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Abstract: Light Detection and Ranging (LiDAR) data collected by mobile mapping systems (MMS)
have been utilized to detect lane markings through intensity-based approaches. As LiDAR data
continue to be used for lane marking extraction, greater emphasis is being placed on enhancing the
utility of the intensity values. Typically, intensity correction/normalization approaches are conducted
prior to lane marking extraction. The goal of intensity correction is to adjust the intensity values
of a LiIDAR unit using geometric scanning parameters (i.e., range or incidence angle). Intensity
normalization aims at adjusting the intensity readings of a LIDAR unit based on the assumption that
intensity values across laser beams/LiDAR units/MMS should be similar for the same object. As
MMS technology develops, correcting/normalizing intensity values across different LIDAR units
on the same system and/or different MMS is necessary for lane marking extraction. This study
proposes a generalized correction/normalization approach for handling single-beam /multi-beam
LiDAR scanners onboard single or multiple MMS. The generalized approach is developed while
considering the intensity values of asphalt and concrete pavement. For a performance evaluation of
the proposed approach, geometric/morphological and deep/transfer-learning-based lane marking
extraction with and without intensity correction/normalization is conducted. The evaluation shows
that the proposed approach improves the performance of lane marking extraction (e.g., the F1-score
of a U-net model can change from 0.1% to 86.2%).

Keywords: mobile mapping system; LiDAR; intensity correction; intensity normalization; lane
marking extraction; deep/transfer learning; geometric/morphological approaches

1. Introduction

Lane markings such as skip or solid lines are essential for delineating transportation
corridors, managing traffic activities, and road safety analysis. They exhibit higher reflec-
tivity than nearby road surfaces since retroreflective glass beads are incorporated into lane
marking paint. This contrast will be pronounced in Light Detection and Ranging (LiDAR)
data, which encompass both position and reflectivity information in the form of point
clouds with intensity values. LiIDAR scanners continuously emit laser pulses and evaluate
ranges through the time lapse between the signal emission and reception of its reflection.
The intensity of the received return, which is usually digitized as an 8-bit integer (0-255),
depends on the reflective properties of the objects in the waveband of the used pulse as
well as the intersection geometry between the laser beam and object surface. According to
the number of laser rods in a LIDAR unit, it can be categorized either as a single-beam or
multi-beam unit. Recently, LIDAR data captured by mobile mapping systems (MMS) have
been utilized to detect lane markings through intensity-based approaches [1-6]. As LiDAR
data continue to be utilized for lane marking extraction, greater emphasis is being placed
on enhancing the utility of intensity values (i.e., by reducing variability in the intensity
values for returns from a given object). Strategies for the intensity enhancement of LIDAR
data can be divided into four levels [7]:
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Level 0—no intensity modification;
Level 1—intensity correction: adjust the intensity values of a LIDAR unit using geo-
metric scanning parameters (e.g., range and/or incidence angle);

e  Level 2—intensity normalization: normalize the intensity readings of a LIDAR unit
based on the assumption that intensity values across laser beams/LiDAR units/MMS
should be similar for the same object;

e Level 3—intensity calibration: rectify the intensity values of a LIDAR unit based on
known reflectance readings derived from a reference target.

Typically, level 1 or 2 (intensity correction/normalization) approaches are conducted
prior to lane marking extraction. For instance, Jaakkola et al. [1] performed intensity
correction before lane marking extraction. They fitted a polynomial curve using intensity
readings and scanning ranges. Then, the fitted function was used to reduce intensity
variation. Thereafter, processed point clouds were utilized for lane marking extraction.
Guan et al. [2] conducted intensity correction to reduce intensity variation caused by
scanning ranges for lane marking extraction. First, they detected road surfaces from
original point clouds using curbstone points. Extracted road surface point clouds were then
rasterized into intensity images using inverse distance weighting (IDW) interpolation [8].
More specifically, the intensity weight for each point was determined by its scanning range.
Finally, the intensity images were utilized for lane marking extraction. Teo and Yu [3]
corrected LiDAR intensity values using empirical polynomials for lane marking extraction.
They partitioned road surface point clouds and then applied polynomial fitting to intensity
and range values. The obtained polynomials were used to reduce the impact of scanning
ranges on intensity readings. Finally, corrected point clouds were classified into two
categories: lane marking and pavement. Cheng et al. [4] proposed an incident-angle-based
approach for intensity correction. They assumed that the intensity values of a lane marking
should be a function of the incident angle since the scanning range and material of a
pavement marker are almost the same. Accordingly, the relationship between the intensity
readings and incident angles of lane markings was estimated through linear regression
modeling. With the derived model, the intensity values of road surface point clouds could
be corrected for lane marking extraction.

Although the above approaches have enhanced the utility of intensity values, the used
parameters or assumptions are inconsistent. Hence, Levinson and Thrun [5,6] proposed
an unsupervised normalization approach for a multi-beam LiDAR sensor which solely
depends on intensity readings. It assumes that the same objects’ intensity values across
laser beams must be similar. They segmented a road surface point cloud to generate an
intensity normalization look-up table (LUT), as is discussed in more detail later in this
manuscript. Based on the LUT, the intensity of point clouds captured by the same LiDAR
unit can be normalized.

Given the continuous development of MMS technologies and changes in road charac-
teristics, more challenges are encountered during intensity enhancement:

e  Recently, several MMS equipped with multiple LiDAR units (e.g., single and/or
multi-beam scanners from different manufacturers) have been developed [9]. Figure 1
shows sample point clouds and corresponding intensity histograms (along the same
road surface) captured by Riegl VUX 1HA [10] (single-beam), Z+F Profiler 9012 [11]
(single-beam), and Velodyne HDL-32E [12] (multi-beam) LiDAR units. For the same
road region, the Riegl VUX 1HA intensity readings range from 70 to 140, while those
from Z+F Profiler 9012 are in the 0 to 120 range. The Velodyne HDL-32E intensity
values, on the other hand, are between 0 and 30. Thus, a generalized framework that
can handle different LIDAR units onboard the same or different systems is required
for lane marking extraction.

e  Asphaltand concrete are the most common pavement types. According to Kashani et al. [7],
asphalt and concrete pavement regions show distinctly different intensity values (i.e.,
most asphalt intensity readings are lower than concrete ones). Thus, intensity readings
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from asphalt/concrete pavement regions should be considered while developing a
generalized normalization framework.
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Figure 1. Sample point clouds and corresponding intensity histograms along the same road surface
captured by (a) Riegl VUX 1HA (single-beam), (b) Z+F Profiler 9012 (single-beam), and (c) Velodyne
HDL-32E (multi-beam) LiDAR units.

In summary, most intensity correction/normalization approaches focus on one LiDAR
unit (intra-sensor). However, as MMS technology develops, correcting/normalizing inten-
sity values across different LIDAR units on the same system and/or different MMS is neces-
sary for lane marking extraction. Moreover, most of the previous studies have only been per-
formed for asphalt pavement regions. Considering the different intensity values for various
pavement types, the impact of asphalt and concrete pavement on correction/normalization
approaches needs to be investigated. In addition to geometric/morphological approaches,
recent advancements in machine learning and deep learning technologies have stimu-
lated the development of learning-based lane marking detection [13-15], which could be
potentially adopted for autonomous vehicles (AV) [16]. However, the impact of inten-
sity normalization on geometric/morphological and deep/transfer-learning-based lane
marking extraction remains an open problem. This paper addresses these challenges by de-
veloping a generalized framework to correct/normalize intensity values for lane marking
extraction. The main contributions of this study can be summarized as follows:

e A generalized intensity correction/normalization approach (as illustrated in Figure 2)
is proposed for:
a.  Asingle-beam or multi-beam LiDAR scanner (intra-sensor).

b.  LiDAR units onboard a mobile mapping system (inter-sensor/intra-system).
C. Point clouds from several mobile mapping systems (inter-system).
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e  The generalized correction/normalization approach is developed while considering
the impact of observed intensity values along asphalt and concrete pavement regions.

e  To evaluate the performance of the proposed approach, geometric/morphological
and deep-learning-based lane marking extraction with and without intensity correc-
tion/normalization are conducted.

e  To further evaluate the proposed approach, transfer learning is applied to a deep
learning model for handling datasets from different MMS. The performance of a fine-
tuned model with and without intensity correction/normalization is also compared.

e  Considering asphalt/concrete pavement and different patterns of lane markings (such
as dotted, dash, or solid lines), 168-mile-long LiDAR data collected by two MMS on
three highways are used for comprehensive performance evaluation.

inter-sensor/intra-system

single-beam multi-beam

\‘ intra-sensor s f i

Figure 2. Three-step structure of generalized intensity correction/normalization.

The remainder of this paper is organized as follows: Section 2 introduces the used MMS
and LiDAR data. Section 3 presents the proposed generalized correction/normalization
framework and adopted geometric and learning-based lane marking extraction strategies.
The experiment results are reported in Section 4, followed by Section 5, which discusses
the key findings. Finally, the conclusions and scope for future work are summarized in
Section 6.

2. Data Acquisition Systems and Dataset Description
2.1. Mobile Mapping Systems

According to the research objectives, this study requires more than one MMS equipped
with various LiDAR units (e.g., single- or multi-beam LiDAR scanners from different
manufacturers). Thus, this study employs two different MMS: Purdue wheel-based mobile
mapping system—ultra high accuracy (PWMMS-UHA) and Purdue wheel-based mobile
mapping system—high accuracy (PWMMS-HA). The PWMMS-UHA, as displayed in
Figure 3a, is equipped with two single-beam LiDAR scanners: one Riegl VUX 1HA and one
Z+F Profiler 9012. These single-beam scanners deliver a 360° horizontal field of view (FOV).
The Riegl VUX-1HA can scan approximately 1,000,000 points per second [10]. Similarly,
the Z+F profiler 9012 can scan more than 1,000,000 points per second [11]. In addition,
two rear-facing FLIR Flea2 FireWire cameras are installed on the PWMMS-UHA. Both
cameras have a maximum image resolution of 5.0 MP and are synchronized to capture
images at a rate of 1 frame per 0.75 s per camera. All sensors are directly georeferenced by
a NovAtel ProPak6 GNSS/INS system [17]. This GNSS/INS system is based on ISA-100C
near navigation grade IMU with a measurement rate of 200 Hz.
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Figure 3. Illustrations of (a) Purdue wheel-based MMS—ultra high accuracy system (PWMMS-UHA)
and (b) Purdue wheel-based MMS—high accuracy system (PWMMS-HA).

The PWMMS-HA, as shown in Figure 3b, includes four multi-beam LiDAR scanners:
three Velodyne HDL-32Es and one Velodyne VLP-16 Hi-Res [18]. The HDL-32E consists of
32 radially oriented laser rangefinders aligned vertically from —30.67° to +10.67°; thus, the
total vertical FOV is 41.34°. The VLP-16 Hi-Res has 16 radially oriented laser rangefinders
with a vertical FOV from —10° to +10°. In addition, these four LiDAR scanners can rotate
to achieve a 360° horizontal FOV. The point capture rates for HDL-32E and VLP-16 Hi-
Res are 700,000 points per second [12] and 300,000 points per second [18], respectively.
Three FLIR Grasshopper3 9.1MP GigE cameras are also mounted on the PWMMS-HA: two
forward-facing and one rear-facing. The cameras are synchronized to capture images at a
rate of 1 frame per second per camera. The above equipment is directly georeferenced by
an Applanix POS LV 220 GNSS/INS unit [19]. The GNSS collection rate is 20 Hz, and the
measurement rate of the IMU is 200 Hz [19]. Table 1 lists the specifications of the LIDAR
units onboard the PWMMS-UHA and PWMMS-HA.

Table 1. Specifications of the LiDAR sensors onboard the PWMMS-UHA and PWMMS-HA.

PWMMS-UHA PWMMS-HA
. Riegl Z+F Velodyne Velodyne
LiDAR Sensors VUX THA Profiler 9012 VLP-16 Hi-Res ~ HDL-32E
No. of laser beams 1 1 16 32
Pulse repetition ;1 000,000 Up to 1,000,000 ~300,000 ~695,000
rate (point/s)
Maximum range 135m 119 m 100 m 100 m

Range accuracy +5mm +2mm +3 cm +2 cm
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2.2. Study Site and Dataset Description

To investigate the impact of asphalt and concrete pavement, three highways in the
United States—US-41/52 (Lafayette, IN to Hammond, IN), US-231 (Lafayette, IN to Craw-
fordsville, IN), and 1-65/865/465 (Lafayette, IN to Indianapolis, IN)—were selected in
this study. Figure 4 shows the study sites and vehicle trajectory, where locations i-vi
are local concrete and asphalt regions for developing and testing the proposed intensity
correction/normalization approach, as is discussed in Sections 4.1 and 4.2. In addition,
RGB images capturing locations i-vi taken by one of the cameras onboard the PWMMS-HA
are presented in Figure 4. Both MMS could capture two lanes (including left, center, and
right edge lines) with a single pass. Table 2 lists the specifications of the acquired datasets.
The average local point spacing (LPS) [20] of the point clouds captured by the Riegl VUX
1HA, Z+F Profiler 9012, HDL-32E, and VLP-16 Hi-Res are 3.5 ¢m, 3.5 cm, 5.0 cm, and
7.5 cm, respectively. Combining the point clouds captured by all the LiDAR units, the
average LPSprovided by the PWMMS-UHA and PWMMS-HA systems are 2.5 cm and
3.8 cm, respectively.

Asphalt

Asphalt

Concrete

Figure 4. Study site, vehicle trajectory (in red), and RGB images capturing local concrete and asphalt
areas for (a) US-41/52, (b) US-231, and (c) I-65/865/465 datasets (concrete pavement segments are
highlighted in cyan).
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Table 2. Specifications of the acquisitions and LiDAR datasets along US-41/52, US-231, and 1-65/865/465.

Date and Length (Mile)

Location and Acauisiti Driving
. cquisition
WGS 84 Coordinates D?uation Asphalt  Concrete Total Speed (mph)
US-41/52

Start: 40°28/03"N,

86°59'17"W Djfa{i‘gz,szé h 19 51 70 ~55
End: 41°34/28"N, T

87°28/51"W

US-231

Start: 40°28/03"N,

86°59'17"W ZOcober B21 - 13 15 28 ~54
End: 40°04'46N, uration: ~4.

86°54'15"W

1-65/865/465
Start: 40°28'03"N,

86°59'12""W ﬁuii’ir;irflzgﬁ 31 39 70 ~50
End: 39°4756"'N, CT

86°02/06"W

3. Methodology

This section starts by describing the proposed generalized intensity correction/norm-
alization approach. Next, the adopted geometric/morphological and learning-based lane
marking extraction strategies are introduced. Finally, metrics for evaluating the lane
marking extraction performance are discussed.

3.1. Generalized Intensity Normalization

To effectively handle single-beam/multi-beam LiDAR scanners onboard single or
multiple mobile mapping systems, a generalized intensity normalization framework is
proposed. The proposed framework has three steps: intra-sensor, inter-sensor /intra-system,
and inter-system, as depicted in Figure 2.

3.1.1. Intra-Sensor Intensity Correction—Single-Beam LiDAR

For a single-beam LiDAR unit, a range-based intensity correction approach [3] is
adopted in this study. The conceptual basis of this approach is removing the dependency
of observed intensity values on scanning ranges. For a road surface point cloud scanned
from a 2D LiDAR at a given height, the incident angle is a function of the scanning range;
therefore, using the scanning range implicitly considers the incident angle. Starting with
segmenting a local area along the road surface (50 to 100 m long region), a polynomial
function is fitted using the intensity values and their respective ranges of the LiDAR points
within that region. The fitted polynomial function f(r) is used to derive corrected intensity
values, which are independent of the scanning range, as can be seen in Equation (1).
In the equation, 4, is the original intensity, 4; is the corrected intensity, and r denotes
the range. This approach solely relies on the scanning ranges, i.e., it does not require
target deployment.

ar = 1)

3.1.2. Intra-Sensor Intensity Normalization—Multi-Beam LiDAR

For a multi-beam LiDAR unit, a laser-beam-based intensity normalization approach [5,6]
is adopted. This approach assumes that the normalized value of a given intensity reading
from a particular beam is the conditional expectation of the intensity values observed by
other beams. In this section, we use a 32-beam LiDAR unit that records 8-bit intensity
values (e.g., Velodyne HDL-32E) as an example to illustrate the approach. First, a local
area along the road surface (50 to 100 m long region) is segmented and gridded using 2D
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cells along the XY plane. For each point in the local area, its laser beam ID b and intensity
value a are recorded as a tuple (b,a), whereb € [0, 1, 2,..., 31]anda € [0, 1, 2,..., 255].
For a unique pair (b, a), all cells containing such pair are identified. The average intensity
over these cells is computed while excluding intensity values recorded by the laser beam
b—this value is the normalized intensity 4 of the pair (b, a). This procedure is repeated for
all unique pairs (i.e., 32-by-256 combinations). The laser beam ID, original intensity, and
corresponding normalized intensity are stored in a LUT (with a dimension of 32-by-256),
which is used for normalizing the intensity of point clouds captured by the LiDAR unit.

3.1.3. Inter-Sensor/Intra-System and Inter-System Intensity Normalization

The approach described in Section 3.1.2 can be expanded to handle inter-senor/intra-
system and inter-system intensity normalization. The proposed generalized intensity
normalization approach is implemented in three steps, as illustrated in Figure 5:

1. Intra-sensor: the range-based intensity correction is applied for each single-beam
LiDAR unit and the laser beam-based intensity normalization is conducted for every
multi-beam LiDAR sensor.

2. Inter-sensor/intra-system: the laser-beam-based normalization is utilized while re-
placing the laser beam ID b with LiDAR scanner ID /. More specifically, for an intensity
a captured by LiDAR scanner [—denoted as a tuple (I, a)—all cells containing such
pair are identified. The normalized intensity @ of the pair (I, 2) is the average intensity
of all points from other scanners over these cells.

3. Inter-system: the laser beam-based normalization is conducted while substituting
the laser beam ID b with MMS ID m. More specifically, for an intensity a captured by
MMS m, its normalized value 4 is the average intensity of all points from other MMS
within the cells containing the pair (m,4).

Point clouds Point clouds
from single- from multi-beam
beam LiDAR units LiDAR units
| ]

v
Road surface extraction
‘ inter-sensor/intra-system
Cropping a small area Inter-sensor/intra-system
PpIng m intensity normalization LUT
(manually) generation
|

v L 4
Small areas from Small areas from inter-system
single-beam multi-beam
LIDAR units LiDAR units Inter-system intensity

int normalization LUT
intra-sensor generation

Range-based intensity Laser beam-based intensity
correction function generation normalization LUT generation

Figure 5. Framework of the proposed generalized intensity normalization approach.

When dealing with multi-sensor, multi-system LiDAR datasets, intensity normal-
ization is a prerequisite for lane marking extraction (i.e., separating lane marking and
pavement points). Ideally, intensity normalization is expected to reduce the variability
within the lane marking/pavement class and increase the separation between these classes.
Further, it should enhance the consistency of the intensity distribution across different
LiDAR scanners and systems.
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3.2. Lane Marking Extraction

In this study, geometric/morphological and learning-based lane marking extraction
strategies, as described in [14,15,21], are adopted. The general workflow, including gen-
eralized intensity normalization and lane marking extraction, is presented in Figure 6.
First, the road surface is extracted from point clouds. The original intensity values of
the road surface point cloud are normalized using the approach described in Section 3.1.
Geometric/morphological and learning-based approaches are conducted for lane mark-
ing extraction. Finally, detections from the geometric and learning-based approaches are
compared against reference data for performance evaluation.

MMS LiDAR
point cloud

Road surface extraction & Generalized intensity Geometric lane marking
tiling normalization g extraction

Deep learning-based

lane marking extraction

Intensity image generation

|

Automated Lane marking label generation Iﬂ-’\—

-net model trainin
U-net model tra 9 / :allintensity images
2 / :intensity images for training

U-net model U-net model fine-tuning I / :intensity images for fine-tuning

l Reference

o — lane marking
U-net model prediction I U-net model prediction |<— data
¥ : !

I Performance evaluation of lane marking extraction I

Figure 6. Framework of the adopted geometric and learning-based lane marking extraction and
performance evaluation.

3.2.1. Road Surface Extraction and Tiling

Road surface extraction aims to segment road surface points from the original point
cloud. To achieve this, a ground filtering algorithm—cloth simulation [22,23]—is adopted
to separate bare earth points from above-ground ones. For tiling, uniform blocks along
the driving direction are created using the trajectory. First, the trajectory points are down-
sampled to keep a regular spacing, which determines the block length (L). The down-
sampled trajectory points are linked by straight lines, as depicted in Figure 7a, which serve
as the centerlines of tiling blocks. A tiling block is then created by expending a certain
distance on either side of the centerlines based on a given block width (W), as displayed
in Figure 7b. The final road surface blocks are illustrated in Figure 7c. The block length L
is determined based on the minimum radius of curvature for designing highways [24] to
ensure the lane markings within each block can be represented as straight lines. The block
width W is defined based on the standard width of a two-lane highway [24].

3.2.2. Geometric/Morphological Lane Marking Extraction

In this study, road surface point clouds before and after intensity normalization are
used as input for geometric/morphological lane marking extraction [21]. The conceptual
basis of the adopted approach is that lane marking points have intensity values higher than
pavement ones. The main steps of the adopted approach are illustrated in Figure 8, where
the point cloud before intensity normalization is used to illustrate the methodology. The
workflow can be summarized as follows: (1) 5th percentile intensity thresholding, (2) scan-
line-based outlier removal, (3) density-based spatial clustering [25,26], (4) geometry-based
outlier removal, and (5) local and global refinement.
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© Spaced trajectory point
(L interval)

O Spaced trajectory point
(L interval)

/' Linked line /" Linked line (] Tiling block
[] Tiling block
(@ (b) (9)

Figure 7. Illustrations of road surface tiling: (a) down-sampling trajectory points, (b) establishing
tiling blocks, and (c) partitioning road surface point clouds.

Colored by intensity Colored by intensity Colored by intensity
37 & NN

‘71..1

False positives
with low point densitx

False positives
along scan lines

(a) (b) (9
Colored by segment ID Colored by segment ID Colored by segment ID
NRSSSSR——— oo s N S
A . D e R
Non-linear Small
segments S segment ———— i
(d) (e) ()

Colored by segment ID

(8)

Figure 8. Illustrations of (a) road surface block (showing the original intensity), (b) hypothesized
lane marking points, (c) lane marking points after scan-line-based outlier removal, (d) lane marking
segments after density-based spatial clustering, (e) lane marking segments after geometry-based
outlier removal, (f) lane marking segments after local refinement, and (g) lane marking segments
after global refinement.
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Starting with a given road surface block (as depicted in Figure 8a), hypothesized
lane markings are extracted by applying 5th percentile intensity thresholding, as shown
in Figure 8b. As can be seen in the figure, the hypothesized lane markings contain some
non-lane marking points along the scan lines (i.e., false positives). The second step aims
at removing these non-lane-marking points. The approach assumes that scan lines within
a lane marking must not exceed a certain length (s;) since a lane marking has a finite
width. Within the hypothesized lane markings, a scan line longer than the threshold s; is
regarded as an outlier and removed. One thing to note is that after generalized intensity
normalization, intensity thresholding is expected to better separate the lane marking
and pavement points, thus keeping the false positives to a minimum (as is discussed in
Sections 4.1 and 4.2).

Upon removing the false positives along the scan lines, the remaining lane marking
points (as displayed in Figure 8c) are grouped into isolated lane marking segments for
easier manipulation. To achieve this, a density-based clustering algorithm—density-based
spatial clustering of applications with noise (DBSCAN)—is adopted [25,26]. DBSCAN
groups points in regions of high point density into clusters and labels the remaining points
as “noise.” This algorithm requires two thresholds: a neighborhood distance threshold e
and a minimum number of neighboring points minPts. In this study, these two thresholds
are determined based on the LPS [20] of the point cloud along the road surface. After
DBSCAN, all high-intensity clusters are regarded as lane marking segments while noise
points are removed, as shown in Figure 8d.

Next, a geometry-based strategy is conducted to remove (1) non-linear segments
and (2) outlier points within a linear segment. A straight-line fitting is applied to each
hypothesized lane marking segment. For each point in the segment, if its normal distance
to the best-fitting line is smaller than a normal distance threshold (nd .y ), it is regarded
as an inlier; otherwise, it is removed. At the same time, the linearity of a lane marking
segment is evaluated based on the ratio between the number of inliers and total points. If
the inlier ratio of a segment is less than a pre-defined threshold (I7;4y), it is regarded as a
non-linear segment and removed. A sample result is illustrated in Figure 8e.

The final step connects isolated lane marking segments according to the road delin-
eation defined by the system trajectory. Within each block, a local refinement is applied
to connect small segments and identify undetected lane marking points between small
segments. For a given block, any two segments will be merged whenever the distance
between their best-fitting straight lines does not exceed a distance threshold (dist;,.;;). The
example results are displayed in Figure 8f. Then, global refinement, which focuses on
combining lane marking segments in successive blocks according to road delineation, is
applied to all lane marking segments. Similar to local refinement, two segments within
successive blocks will be grouped whenever the distance between their best-fitting straight
lines is lower than another distance threshold (distgj,pa;)- The final lane marking extraction
results are shown in Figure 8g.

3.2.3. Learning-Based Lane Marking Extraction

In this study, the learning-based lane marking extraction workflow as described
in [14,15] is adopted. The major components associated with the adopted approach for
network training are intensity image generation, lane marking annotation, and U-net model
training and fine-tuning.

Intensity Image Generation

Based on road surface blocks with original or normalized intensity, intensity images
can be generated for learning-based lane marking extraction. Starting with a road surface
block, as displayed in Figure 9a, 5th intensity percentile enhancement is applied (i.e.,
intensity values greater than the 5th percentile are set to the maximum while lower ones
are maintained). The enhanced road surface block, as shown in Figure 9b, is rasterized
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into an intensity image. The cell size of the intensity image is chosen based on the LPS
of acquired data. Each cell’s value is defined by taking an average of the intensity values
of the points falling in it. The intensity image is then resized to 256 x 256 pixels (neural
networks typically receive inputs of the square size), as shown in Figure 9c. Another 5th
percentile intensity percentile enhancement is applied to the generated intensity images.
The two-step enhancement (for road surface point cloud and intensity image) helps in
amplifying the pixel values corresponding to lane markings. The final enhanced image,
hereafter referred to as an “intensity image,” is shown in Figure 9d.

/
/
. / | .
1 /

(a) (b) (c) (d)

Figure 9. Illustrations of (a) road surface block (showing the original intensity), (b) first-enhanced

road surface block, (c) intensity image, and (d) second-enhanced intensity image.

Automated Lane Marking Label Generation

In this study, an automated label generation strategy [14] is adopted for the training
and fine-tuning procedures. The conceptual basis of this strategy is that lane markings
detected by geometric lane marking extraction can be used to generate labels. Once lane
markings are detected using the adopted geometric approach, the results are rasterized
into images, as shown in Figure 10a. The cell size and image size should be consistent with
those used for the intensity image generation. Then, a bounding box is created around each
lane marking in the image, as displayed Figure 10b. All pixels falling in the bounding box
are labeled as lane marking pixels. The resultant image, as shown in Figure 10c, serves as a
labeled image for training/fine-tuning a model.

PWMMS-UHA PWMMS-UHA

PWMMS-HA PWMMS-HA PWMMS-HA
(a) (b) (c)

Figure 10. Illustrations of (a) derived lane markings from geometric extraction, (b) bounding boxes
(in red) encompassing lane markings, and (c) labeled image.

U-net Model Training and Fine-Tuning

The deep learning network utilized in this study—U-net [27]—is a fully convolutional
neural network. The network architecture consists of two salient paths: an encoder and a
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decoder, as depicted in Figure 11. The encoder acts as a feature extractor that learns a set of
feature representations from the input images. The decoder projects the low-resolution,
discriminative features learned by the encoder onto the high-resolution pixel space to
obtain classification results. The loss function selected in this research is determined by the
Dice coefficient [28], which measures the degree of overlap between corresponding classes
in the detection and labeled images. In this study, a U-net model is trained on data from
one MMS. The trained model is then fine-tuned with a few training samples to handle data
from another MMS. The fine-tuning procedure only adjusts the encoder while freezing the
decoder to ensure that the shallow layers learn features from unseen data [29].

U net — Network Architecture

Input
Image

powssw8as 1nding

266 x 256
266 5 256,
P
256 % 256

5

266 256

-

128 128 256 128

Decoder

Conv 33, Relu, Batch
Normalization

128 128
128 128
- 128 128
' - —
128 128

Max Pool 2X2

1 Upcom2K

) " 10
encoder =l - - | - i

Figure 11. Implemented U-net architecture of learning-based approach for lane marking extraction
(figure adapted from [14]).

3.3. Performance Evaluation

To evaluate the quality of detected lane markings from the geometric and learning-
based approaches, reference data are generated by manual annotation of intensity images.
The detections from the learning-based approach are in image format (hereafter referred to
as “detection images”). For the geometric approach, the extracted lane markings are in the
form of point clouds, which need to be rasterized into images using the automated label
generation strategy [14] (as discussed previously in Section 3.2.3).

The detections from the geometric and learning-based approaches are compared
against the reference data (pixel-based). Precision, recall, and F1-score—represented by
Equations (2)—(4), where TP, FP, and FN are the true positives, false positives, and false
negatives, respectively—are used to evaluate the performance of lane marking extraction.
Specifically, precision reflects the percentage of truly detected lane markings among de-
tected ones, while recall indicates the percentage of truly detected lane markings among
real ones. Fl-score, which is used to quantify the overall performance, is a harmonic mean

of precision and recall.
TP

Precision — — & 5
recision TP+ EP )

TP
Recﬂll = m (3)
Fl-score — 2 X Precision x Recall @

Precision + Recall

4. Experimental Results

Several analyses were conducted to evaluate the performance of the proposed gen-
eralized intensity normalization and its impact on lane marking extraction. Section 4.1
investigates the impact of pavement material on intensity correction/normalization and
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determines the best pavement type to derive correction functions and normalization LUTs.
Section 4.2 applies the proposed generalized intensity normalization to sample local regions
with different pavement types and assesses the performance. Finally, Section 4.3 evaluates
the impact of generalized intensity normalization on geometric and learning-based lane
marking extraction.

4.1. Impact of Pavement Type on Intensity Correction/Normalization

The proposed generalized intensity correction/normalization approach utilizes a local
area extracted from the entire survey to derive a correction function or normalization
LUT. Considering the distinct characteristics for various pavement types, this experi-
ment investigates the impact of using local asphalt or concrete areas on intensity correc-
tion/normalization and determines the best pavement type for deriving a correction func-
tion or normalization LUT. One might argue that deriving two correction functions/LUTs
from local asphalt and concrete areas and using them for the respective pavement region
correction/normalization would yield better results. However, it is impractical to man-
ually separate a LiDAR dataset (e.g., a hundred-mile-long point cloud) into asphalt and
concrete parts for conducting intensity correction/normalization. Thus, a single correction
function/normalization LUT would be more realistic for automating the procedure.

4.1.1. Best Pavement Type for Intensity Correction

For intra-sensor intensity correction, the single-beam LiDAR unit—Riegl VUX 1THA—
on the PWMMS-UHA was used to investigate the impact of different pavement types.
First, local asphalt and concrete areas (locations ii and iv in Figure 4a, respectively) were
extracted from the US-41/52 dataset. Correction functions based on these asphalt and
concrete areas were generated using the approach described in Section 3.1.1. Finally,
the asphalt- and concrete-based correction functions were applied to adjust the intensity
values of sample point clouds along asphalt and concrete pavement (locations i and iii in
Figure 4a, respectively).

To inspect the intensity distribution before and after applying the asphalt- and concrete-
based intensity correction, the intensity histograms of lane marking and pavement points
(which have been manually classified) for the sample asphalt and concrete regions are
shown in Figure 12. The y-axis of these histograms is the percentage, i.e., the count of the
points in each bin divided by the total number of points in the relevant class. The use of
percentage, rather than number of points, is for better visualization since the lane marking
points are considerably less than pavement points (only around 5% of the points along
the road surface are lane markings). According to the histograms, both the asphalt- and
concrete-based functions can reduce the variability of the intensity distributions within
each class (i.e., the standard deviations become smaller after applying intensity correction).
The concrete-based function leads to lower variability as compared to the asphalt-based one
(compare the standard deviations in Figure 12e,f to those in Figure 12¢,d). The separation
between lane marking and pavement classes (i.e., the difference between the mean values)
increases after applying the asphalt-based function—compare the mean separation values
in Figure 12a,b to those in Figure 12¢,d; however, it does not necessarily become larger
when using the concrete-based one—compare the mean separation values in Figure 12a,b
to those in Figure 12ef.

To compare the performance of the asphalt- and concrete-based correction functions,
hypothesized lane markings before and after intensity correction were extracted by apply-
ing fifth percentile intensity thresholding to the sample point clouds, as shown in Figure 13.
As evident in the figure, the hypothesized lane markings derived from concrete-based
corrected intensity have fewer false positives (highlighted by the red circles) than their
asphalt-based counterparts. The results indicate that a concrete-based function outperforms
an asphalt-based one for separating lane marking and pavement regardless of pavement
type. Therefore, a local area along concrete pavement should be utilized for intra-sensor
intensity correction.
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Figure 12. Intensity histograms showing: original intensity for sample (a) asphalt and (b) concrete re-
gions; corrected intensity using asphalt-based function for sample (c) asphalt and (d) concrete regions;
and corrected intensity using concrete-based function for sample (e) asphalt and (f) concrete regions.
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Figure 13. Hypothesized lane markings derived from: original intensity for sample (a) asphalt and
(b) concrete regions; corrected intensity using asphalt-based function for sample (c) asphalt and
(d) concrete regions; and corrected intensity using concrete-based function for sample (e) asphalt and
(f) concrete regions.
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4.1.2. Best Pavement Type for Intensity Normalization

For intra-sensor intensity normalization, one of the HDL-32E on the PWMMS-HA
was used to investigate the impact of pavement type on intensity normalization for a
multi-beam LiDAR unit. Local asphalt and concrete areas (locations ii and iv in Figure 4a,
respectively) were extracted from the US-41/52 dataset. Asphalt- and concrete-based
normalization LUTs were generated using the approach described in Section 3.1.2. The
asphalt- and concrete-based LUTs were applied to the sample point clouds along asphalt
and concrete pavement (locations i and iii in Figure 4a, respectively) for intra-sensor
intensity normalization.

Figure 14 displays the intensity histograms before and after intra-sensor intensity
normalization using asphalt- and concrete-based LUTs for the sample asphalt and concrete
regions. The results show that both asphalt- and concrete-based LUTs can reduce the
variability of the intensity distributions within the lane marking and pavement classes.
Although the asphalt-based LUT provides a lower variability as compared to the concrete-
based one, it results in a poor separation between classes in the concrete region, as shown
in Figure 14d. Figure 15 presents the hypothesized lane markings before and after applying
the asphalt- and concrete-based intensity normalization for the sample asphalt and concrete
regions. The hypothesized lane markings derived based on the asphalt- and concrete-based
normalized intensity have similar performance in the asphalt region—compare Figure 15c,e.
However, for concrete pavement, it is evident that the false positives (highlighted by the
red circles) derived based on the asphalt-based normalized intensity are more than those
derived from the concrete-based normalized one—compare Figure 15d,f. Specifically, the
asphalt-based LUT cannot handle the false positives along scan lines (Figure 15d), which
is reasonable since such false positives are only present in the concrete region. Based on
this empirical evaluation, a local area should be selected along concrete pavement for LUT
generation to ensure that intra-sensor normalization can effectively handle both asphalt
and concrete pavements.
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Figure 14. Intensity histograms showing: original intensity for sample (a) asphalt and (b) concrete
regions; corrected intensity using asphalt-based LUT for sample (c) asphalt and (d) concrete regions;
and corrected intensity using concrete-based LUT for sample (e) asphalt and (f) concrete regions.
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Figure 15. Hypothesized lane markings derived from: original intensity for sample (a) asphalt
and (b) concrete regions; corrected intensity using asphalt-based LUT for sample (c) asphalt and
(d) concrete regions; and corrected intensity using concrete-based LUT for sample (e) asphalt and
(f) concrete regions.

4.2. Performance of Generalized Intensity Normalization

The previous section concluded that a local concrete area should be utilized for deriv-
ing correction functions and normalization LUTs. In this experiment, a local area along the
concrete road surface (location iv in Figure 4a) was extracted from the US-41/52 dataset
and fed into the proposed generalized intensity normalization approach (for intra-sensor,
inter-sensor/intra-system, and inter-system) to generate correction functions and normal-
ization LUTs. Finally, the correction functions and normalization LUTs were applied to the
intensity values of sample point clouds along asphalt and concrete pavement (locations
i and iii in Figure 4a, respectively). The used MMS, LiDAR sensors, and grid sizes for each
step of generalized intensity normalization are listed in Table 3. In this study, the grid size
was determined using a multiplication factor (i.e., 4) of the average LPS of the point cloud
within the local areas.

The mean and standard deviation of the original and normalized intensity for LIDAR
units along asphalt and concrete regions are summarized in Table 4, where the lane marking
and pavement points are manually classified. Before generalized intensity normalization,
the Riegl VUX-1HA, Z+F profiler 9012, and Velodyne units (HDL-32E and VLP-16 Hi-Res)
show apparent disparities in intensity readings for lane markings and pavement owing
to the various designs across different LIDAR manufacturers as well as distinct pavement
characteristics. For the PWMMS-UHA, the Riegl VUX-1HA has distinctly different in-
tensity values for lane markings/pavement from the Z+F profiler 9012. However, for
the PWMMS-HA, the Velodyne LiDAR units provide similar intensity readings of lane
markings/pavement. After intensity normalization, the intensity values from different
LiDAR scanners become homogeneous for lane marking /pavement in both asphalt and
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concrete regions. The consistency of intensity values across LiDAR units is the key to
separating lane markings and pavement through intensity thresholding.

Table 3. MMS, LiDAR units, and grid sizes used for generalized intensity normalization.

Grid Size (m)

MMS LiDAR Unit Inter-Sensor/
Intra-Sensor
Intra-System

Inter-System

left LIDAR slensor N/A
PWMMS (Riegl)
0.10
-UHA right LIDAR sensor N/A
(Zz+P)!
rear left LIDAR sensor 0.20
(HDL-32E) 2 : 0.05
front left LIDAR sensor 0.20
PWMMS (HDL-32E) 2 ' o1
-HA rear right LIDAR sensor 0.20 -
(HDL-32E) 2 '
front right LIDAR sensor 0.30

(VLP-16 Hi-Res) 2

! Single-beam, 2 multi-beam.

Table 4. Mean and standard deviation (STD) of the original and normalized intensity for different
LiDAR units/systems on asphalt and concrete areas.

PWMMS-UHA PWMMS-HA
Intensity Class Region Rlegl Z+F Velodyne VLP-16
VUX-1HA Profiler 9012 HDL-32E Hi-Res
(Mean += STD) (Mean + STD) (Mean = STD) (Mean =+ STD)
Asphalt 105 £ 11 48 + 21 11+£8 5+4
Pavement Concrete 129 + 12 54 + 23 21+6 6+4
Original

Lane Asphalt 160 £+ 18 231 + 40 69 + 15 56 + 21
marking Concrete 158 =17 234 + 35 58 + 18 46 + 20

Asphalt 75+3 71+ 3 74+ 4 79 + 2

Pavement Concrete 76 + 4 71+3 74+ 4 79 + 2

Normalized

Lane Asphalt 88+ 8 88 2 85+3 92 +14

marking Concrete 87 +4 88 +2 84 +5 89 +4

Figures 16 and 17 show the hypothesized lane markings for the sample asphalt and
concrete regions derived from the PWMMS-UHA and PWMMS-HA data, respectively,
using the original and normalized intensity. For the PWMMS-UHA, intensity thresholding
does not perform well before normalization (Figure 16a,b) due to the obvious dissimilarity
between intensity readings and distribution from the Riegl and Z+F LiDAR units, as shown
in Table 4. The improvement after generalized intensity normalization is evident, as the
dash and solid lane markings are clear in the hypothesized lane markings (Figure 16c,d).
For the PWMMS-HA, the hypothesized lane markings extracted based on original intensity
exhibit many non-lane-marking points along the scan lines, as shown in Figure 17a,b. Such
false positives are removed after generalized intensity normalization, as can be seen in
Figure 17c,d. Overall, the proposed generalized intensity normalization can significantly
reduce false positives in hypothesized lane markings.
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Figure 16. Hypothesized lane markings derived from PWMMS-UHA using: original intensity for
sample (a) asphalt and (b) concrete regions and normalized intensity for sample (c) asphalt and
(d) concrete regions.
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Figure 17. Hypothesized lane markings derived from PWMMS-HA using: original intensity for

sample (a) asphalt and (b) concrete regions and normalized intensity for sample (c) asphalt and
(d) concrete regions.

4.3. Impact of Generalized Intensity Normalization on Lane Marking Extraction

This section investigates the impact of generalized intensity normalization on geomet-
ric and learning-based lane marking extraction. Specifically, the objective is to investigate:
(1) the comparative performance of geometric and learning-based lane marking extraction,
(2) the performance of a fine-tuned model as compared to a model trained from scratch,
and (3) the impact of intensity normalization on the above.

The US-41/52, US-231, and 1-65/865/465 datasets were used for the experiments.
The road surface was extracted from the point clouds and tiled into blocks. The length
and width of a block are 12 m and 16 m, respectively, for all datasets. For geometric lane
marking extraction (hereafter denoted as “Model-G”), the used thresholds are listed in
Table 5 (these values are kept the same across all datasets). For learning-based lane marking
extraction, the cell size of intensity and labeled images was set to 5 cm. A total of eight
models were developed using the US-41/52 dataset, as shown in Table 6. The model
naming specified the used approach (L for learning-based), original (O) or normalized
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(N) intensity, and system (HA or UHA). If transfer learning was applied, the model’s
name would include two systems: the former denotes the source domain, and the latter
indicates the target domain. The number of images used for training, validation, and
fine-tuning were determined according to recent studies dealing with deep-learning-based
lane marking extraction [13-15,30].

Table 5. Thresholds used in this study for geometric lane marking extraction.

Threshold Description Value

s Distance threshold for scan-line-based outlier removal 20 cm

€ Neighborhood distance threshold for DBSCAN 6.5 cm
minPts Minimum number of points threshold for DBSCAN 10 points

ndyax Normal distance threshold for geometry-based outlier removal 10 cm

1" max Linearity ratio threshold for geometry-based outlier removal 0.8
distipeql Distance threshold for local refinement 2.5 cm
dist glopal Distance threshold for global refinement 2.5cm

Table 6. Learning-based lane marking extraction models and number of images used for training,
fine-tuning, and validation.

Original Intensity Normalized Intensity
Trained on Model-LO-HA Model-LN-HA
PWMMS-HA (training: 1220; validation: 150) (training: 1220; validation: 150)
Trained on Model-LO-UHA Model-LN-UHA
PWMMS-UHA (training: 1220; validation: 150) (training: 1220; validation: 150)
Fine-tuned on Model-LO-HA-UHA Model-LN-HA-UHA
PWMMS-UHA 1 (fine-tuning: 252; validation: 30) (fine-tuning: 252; validation: 30)
Fine-tuned on Model-LO-UHA-HA Model-LN-UHA-HA
PWMMS-HA ! (fine-tuning: 252; validation: 30) (fine-tuning: 252; validation: 30)

! The numbers of images used for pre-training and validation are 1220 and 150, respectively.

Reference data (manually annotated intensity images) for performance evaluation
were collected from the US-41/52, US-231, and I-65/865/465 datasets. Table 7 lists the
number of manually annotated intensity images for concrete and asphalt regions from
each dataset. These images cover the whole survey route with an average interval between
successive images of approximately 350 m. In this study, the deep learning models were
developed solely using data from the US-41/52 dataset. The US-231 and 1-65/865/465
datasets, where some different lane marking patterns (including dual center lines and
dotted lines) are presented, were used only for testing. Hereafter, the US-231 and I-
65/865/465 datasets are referred to as “independent data.” The following subsections
first present the lane marking extraction results on US-41/52 (Section 4.3.1) and then
discuss the results on US-231 and I-65/865/465 (Section 4.3.2).

Table 7. Number of manually annotated intensity images for concrete and asphalt regions from
the US-41/52, US-231, and 1-65/865/465 (used for testing the performance of the geometric and
learning-based approaches).

Dataset # of Testing Images ! in # of Testing Images ! in Total # of Testing Images 1
(PWMMS-UHA and HA) Concrete Pavement Area Asphalt Pavement Area 8 8
US-41/52 187 113 300
US-231 78 72 150
1-65/865/465 167 133 300

! Testing images from PWMMS-UHA and PWMMS-HA are derived in the same area for the respective evaluation.
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4.3.1. Test on US-41/52

The geometric and learning-based lane marking extraction models were tested using
the US-41/52 dataset with original and normalized intensity. The testing data used in
this experiment have similar characteristics to the training data for learning-based models.
Samples of input intensity images and corresponding detection images derived from
different lane marking extraction approaches for the PAMMS-HA and PWMMS-UHA data
with original and normalized intensity are displayed in Figures 18-21. The corresponding
performance metrics are shown in Table 8. The main findings are categorized according
to the performance of the (1) geometric approach, (2) learning-based models trained from
scratch, and (3) fine-tuned models.

Figure 18. Sample lane marking extraction results for PWMMS-HA data with original intensity
on US-41/52: (a) intensity image and detections from (b) Model-G, (c¢) Model-LO-HA, (d) Model-
LO-UHA, and (e) Model-LO-UHA-HA (red and blue circles highlight false positives and false
negatives, respectively).

Figure 19. Sample lane marking extraction results for PWMMS-UHA data with original intensity
on US-41/52: (a) intensity image and detections from (b) Model-G, (c¢) Model-LO-HA, (d) Model-
LO-UHA, and (e) Model-LO-HA-UHA (red and blue circles highlight false positives and false
negatives, respectively).

(b) (c) (d)

Figure 20. Sample lane marking extraction results for PWMMS-HA data with normalized intensity
on US-41/52: (a) intensity image and detections from (b) Model-G, (c) Model-LN-HA, (d) Model-
LN-UHA, and (e) Model-LN-UHA-HA (red and blue circles highlight false positives and false
negatives, respectively).
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Figure 21. Sample lane marking extraction results for PWMMS-UHA data with normalized intensity
on US-41/52: (a) intensity image and detections from (b) Model-G, (c) Model-LN-HA, (d) Model-
LN-UHA, and (e) Model-LN-HA-UHA (red and blue circles highlight false positives and false
negatives, respectively).

Table 8. Performance metrics for different lane marking extraction strategies, evaluated using the
US-41/52 dataset with original and normalized intensity (values lower than 10% are in bold).

Test Data
Model Precision (%) Recall (%) F1-Score (%)
Intensity System
PWMMS-HA 90.3 91.0 90.5
Original
PWMMS-UHA 92.7 66.7 76.7
Model-G
lized PWMMS-HA 97.7 95.2 96.3
Normalize PWMMS-UHA 95.7 90.5 926
.. PWMMS-HA 929 83.5 87.7
Model-LO-HA Original PWMMS-UHA 5.6 0.5 0.9
. . PWMMS-UHA 77.7 89.7 82.1
Model-LO-UHA Original PWMMS-HA 41 <0.1 <0.1
. PWMMS-HA 92.4 88.1 90.0
Model-LN-HA Normalized PWMMS-UHA 188 35 5.3
. PWMMS-UHA 90.3 75.4 825
Model-LN-UHA Normalized PWMMS-HA 85.5 88.1 86.2
Model-LO-UHA-HA Original PWMMS-HA 63.6 414 48.3
Model-LO-HA-UHA Original PWMMS-UHA 83.9 58.9 66.0
Model-LN-UHA-HA Normalized PWMMS-HA 84.7 90.5 87.1
Model-LN-HA-UHA Normalized PWMMS-UHA 91.5 62.0 72.0

Performance of the Geometric Approach

e  With the original intensity, Model-G achieves Fl-scores of 90.5% and 76.7% for the
PWMMS-HA and PWMMS-UHA data, respectively. The lower Fl-score for PWMMS-
UHA is caused by larger false negatives (hence, lower recall)—see the example in
Figure 19b.

e  After intensity normalization, the Fl-scores increase by 5.8% and 15.9% for the
PWMMS-HA and PWMMS-UHA data, respectively. The greater improvement for
the PWMMS-UHA data (Figure 21b) is not surprising since the variability in intensity
distributions between the LiDAR units onboard the PWMMS-UHA is larger than the
PWMMS-HA counterparts, as per the discussion related to Table 4.

Performance of the Learning-Based Approach: Models Trained from Scratch

e  With the original intensity, a model trained on data from one MMS does not perform
well on that from another MMS, as can be observed in Figures 18d and 19c. This is
also reflected by the performance metrics shown in Table 8, where the F1-scores of
Model-LO-HA and Model-LO-UHA are lower than 1% when testing on data from
different MMS.
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e Intensity normalization significantly improves the ability of Model-LN-UHA to handle
PWMMS-HA data (F1-score increases by 86.2%)—see the example in Figure 20d. On
the other hand, Model-LN-HA still shows a poor performance (F1-score lower than
6%) when testing on PWMMS-UHA data, as evident in Figure 21c. A possible reason
for the poor performance is that the relatively high noise level in the PWMMS-HA
data results in inferior quality of lane markings in the intensity images (an example
can be found in Figure 10b).

e  Overall, the results suggest that using normalized intensity, a model trained on a
higher-resolution system (i.e., Model-LN-UHA) would generalize well to data from a
lower-resolution system (i.e., PWMMS-HA)—not the other way around.

Performance of the Learning-Based Approach: Fine-tuned Models

e  With the original intensity, the fine-tuned models have some ability to detect lane
markings in the target domain (Figures 18e and 19e). However, the performance is
worse when compared to the models trained from scratch. The F1-scores of Model-
LO-UHA-HA and Model-LO-HA-UHA are 39.4% and 16.1% lower than those of
Model-LO-HA and Model-LO-UHA when testing on the PWMMS-HA and PWMMS-
UHA data, respectively.

e  With the normalized intensity, such differences decrease to 2.9% (Model-LN-UHA-HA
vs. Model-LN-HA) and 10.5% (Model-LN-HA-UHA vs. Model-LN-UHA), respectively,
confirming the positive impact of intensity normalization on the fine-tuned models.

e  The performance of the fine-tuned Model-LN-UHA-HA increases slightly when com-
pared to Model-LN-UHA when applied to PWMMS-HA data (F1-score increases
by 0.9%). In contrast, a major improvement is observed for Model-LN-HA-UHA
when compared to Model-LN-HA when applied to PWMMS-UHA data (F1-score
increases by 66.7%). This result indicates that fine-tuning is necessary for a model
trained with PWMMS-HA data to handle PWMMS-UHA data; this is not the case for
Model-LN-UHA to have it applied to PWMMS-HA data.

In summary, the geometric approach using normalized intensity achieves the best
performance, followed by the learning-based models trained on PWMMS-UHA data with
normalized intensity. The generalized intensity normalization constantly shows a positive
effect regardless of the approaches or data being used.

4.3.2. Test on US-231 and 1-65/865 /465

In this experiment, the performance of geometric and learning-based lane marking
extraction was assessed using the US-231 and 1-65/865/465 datasets after intensity normal-
ization. The two datasets exhibit lane marking patterns that are not present in the US-41/52
dataset, such as dual center lines and dotted lines, and thus serve as independent test data.
The geometric approach (Model-G) and learning-based models using normalized intensity
(Model-LN-HA, Model-LN-UHA, Model-LN-HA-UHA, and Model-LN-UHA-HA) were
used in this experiment.

Samples of input intensity images and corresponding detection images for the PAMMS-
HA and PWMMS-UHA data on US-231 and 1-65/865/465 are presented in Figures 22-25.
As shown in these figures, the geometric approach can detect dual center lines and dotted
lines (Figures 22b, 23b, 24b and 25b) while the learning-based models have limited ability
to deal with unseen lane marking patterns (Figures 22c—e, 23c—e, 24c—e and 25c—e). Table 9
lists the performance metrics of geometric and learning-based approaches based on testing
images derived from the independent data. The performance of the geometric approach (F1-
score ranges from 94.1% to 96.5% for different datasets) is similar to its counterparts (shown
in Table 9). In terms of the learning-based approach, all the models have slightly inferior
performance as compared to the US-41/52 data counterparts, which is most likely related to
the unseen patterns in the US-231 and 1-65/865/465 datasets. The limited ability of Model-
LN-HA when dealing with the PWMMS-UHA data can be seen in Figures 23c and 25c,
as well as the performance metrics reported in Table 9 (F1-score lower than 7%). Similar
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to the US-41/52 data experiments, Model-LN-UHA achieves the best performance for
both MMS among all learning-based models (F1-score ranges from 69.1% to 81.4% for the
two datasets).

(b) (c) (d) (e)

Figure 22. Sample lane marking extraction results for PWMMS-HA data with normalized intensity
on US-231 (dual center lines): (a) intensity image and detections from (b) Model-G, (c) Model-LN-HA,
(d) Model-LN-UHA, and (e) Model-LN-UHA-HA (red and blue circles highlight false positives and
false negatives, respectively).

(b) (©) (d)

Figure 23. Sample lane marking extraction results for PWMMS-UHA data with normalized intensity
on US-231 (dual center lines): (a) intensity image and detections from (b) Model-G, (c) Model-LN-HA,
(d) Model-LN-UHA, and (e) Model-LN-HA-UHA (red and blue circles highlight false positives and

false negatives, respectively).
(d) (e)

Figure 24. Sample lane marking extraction results for PWMMS-HA data with normalized intensity on
1-65/865/465 (dotted lines): (a) intensity image and detections from (b) Model-G, (c) Model-LN-HA,
(d) Model-LN-UHA, and (e) Model-LN-UHA-HA (red and blue circles highlight false positives and
false negatives, respectively).

(b) (c) (d)

Figure 25. Sample lane marking extraction results for PWMMS-UHA data with normalized intensity
on 1-65/865/465 (dotted lines): (a) intensity image and detections from (b) Model-G, (c¢) Model-LN-
HA, (d) Model-LN-UHA, and (e) Model-LN-HA-UHA (red and blue circles highlight false positives
and false negatives, respectively).
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Table 9. Performance metrics for different lane marking extraction strategies: evaluated using US-231
and 1-65/865/465 datasets with normalized intensity (values lower than 10% are in bold).

. Test Data . . o o o

Location Model (Normalized Intensity) Precision (%) Recall (%) F1-Score (%)
Model G PWMMS-HA 93.1 98.8 9.5
odel- PWMMS-UHA 91.7 98.3 95.5
PWMMS-HA 89.8 738 80.4
Model-LN-HA PWMMS-UHA 9.3 51 6.5
Us-231 PWMMS-UHA 87.8 67.5 75.5
Model-LN-UHA PWMMS-HA 84.9 78.6 814
Model-LN-UHA-HA PWMMS-HA 843 70.2 79.7
Model-LN-HA-UHA PWMMS-UHA 93.0 62.4 73.1
G PWMMS-HA 9223 98.6 95.3
Model- PWMMS-UHA 90.0 985 94.1
PWMMS-HA 86.3 56.5 66.2
Model-LN-HA PWMMS-UHA 7.6 5.3 6.2
1-65/865/465 PWMMS-UHA 77.1 66.4 69.1
Model-LN-UHA PWMMS-HA 85.2 735 783
Model-LN-UHA-HA PWMMS-HA 89.3 67.3 75.8
Model-LN-HA-UHA PWMMS-UHA 66.7 60.4 613

5. Discussion

This study develops a generalized intensity normalization approach and investigates
its impact on geometric and learning-based lane marking extraction approaches. According
to the empirical evaluation, a local concrete region should be used for deriving a correction
function or normalization LUT to ensure the best performance of lane marking extraction
along different pavement types. The generalized intensity normalization can improve the
performance of lane marking extraction regardless of the approach and data being used.
For the geometric approach, the improvement after intensity normalization is more pro-
nounced for the PWMMS-UHA data owing to the inconsistent intensity readings between
the Riegl VUX-1HA and Z+F profiler 9012. For the learning-based approaches, without
intensity normalization, a model trained with data from one MMS does not generalize well
on data from another MMS. With intensity normalization, a model trained on a higher-
resolution/lower-noise system can handle data from a lower-resolution/higher-noise one,
but not the other way around.

Overall, the geometric lane marking extraction with intensity normalization outper-
forms the learning-based models. Particularly, the geometric approach can deal with
various lane marking patterns, while learning-based models show inferior performance
when handling unseen patterns. The less satisfactory performance of the learning-based
approaches compared to the geometric one might be due to training data biases. More
specifically, learning-based models heavily adopt the biases in human-selection data, which
will exhibit or even amplify the human-induced tendencies in training data [31,32]. Fur-
thermore, learning-based models are of a black-box nature; therefore, it is nearly impossible
to predict how they will perform for a specific task [33]. End-users might not be able
to understand how a model is making its decisions. Thus, it is quite challenging to set
standards for selecting right training models or parameters.

Nevertheless, both geometric/morphological and deep/transfer-learning-based ap-
proaches hold strengths and weaknesses for various potential applications. Learning-based
approaches might yield inconsistent performance on several datasets while geometric
strategies perform more consistently [34]. On the other hand, once the training (and fine-
tuning) is completed, a learning-based model can detect lane markings in a much shorter
time as compared to the geometric one, as shown in Table 10, which lists the execution time
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for the different approaches. Consequently, learning-based approaches could be further
developed for achieving real-time inference speed for AV technologies [35].

Table 10. Processing time for geometric and learning-based strategies based on one-mile-long lane
marking extraction.

Time Taken (s) for 1-Mile-Long

Approach Lane Marking Detection Platform
Geometric/morphological ! ~450 32 GB RAM computer
Deep/ transfer-learning-based ! ~25 Google Collaboratory

! Steps for road surface extraction, generalized intensity normalization, and training/fine-tuning are excluded.

6. Conclusions

This paper presented a generalized intensity correction/normalization approach for
reducing intensity variation within and across different LIDAR units or systems. Specifically,
the proposed approach can correct/normalize the intensity values for (1) a single-beam
or multi-beam LiDAR scanner (intra-sensor), (2) LIDAR units onboard a mobile mapping
system (inter-sensor/intra-system), and (3) point clouds from several mobile mapping
systems (inter-system). Additionally, this study investigated the impact of pavement type
on intensity correction/normalization. The results suggest that a concrete area should be
utilized for deriving correction functions or normalization look-up tables for separating lane
marking and pavement along different pavement types. To evaluate the performance of the
proposed approach, geometric- and learning-based lane marking extraction using original
and normalized intensity were conducted. Regardless of the used approach or data, the
proposed generalized intensity normalization improved the performance of lane marking
extraction. The geometric approach using normalized intensity achieved F1-scores higher
than 90% for all datasets, outperforming the learning-based models. The performance of
the geometric approach was consistent when handling different lane marking patterns.
In contrast, the learning-based models showed inferior performance when dealing with
unseen patterns. The proposed intensity normalization procedure requires the generation
of a correction function and LUT for each dataset using a small concrete region of the
road surface. Future research could investigate the feasibility of using a single correction
function and LUT for the intensity normalization process, which could be used for acquired
datasets by the same LiDAR unit/MMS under similar conditions (e.g., pavement and
environmental conditions).

Currently, the proposed approach can normalize intensity values across multiple
LiDAR units onboard different mobile mapping systems. In spite of the correlation between
intensity values and surface reflectivity, a direct estimate of the latter is still missing. Thus,
future work could focus on intensity calibration, i.e., linking the normalized intensity to
lane marking retroreflectivity. In addition, the generalized intensity normalization could be
integrated as part of the LiDAR data processing workflow for more applications such as
tree detection for forest inventory, infrastructure monitoring, and agricultural management.
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