 0.05% 0.05 0.01% 0.31 0.04% 0.37 0.05% 0.60 0.21% 0.35 0.07% 0.25 0.19% 0.28 0.07% 0.58 0.07%
Long-distance bus 0.00 0.00% 0.01 0.00% 0.03 0.00% 0.05 0.01% 0.03 0.00% 0.02 0.01% 0.05 0.01% 0.01 0.01% 0.04 0.01% 0.06 0.01%

Railway station 0.00 0.00% 0.04 0.01% 0.05 0.01% 0.01 0.00% 0.06 0.01% 0.05 0.02% 0.02 0.00% 0.02 0.01% 0.10 0.02% 0.20 0.02%

Notes: If the FD value of a certain type of POI in cluster Ci is high, it indicates that the density of that kind of POI in Ci is high. If the CR value of a certain type of POI in cluster Ci is
high, it indicates that the proportion of that kind of POI in all POIs in Ci is high.
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Figure 6. Arriving/leaving transition matrices. (a) arriving, C3, weekday; (b) leaving, c3, weekday;
(c) arriving, c3, weekend; (d) leaving, c3, weekend; (e) arriving, c4, weekday; (f) leaving, c4, weekday;
(g) arriving, c4, weekend; (h) leaving, c4, weekend; (i) arriving, c5, weekday; (j) leaving, c5, weekday;
(k) arriving, c5, weekend; (l) leaving, c5, weekend; (m) arriving, c6, weekday; (n) leaving, c6, weekday;
(o) arriving, c6, weekend; (p) leaving, c6, weekend. Horizontal axis: the time over the day from 8:00
to 24:00; Vertical axis: the clusters for which passengers either arrive or leave; Color of a grid: the
number of pick-ups or drop-offs in a cluster.

Tourist Attraction and Water Areas (C1)

C1 was annotated as a tourist attraction and water area as it contains the largest number
of tourists and attractions, scenic spots, hot place names, cultural relics, and aquariums
among all clusters (Table 2). Figure 7a visualizes the intensity of several representative
types of POIs such as toponymic address information, historical sites, scenic spots, cultural
relics, and aquariums; it was found that most POIs in Beijing are centered at this cluster,
such as Tiananmen Square, the Imperial Palace, Beijing Museum, Summer Palace, Old
Summer Palace, and Temple of Heaven Park.

Commercial and business areas (C2)

C2 was annotated as a commercial and business area as it has an adequate POI
configuration for companies, enterprises, buildings, shopping, catering services, theaters,
hotels, and shopping malls (Table 2); moreover, Figure 7b visualizes several types of
representative POIs in commercial areas, such as business trade, corporate enterprises,
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restaurants, and bars; it was found that the prosperous core business circles are located
in this cluster, such as Asian Games Village, Sanlitun, Zhongguancun, Wangjing, Central
Business District, and Xidan.

Figure 7. Intensity of representative kinds of POIs. (a) Intensity of toponymic address information,
historical sites, scenic spots, cultural relics, and aquariums in cluster C1; (b) Intensity of business
trade, corporate enterprises, restaurants, and bars in cluster C2; (c) Intensity of factories, industries,
clothing, shoes, hats, and leather goods stores in cluster C7; (d) Intensity of science, education and
cultural services, schools, and educational training institutions in cluster C8.

Developed Residential Areas (C3)

C3 was annotated as a developed residential area based on the following two aspects.
First, the strong interaction between C3 and C2 indicates that C3 possesses the properties
of a residential area (Figure 6a–d). Most residents leave from C3 to C2 during the morning
(8:00–9:00) and leave from C2 to C3 during the evening peak (17:00–19:00) on weekdays;
however, such a regular commuting pattern does not exist on the weekends. Second, Table 2
indicates that C3 has the maximum number of dwellings, accommodation services, courier
services, living services, hair dressings, healthcare treatment, banks, and convenience stores,
which constitute a mature and complete POI configuration of developed residential areas.

Emerging Residential Areas (C4)

Figure 6e–h indicates that a workday commuting pattern similar to C3 also exists in
C4, implying that C4 also has residential area characteristics. Table 2 indicates that C4 has
a POI configuration similar to that of C3, but the frequency density and category rate of
the POIs associated with living services in C4 are relatively smaller; it is worth mentioning
that C4 has more moving companies and intermediary institutions than C3, which are
representative POIs of emerging residential areas; moreover, the regions in C4 are primarily
distributed in the Chaoyang District, with several emerging business circles (Wangjing
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Street and Yansha Center) and newly developing dwellings. Therefore, C4 was annotated
as an emerging residential area.

Less Developed Residential Areas (C5)

C5 was annotated as a less-developed residential area. First, Figure 6i–l shows that
C5 also presented a commuting pattern with C2 on weekdays, indicating that C5 had
the attributes of residential areas. Second, Table 2 shows that the dominant POIs related
to living services in C5 are sufficient to provide normal living needs for residents in all
aspects, but they are lower than those in C3 and C4. The typical POI located in C5 is
house number information, commonly known as “doorplate”, which is the symbol of some
ancient architecture in Beijing, such as “hutong” and “quadrangle courtyards”.

Residential/Commercial/Entertainment Areas (C6)

Table 2 shows that the POI configuration in C6 is the most complicated among the
clusters. The diversity of the POIs determines C6 as a mix of residential, commercial, and
entertainment areas. Living service, healthcare treatments, convenience stores, express ser-
vice, shopping malls, buildings, companies, enterprises, theaters, attractions, and recreation
and amusement places are relatively sufficient and balanced in this cluster, which illustrates
that C6 has the characteristics of three kinds of land-use types. The workday commuting
pattern shown in Figure 6m–p also indicates that C6 has the properties of a residential
area. In addition, the frequency density and category rate of companies and enterprises,
shopping malls, buildings, hotels, theaters, and catering services are second only to those
in C2, which illustrates that C6 has strong commercial attributes; moreover, a number of
well-known historic sites and entertainment places are located in C6, such as Maodun’s
former residence, Memorial Hall, South Luogu Alley, Prince Gong’s Mansion, and the Yuhe
ancient road site. Therefore, C6 was annotated as a mix of residential, commercial, and
entertainment areas.

Industrial Areas (C7)

C7 was annotated as an industrial area as the representative POIs in this cluster
were clothing factories and industries. The frequency density and category rate of these
two POIs in this cluster were the highest among the ten clusters (Table 2). Figure 7c
visualizes the intensity of several representative types of POIs, such as factories, industries,
clothing, shoes, hats, and leather goods stores. Regions in C7 are mainly distributed in
the Fengtai District, which contain clothing trade markets, shoes, hats, and leather goods
manufacturers, and large technology parks.

Education and Scientific Research Areas (C8)

C8 was annotated as an education and scientific research area as the frequency density
and category rate of educational culture services and scientific institution schools in C8 were
the highest among the ten clusters (Table 2). Figure 7d visualizes the intensity of several
representative types of POIs, such as science, education and cultural services, schools, and
educational training institutions; it was found that major scientific and educational sites in
Beijing are located in this cluster, such as Beijing University, Tsinghua University, Chinese
Academy of Sciences, Beijing University of Aeronautics and Astronautics, Beijing University
of science and technology, Beijing Jiaotong University, and Beijing Normal University.

Green Space Areas (C9)

C9 was annotated as a greenland area; it can be found from Table 2 that the type and
number of POIs in C9 are the least compared to those in the other nine clusters. The only
representative POI in this cluster is the name of the natural place, which is consistent with
public green spaces, mountains, and parks such as Shijing Mountain, Babao Mountain,
Beijing Olympic Park, Bihai Park, and Guta Park.
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Road and Transportation Areas (C10)

C10 was annotated as a road and transportation area as the frequency density and
category rate of transportation services, road ancillary facilities, Sionpec, gas stations,
long-distance bus stations, and railway stations were the highest among the ten clusters
(Table 2). Beijing’s main large-scale train stations and passenger transportation stations
are concentrated in this cluster, such as the Beijing Railway Station, Liuliqiao passenger
transport hub, and Yongdingmen long-distance station.

4.2.4. Quantitative Comparison and Analysis

In Figure 8, the clustering results of the four methods are displayed. The land-use
types of the clusters obtained by the comparative methods were annotated using the same
strategies described in Section 4.2.3. Similar to the method used by Pei et al. [3], the land-use
types of traffic analysis zones identified by different methods were compared with the
Beijing land-use planning map (Figure 4b). Table 3 lists the overall accuracy of the land-use
classification results identified using different methods. Overall accuracy was calculated
as follows:

OA =
∑NTAZ

j=1 Ij

NTAZ
× 100%, (12)

where NTAZ is the number of traffic analysis zones. I is an indicator function, if the land
use type of a traffic analysis zone is consistent with that in the land-use planning map, then
I = 1; else, I = 0.

Figure 8. Cont.
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Figure 8. Clustering results by using different methods. (a) Single-view spectral clustering method
using taxi GPS trajectory; (b) Single-view spectral clustering method using bus smart card transaction
data; (c) Single-view spectral clustering method using POI data; (d) Weighted average spectral
clustering method; (e) gLMSC; (f) agc2msc.

Table 3. Overall accuracy of different methods.

Methods Single-View
Method (Taxi)

Single-View
Method (Bus)

Single-View
Method (POI)

Weighted Average
Method gLMSC agc2msc

Overall
accuracy 44.53% 45.93% 50.95% 53.15% 64.82% 68.11%

agc2msc achieved the highest classification accuracy of 68.11%. Examples are provided
to illustrate the advantages of the proposed method. Some commercial areas were not
identified using the single-view clustering method, such as Sanlitun in region A, Wangjing
Street in region B, and Advanced Business Park in region D (Figure 8a–c). In Figure 8a,b,
although Temple of Heaven in region C could be accurately identified using only taxi GPS
trajectories or bus smart-card transaction data, its surrounding areas were all misclassified.
In Figure 8c, Temple of Heaven in region C and China University of Mining and Technol-
ogy, Chinese Academy of Sciences, and China Agricultural University in region E were
overestimated when using POI data. The weighted average clustering method could not
identify some commercial areas in regions A and B and the Temple of Heaven in region
C (Figure 8d). Additionally, the scientific research and education areas in region E were
overestimated. In Figure 4e, Sanlitun in region A was misclassified, and Temple of Heaven
in region C and Advanced Business Park in region D were overestimated. From Figure 8f,
we found that all the misclassified areas in Figure 8a–e could be correctly identified using
the method proposed in this study.

5. Discussion

The experimental results on benchmark and real-world datasets show that agc2msc
performs better than the existing single-view, weighted average, and multi-view subspace
clustering methods. The primary reasons for this are as follows:

(i) Compared with the single-view spectral clustering method, the complementary in-
formation of multi-source geospatial big data can be incorporated accurately using
agc2msc. Therefore, agc2msc can alleviate the bias problem caused by a single type of
geospatial big data and comprehensively describe urban structures and organizations
in cities.

(ii) Compared with the weighted average spectral clustering strategy, agc2msc can fuse
the shared and complementary information among different types of geospatial
big data. The underlying structure of the multi-source data can be reconstructed
accurately using agc2msc. Therefore, agc2msc can capture the complementarity of
multi-source geospatial big data more accurately.

(iii) Compared with the multi-view subspace clustering method, agc2msc can construct
appropriate neighboring relationships for high-dimensional, noisy, and non-uniform
geospatial big data. A more robust shared subspace can be obtained under the
constraint of a shared nearest neighbor graph.

The clusters detected from multi-source geospatial big data using agc2msc may pro-
vide potential application value for urban planning.
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(i) Actually, these clusters can reveal urban function zones in a city. By fusing multi-
source geospatial big data, we can obtain a comprehensive view of urban function
zones naturally formulated according to human activities. The clusters identified
by agc2msc may be further used for public services, business site selection, and
human-centric urban planning [30]. The more complex land-use types identified in
this study can also provide a reference for urban planning and city development. For
instance, residential areas can be divided into three types: developed residential areas;
emerging residential areas; less developed residential areas; and a mix of residential,
commercial, and entertainment areas. Scientific and research areas were also identified.
Existing remote sensing techniques are hard to obtain this complex division. The
clustering results obtained by agc2msc may help urban planners make more strategic
decisions and improve the quality of land-use mapping.

(ii) Some calibrations may be presented for urban land-use planning. Although the
detection rate of the proposed method is relatively low (overall accuracy is 68.11%),
the clustering results are useful for infer the actual land use which cannot be captured
by land use planning map. In fact, the actual land use types may differ from the
Beijing land use planning map (Figure 4b). The land use planning map was obtained
based on the physical characteristics of ground components (e.g., spectral, shape, and
texture); therefore, the land use planning map is hard to reflect the actual way of how
people use spaces [3,26]. We give some examples to illustrate that the actual land use
types of some traffic analysis zones are not consistent with those in Beijing land-use
planning map.

In Figure 4b, area A and its surrounding areas are labeled as tourist attractions and
water land, area B is labeled as a mixture of tourist attractions and residential areas, and
areas C and D are labeled as industrial land and green land, respectively; however, our
method could distinguish area A from its surrounding areas, areas B and C were annotated
as commercial land, and area D was annotated as tourist attraction land. In Figure 9,
although area A is a well-known scenic spot (Temple of Heaven), its surrounding areas
do not contain any tourist attractions, but are a mixture of residential and entertainment
commercial areas. Area B is Sanlitun, one of the most prosperous commercial areas and
amusement streets for nightlife in Beijing. The landmark of area C is Advanced Business
Park, which is a Sino-foreign joint venture project with the largest single area since the
opening of Zhongguancun. In recent years, Advanced Business Park has developed into an
emerging economic experiment zone and prosperous business district in Beijing, including
a large number of hotels, financial squares, and underground commercial streets. Area D is
covered by Beijing World Park and Huake Golf Club. Beijing World Park has been rated as
a Beijing 4A scenic spot. Therefore, area D was annotated as a tourist attraction area.

Based on the above analysis, we argue that the main reason of the low detection rate
of agc2msc may be the mismatch between the physical characteristics and social function
of urban land. The urban land use types identified by the proposed method can provide
valuable calibration and reference for urban planning. In addition, the accurate of the
clustering results will also be influenced by some limitations of the proposed method
(details can be found in Section 6).
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Figure 9. Urban land use types of some regions identified using Google Earth images.

6. Conclusions

This study developed a method with adaptive graphs to constrain multi-view sub-
space clustering of geospatial big data from multiple sources. We regarded multi-source
geospatial big data to describe urban structures and used a multi-view learning strategy to
fuse the information embedded in different sources of geospatial data. Therefore, the bias of
a single type of data could be reduced. The neighboring relationships of high-dimensional,
noisy, and non-uniform geospatial big data were appropriately constructed using the
shared nearest neighbor graph. The graph was used as a constraint to obtain a more robust
subspace shared by multi-source geospatial big data. Experiments on benchmark datasets
and multi-source geospatial big data in Beijing showed that agc2msc outperforms the
typical single-view, weighted average, and multi-view subspace clustering methods. The
urban land use inferred by the proposed method may provide a useful calibration and
reference for urban land-use planning.

Although agc2msc provides a powerful tool for clustering multi-source geospatial big
data, it has three limitations. First, we only extracted temporal rhythm features from human
mobility data, and some complex information (e.g., the interactions between different traffic
analysis zones) may be neglected. Second, the proposed method does not distinguish
shared information among multiple views and the view-specific information of each view.
In the future, the latent representation of each type of data should be segregated into shared
and specific parts. Third, although traffic analysis zones are reliable spatial units in urban
studies, the effect of the modifiable areal unit problem on geospatial big data clustering
should be further analyzed.
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Appendix A. Solution and Optimization of the Objective Function

The model was pretrained based on the Adam optimizer [58]. The objective function
can be transformed into the form as follows [23]:

L = min
f(M,k),Z

1
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V

∑
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∑
i=1

(
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, (A1)
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=
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[
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2 , . . . , f(M/2, v)
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]
, f(m, v)

i is

the output of the mth layer of the autoencoder networks of sample xi in the vth view. As
the entry of Equation (A1), f(m, v)

i is calculated by the activation function:

f(m, v)
i = g

(
W(m,v)f(m−1, v)

i−1 + b(m,v)
)

, (A2)

where W(m,v) and b(m,v) denote the weight and bias of the mth layer of the auto-coder
networks in the vth view, respectively.

The gradient of the loss function L in Equation (A1) with W(m,v), b(m,v), Z are given as
follows [22,62]:
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where ∆(m,v)
i and Λ(m,v)

i are defined as:

∆(m,v)
i =

 −
(

x(v)i − f(m,v)
i

)
� g′

(
y(m,v)

i

)
, m = M(

W(m+1,v)
)T

∆(m+1,v)
i � g′

(
y(m,v)

i

)
, m < M

, (A6)

Λ(m,v)
i =


0, m ≥ M

2 + 1(
f(m,v)
i − zi − f(m,v)

i zi
Tzi

)
� g′

(
y(m,v)

i

)
, m = M

2(
W(m+1,v)

)T
Λ(m+1,v)

i � g′
(

y(m,v)
i

)
, m ≤ M

2 − 1

, (A7)

where zi denotes the ith column of Z, y(m,v)
i = W(m,v)f(m−1,v)

i + b(m,v).

Appendix B. Experiments on Benchmark Datasets

Appendix B.1. Benchmark Datasets

The detailed statistical information of the four datasets was given in Table A1. In each
dataset, the cluster label of each sample is available [22,39].
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Table A1. Statistical information of the four multi-view datasets.

Datasets Samples Clusters Views Dimensions

ORL 400 40 3 4096/3304/6750
Yale 165 15 3 4096/3304/6750

MSRCV1 210 7 6 1032/48/512/100/256/210
Caltech101 441 7 6 1032/32/512/64/256/441

(i) ORL: This dataset contains 400 gray images of 40 different individuals; it was created
by Olivetti research laboratory in Cambridge, UK from April 1992 to April 1994.
The dataset contains a total of 40 directories. Each directory represents 10 facial
pictures taken by the same person at different times and in different environments
(e.g., light/no light, glasses/no glasses, changes in different facial expressions, etc.).
All the pictures are stored in the form of gray-scale image and Portable Gray Map
format, and the picture size is 92 × 112. Three types of features were used in the
experiment, i.e., intensity (4096 dimensions), Local Binary Pattern (3304 dimensions)
and Gabor (6750 dimensions), representing three different views of observation.

(ii) Yale: This dataset was created by Yale University and contains a total of 165 grayscale
images from 15 different individuals. The dataset contains a total of 15 directories.
Each directory represents 11 face images of the same person under different expres-
sions, gestures and illumination. The size of each image is 100 × 100. Variations of
images include central light/edge light, wearing glasses/not wearing glasses, hap-
piness/sadness, surprise/blink, etc. Similar to ORL dataset, three different types
of features were extracted in the experiment as three different views of observation,
namely intensity (4096 dimension), Local Binary Pattern (3304 dimension) and Gabor
(6750 dimension).

(iii) MSRCV1: This dataset contains 210 images from 7 categories collected from 6 differ-
ent views, and each category contains 30 images. From the collected samples, it can
be seen that seven categories include human face, animals, trees, scenery, bicycles,
cars, planes. Six types of high-dimensional features were extracted in the experi-
ment: Centrist (view1), Charcot Marie Tooth (view2), Gist (view3), Histogram of
Oriented Gradient (view4), Local Binary Pattern (view5), and Scale-invariant feature
transform (view6).

(iv) Caltech101-7: Caltech101 is a dataset widely used in image classification in deep
learning, which contains 101 types of images. In this study, the subset of this dataset
(i.e., Caltech101-7) was used in the experiment. In Caltech101-7, a total of 441 images
of 7 categories were selected, including face, coin, Garfield, motorcycle, Snoopy,
parking sign and chair. Six types of high-dimensional features were extracted for
experiment, which was similar to those of MSRCV1.

Appendix B.2. Baselines

To demonstrate the effectivity of agc2msc, two single-view clustering methods and
seven state-of-the-art multi-view clustering methods were compared.

(1) Singlebest: This method performs the standard spectral clustering [28] on the most
informative view.

(2) LRRbest: This method performs single-view algorithm LRR [34] on the most informa-
tive view.

(3) FeatConcate [46]: This method directly concatenates the features from different views,
and then applies the concatenated features to single-view clustering algorithm.

(4) RMSC [63]: This method firstly recovers a shared low-rank transition probability
matrix, and then uses a Markov chain to cluster.

(5) gLMSC [18]: This method firstly calculates an underlying latent representation shared
by multi-view features, and then applies the latent representation to subspace clustering.
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(6) DiMSC [38]: This method extends the existing single-view subspace clustering into
multi-view domain and exploits the complementary information of multi-view repre-
sentations by enforcing Hilbert Schmidt Independence Criterion term.

(7) CSMSC [39]: This method exploits both the consistent and specific information among
multi-view features by pursuing a view-consistent representation matrix and a set of
view-specific self-representation matrices.

(8) DSS-MSC [22]: This method decomposes the underlying latent representation into
shared component and view-specific components, which exploit the underlying
correlations cross multiple views and simultaneously capture specific property for
each independent view.

(9) MSCNLG [23]: This method introduces artificial neural network under each view to
obtain a set of latent representations and integrates local and global graph information
into self-expressive layers.

Appendix B.3. Evaluation Metrics and Clustering Results

To assess the performance of agc2msc and the baseline methods, six clustering eval-
uation indexes (NMI, ACC, F-score, AR, precision and recall) were used to measure the
quality of clustering results. In Tables A2–A5, clustering results on four multi-view bench-
mark datasets were reported; it can be found that agc2msc in this study outperforms the
comparative methods.

Table A2. Clustering results of the ten methods on ORL.

Method NMI ACC F-Score AR Precision Recall

Singlebest 0.884 ± 0.002 0.726 ± 0.025 0.664 ± 0.005 0.655 ± 0.005 0.610 ± 0.006 0.728 ± 0.005
LRRbest 0.895 ± 0.006 0.773 ± 0.003 0.731 ± 0.004 0.724 ± 0.020 0.701 ± 0.001 0.754 ± 0.002

FeatConcate 0.831 ± 0.003 0.648 ± 0.033 0.564 ± 0.007 0.553 ± 0.007 0.522 ± 0.007 0.614 ± 0.008
RMSC 0.872 ± 0.012 0.723 ± 0.025 0.654 ± 0.028 0.645 ± 0.029 0.607 ± 0.033 0.709 ± 0.027
gLMSC 0.924 ± 0.011 0.830 ± 0.017 0.771 ± 0.028 0.765 ± 0.044 0.728 ± 0.010 0.819 ± 0.010
DiMSC 0.940 ± 0.003 0.838 ± 0.001 0.807 ± 0.003 0.802 ± 0.000 0.764 ± 0.012 0.856 ± 0.004
CSMSC 0.942 ± 0.005 0.868 ± 0.012 0.831 ± 0.001 0.615 ± 0.005 0.673 ± 0.002 0.610 ± 0.006

DSS-MSC 0.928 ± 0.010 0.795 ± 0.010 0.766 ± 0.010 0.762 ± 0.010 0.719 ± 0.010 0.823 ± 0.010
MSCNLG 0.936 ± 0.002 0.885 ± 0.003 0.857 ± 0.004 0.825 ± 0.002 0.885 ± 0.002 0.885 ± 0.002
agc2msc 0.943 ± 0.002 0.893 ± 0.002 0.871 ± 0.002 0.831 ± 0.002 0.890 ± 0.002 0.890 ± 0.002

Table A3. Clustering results of the ten methods on Yale.

Method NMI ACC F-Score AR Precision Recall

Singlebest 0.654 ± 0.009 0.616 ± 0.030 0.475 ± 0.043 0.440 ± 0.011 0.457 ± 0.011 0.495 ± 0.010
LRRbest 0.709 ± 0.011 0.697 ± 0.001 0.547 ± 0.007 0.515 ± 0.004 0.529 ± 0.003 0.567 ± 0.004

FeatConcate 0.648 ± 0.030 0.607 ± 0.043 0.471 ± 0.039 0.434 ± 0.042 0.447 ± 0.043 0.497 ± 0.032
RMSC 0.872 ± 0.012 0.723 ± 0.025 0.654 ± 0.028 / / /
gLMSC 0.735 ± 0.021 0.752 ± 0.026 0.564 ± 0.019 0.551 ± 0.011 0.543 ± 0.015 0.571 ± 0.013
DiMSC 0.727 ± 0.010 0.709 ± 0.003 0.564 ± 0.002 0.535 ± 0.001 0.543 ± 0.001 0.586 ± 0.003
CSMSC 0.784 ± 0.001 0.752 ± 0.007 0.640 ± 0.004 0.615 ± 0.005 0.673 ± 0.002 0.610 ± 0.006

DSS-MSC 0.779 ± 0.021 0.782 ± 0.013 0.613 ± 0.012 0.601 ± 0.009 0.529 ± 0.010 0.622 ± 0.015
MSCNLG 0.879 ± 0.002 0.903 ± 0.002 0.831 ± 0.002 0.790 ± 0.002 0.903 ± 0.002 0.903 ± 0.002
agc2msc 0.913 ± 0.002 0.925 ± 0.002 0.871 ± 0.002 0.835 ± 0.002 0.922 ± 0.002 0.922 ± 0.002
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Table A4. Clustering results of the ten methods on MSRCV1.

Method NMI ACC F-Score AR Precision Recall

Singlebest 0.574 ± 0.032 0.668 ± 0.051 0.535 ± 0.043 0.536 ± 0.010 0.571 ± 0.009 0.612 ± 0.009
LRRbest 0.569 ± 0.008 0.676 ± 0.009 0.524 ± 0.009 0.502 ± 0.010 0.543 ± 0.009 0.587 ± 0.007

FeatConcate 0.613 ± 0.042 0.672 ± 0.031 0.575 ± 0.024 0.505 ± 0.032 0.566 ± 0.021 0.586 ± 0.027
RMSC 0.650 ± 0.022 0.750 ± 0.048 0.628 ± 0.023 / / /
gLMSC 0.752 ± 0.011 0.848 ± 0.013 0.738 ± 0.018 0.721 ± 0.017 0.744 ± 0.012 0.743 ± 0.011
DiMSC 0.692 ± 0.002 0.810 ± 0.002 0.685 ± 0.002 0.634 ± 0.002 0.679 ± 0.002 0.691 ± 0.002
CSMSC 0.756 ± 0.002 0.857 ± 0.002 0.756 ± 0.002 0.717 ± 0.002 0.750 ± 0.002 0.762 ± 0.002

DSS-MSC 0.743 ± 0.015 0.846 ± 0.011 0.726 ± 0.021 0.681 ± 0.014 0.711 ± 0.011 0.743 ± 0.013
MSCNLG 0.850 ± 0.002 0.921 ± 0.002 0.862 ± 0.002 0.830 ± 0.002 0.922 ± 0.002 0.922 ± 0.002
agc2msc 0.893 ± 0.002 0.943 ± 0.002 0.900 ± 0.002 0.869 ± 0.002 0.945 ± 0.002 0.942 ± 0.002

Table A5. Clustering results of the ten methods on Caltech101.

Method NMI ACC F-Score AR Precision Recall

Singlebest 0.589 ± 0.009 0.629 ± 0.007 0.576 ± 0.009 0.523 ± 0.012 0.586 ± 0.014 0.566 ± 0.003
LRRbest 0.639 ± 0.002 0.646 ± 0.003 0.649 ± 0.002 0.580 ± 0.001 0.631 ± 0.001 0.623 ± 0.003

FeatConcate 0.603 ± 0.017 0.641 ± 0.020 0.601 ± 0.023 0.526 ± 0.034 0.624 ± 0.021 0.579 ± 0.024
gLMSC 0.694 ± 0.013 0.722 ± 0.012 0.683 ± 0.009 0.620 ± 0.002 0.670 ± 0.002 0.695 ± 0.002
DiMSC 0.679 ± 0.002 0.746 ± 0.002 0.709 ± 0.002 0.653 ± 0.002 0.717 ± 0.002 0.702 ± 0.002
CSMSC 0.701 ± 0.002 0.732 ± 0.002 0.702 ± 0.002 0.630 ± 0.002 0.680 ± 0.002 0.702 ± 0.002

DSS-MSC 0.691 ± 0.002 0.737 ± 0.001 0.703 ± 0.006 0.635 ± 0.002 0.698 ± 0.002 0.710 ± 0.002
MSCNLG 0.758 ± 0.002 0.764 ± 0.002 0.760 ± 0.002 0.687 ± 0.002 0.748 ± 0.002 0.748 ± 0.002
agc2msc 0.805 ± 0.002 0.790 ± 0.002 0.793 ± 0.002 0.710 ± 0.002 0.762 ± 0.002 0.762 ± 0.002

Appendix B.4. Parameter Settings and Parameter Sensitivity

We evaluated the variation of ACC and NMI on four benchmark datasets with different
numbers of nearest neighbors. In Figure A1, when the number of nearest neighbors was set
to 30, both ACC and NMI reached the maximum value. Therefore, the number of nearest
neighbors was set to 30 in the experiment.

Figure A1. Variation of ACC and NMI with different numbers of nearest neighbors on four benchmark
datasets, (a) ACC, (b) NMI.

In addition, parameter sensitivity on balancing the self-representation term (alph)
and the adaptive graph constraint term (beta), can be shown as Figures A2–A5. Taking
Figure A2a as an example, it can be found that when alpha ∈ [0.001, 0.01], beta ∈ [0.001, 10],
the values of NMI, ACC, F-score, and AR are all stable and high. Therefore, we can
determine the range of alpha and beta. The interpretation of Figures A3–A5 is similar to
that of Figure A2.
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Figure A2. Sensitivity test on alpha and beta versus four metrics on ORL. (a) NMI, (b) ACC, (c) F-score,
(d) AR.

Figure A3. Sensitivity test on alpha and beta versus four metrics on Yale. (a) NMI, (b) ACC, (c) F-score,
(d) AR.
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Figure A4. Sensitivity test on alpha and beta versus four metrics on MSRCV1. (a) NMI, (b) ACC,
(c) F-score, (d) AR.

Figure A5. Sensitivity test on alpha and beta versus four metrics on Caltech101. (a) NMI, (b) ACC,
(c) F-score, (d) AR.
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Appendix B.5. Convergence Analysis

The convergence of the proposed method on four benchmark datasets was presented in
Figure A6. When epochs reach 0.2× 103, the proposed method shows a stable convergence
on each dataset.

Figure A6. Convergence curves with training epochs. (a)ORL, (b)Yale, (c)MSRCV1, (d)Caltech101.
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