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Abstract: Unsupervised band selection has gained increasing attention recently since massive unla-
beled high-dimensional data often need to be processed in the domains of machine learning and data
mining. This paper presents a novel unsupervised HSI band selection method via band grouping
and adaptive multi-graph constraint. A band grouping strategy that assigns each group different
weights to construct a global similarity matrix is applied to address the problem of overlooking
strong correlations among adjacent bands. Different from previous studies that are limited to fixed
graph constraints, we adjust the weight of the local similarity matrix dynamically to construct a
global similarity matrix. By partitioning the HSI cube into several groups, the model is built with a
combination of significance ranking and band selection. After establishing the model, we addressed
the optimization problem by an iterative algorithm, which updates the global similarity matrix, its
corresponding reconstruction weights matrix, the projection, and the pseudo-label matrix to amelio-
rate each of them synergistically. Extensive experimental results indicate our method outperforms
the other five state-of-the-art band selection methods in the publicly available datasets.

Keywords: hyperspectral band selection; band grouping; adaptive multi-graph

1. Introduction

Unlike traditional RGB three-channel digital images, hyperspectral images (HSI) have
multiple channels in spectral dimensions. Because HSI can distinguish land-cover details
with high spectral diagnosis ability [1], they are widely applied in city planning, agricultural
and forestry detection, topographic map updating, mineral exploration, and many other
fields [2,3]. However, HSI provides spectral image information with enormous bands,
which is vulnerable to noise [4]. Furthermore, the high dimensionality also leads to great
redundancy [5] in hyperspectral data due to the high correlation among bands, posing
obstacles to image processing, transmission, storage, and analysis [6,7].

Band selection is one of the most popular dimensionality reduction techniques, it aims
to search for a subset of all bands containing as few bands as possible, which has enough
content to represent the overall spectral information [8]. Like many other machine learning
problems, band selection can be divided into supervised [9], semi-supervised [10,11], and
unsupervised [12,13] according to the availability of prior information [14]. Supervised
band selection usually sets a standard function to evaluate the similarity between the
selected band and the marked image [15]. Unsupervised band selection expects to find
a representative subset of bands unrelated to the labeled sample [16]. Supervised or
semi-supervised methods need label information [17], but in practical application, the
unsupervised method will cover a wider range in utilization because the prior conditions
of the objects are difficult to obtain. Therefore, the research on unsupervised band selection
technology has gained much attention.
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1.1. Overview and Motivation

Previous research associated with unsupervised band selection focuses on four cate-
gories: ranking-based, clustering-based, searching-based, and embedding learning-based
methods. Ranking-based methods quantify the importance of bands based on some in-
dicators to select the top-ranked bands, while the selected subset usually suffers from
information redundancy since they ignore the correlation of bands. The clustering-based
band selection methods intend to obtain representative bands from each cluster by group-
ing original data [18], and these selected bands form the subset. This method can minimize
interclass variance and maximize interclass variance to avoid redundancy. The searching-
based methods select a subset by searching band combinations according to a given criterion
function, which transforms band selection into an optimization problem. The embedding-
based methods select bands by optimizing specific application models such as classification,
target detection, and spectral separation [19].

To address the problem of the ranking-based method and inspired by robust unsu-
pervised feature selection via multi-group adaptive graph representation (MGAGR), we
propose an unsupervised band selection method for hyperspectral images based on band
grouping and adaptive multi-graph constraint in this paper. We put forward the band
grouping strategy to fully mine the effective information and avoid strong correlations
among adjacent bands. Considering that band groups with high definition and abundant
information should have higher significance, different weights are assigned to each group
to construct the global similarity matrix. Spatially, hyperspectral images can be divided into
various regions. For example, hyperspectral images used for vegetation damage recogni-
tion can be divided into non-vegetation (background), healthy vegetation, pest vegetation,
water-deficient vegetation, etc. Obviously, non-vegetation is not the key information, while
the others are important and useful. We construct a graph matrix through the correlation
between pixels to save the information on the spatial dimension. The local similarity matrix
is defined as the graph matrix constructed by each spectral group. In order to describe the
spatial information more accurately and comprehensively, we acquire the global similarity
matrix using the linear combination of multiple local similarity matrices. On this basis, we
use the regularization constraints to ensure the accuracy of classification. Our method with
high-class separability takes sufficient account of spatial and spectral correlation, while
utilizing pseudo-label matrix concurrently, and has high classification separability. After
establishing the model, we solve the optimization problem by an iterative algorithm that
updates the global similarity matrix, its corresponding reconstruction weights matrix, and
the projection and pseudo-label matrix to synergistically ameliorate each of them.

1.2. Contributions

The key contributions can be summarized as follows:

1. The method of band grouping is used originally to process hyperspectral data, which
mines the context information of the whole spectral dimension and avoids redundancy
in order to obtain the more accurate selected subset.

2. An unsupervised adaptive graph constraint is introduced into the hyperspectral
band selection model. The global similarity matrix is reconstructed by the linear
combination of the similarity matrix of all groups with adaptive weighting.

3. An iterative optimization algorithm is proposed for obtaining the optimal weights of
the proposed model. Moreover, the objective function is solved by the algorithm to
select the optimal subset of bands. Through several experiments, the results are com-
pared with the results of previous methods to verify the efficiency of our algorithm.

1.3. Organization

The rest of this paper is organized as follows. In Section 2, some related works are
briefly introduced. The detailed model of our method is presented in Section 3. Section 3.2
provides a skillful optimization algorithm for the proposed model. To validate the proposed
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method, the experimental results are shown and analyzed in Section 4. At last, Section 5
makes a brief conclusion for this paper.

2. Related Works

In this section, we would like to briefly review some representative unsupervised
band selection methods. UBS is usually implemented with four classical schemes, ranking-,
clustering-, searching- [20], and embedding-based methods [21]. As introduced earlier,
ranking-based methods quantify the importance of bands based on some indicators to
gather the top-ranked bands, and the selected subset may have high information redun-
dancy since the method ignores the internal correlation between bands. For example,
maximum-variance principal component analysis (MVPCA) [22] and the manifold ranking-
based band selection algorithm [23] are typical algorithms. The clustering-based band
selection methods aim to obtain representative bands from each cluster through grouping
original data [18], which can minimize inter-class variance and avoid redundancy. By
conducting the local density and the intra-cluster distance of each point, fast density-
peak-based clustering (FDPC) [24] identifies cluster centers as points with anomalously
large scores. The adaptive subspace partition strategy [25] regards the attained sub-cube
as a framework, which means that other criteria can be applied to the selection strategy.
Meanwhile, this method estimates band noise level to get high-quality images. Although
these clustering-based methods have achieved great success, they do not take the global
information and spatial distribution of different objects into consideration well, while being
sensitive to initial conditions.

The searching-based methods, such as the firefly algorithm (FA) [26] and particle
swarm optimization (PSO) [27], transform band selection into an optimization problem
using an objective function. The FA can automatically adjust the induction radius and
search for multiple peaks at the same time. PSO is always used to optimize parameters for
classification methods such as kernel-based fuzzy c-means and support vector machine
(SVM) [28]. However, existing searching-based strategies almost always consider only
one score, leading to poor effect in the application of multi-graph structure for band selec-
tion [29]. The embedding-based methods select bands by optimizing specific application
models. These models include classification, target detection, and spectral separation [19].
Spectral analysis and sparse constraint are commonly used in typical this method. For
instance, recursive support vector machines [30] and sparse multinomial logistic regression
algorithms [31] are commonly used typical methods. In order to reveal the geometric
structure embedding in original high-dimensional data, many manifold learning methods
are introduced, such as locally linear embedding (LLE) [32], Laplacian eigenmaps (LE) [33],
and neighborhood preserving embedding (NPE) [34]. The above methods can be unified
under the graph embedding framework (GE) [35].

In addition to the methods mentioned above, the wide application of deep learning
(DL) [36] and deep neural networks (DNN) [37] has demonstrated remarkable achievements
in HSI processing. Generally speaking, HSI classification algorithms include traditional ma-
chine learning techniques and DL methods that require feature processing [38]. Compared
with typical classifier technologies such as SVM and k-nearest neighbor (KNN) [39], DNN
can minimize the dimension of data representation and effectively identify targets. For
example, the authors of [40] propose two versions of BS-Nets (band selection networks),
which are implemented using fully connected networks and convolutional networks, show-
ing less redundant results and competitive time cost. Deep reinforcement learning is used
with Q-network in [41] and its validity has been verified extensively with multiple datasets
and classifiers. Moreover, an increasing number of researchers have attempted to use a
convolutional neural network (CNN) to exploit deep features of HSI classification [20].

we analyzed the above classical methods, and the corresponding advantages and
disadvantages are shown in Table 1.



Remote Sens. 2022, 14, 4379 4 of 23

Table 1. The advantages and disadvantages of classical methods.

Method Pros Cons

MVPCA All bands are ranked by the
variance of band capacity.

Redundancy of band information
is not considered.

UBS

Using divergence based on the
analysis of band features, it tries
to solve the redundancy problem
caused by sorting algorithm.

The spatial information of HSI is
not considered.

FDPC
It is a clustering method based on
weighted normalized local
density and ranking.

The selected bands do not
necessarily contain the most
information, and different metrics
will affect the results. Moreover,
the random initialization of the
clustering algorithm is uncertain.

FA

FA can reduce the complexity of
the ELM (extreme learning
machine) network, and is suitable
for optimizing the parameters in
the network. It converges faster
compared with PSO.

It is sensitive to parameters and
will be less attractive when the
dimension is high, affecting the
result update.

PSO

It is a probabilistic global
optimization algorithm that is
relatively simple and easier to
implement.

Its peak seeking rate and solution
accuracy are low.

ABA (Attention-Based
Autoencoders)

This method presents an
automatic encoder based on an
attention mechanism to realize the
non-linear relationship between
bands.

The optimization process of its
hyperparameters is random,
which leads to the instability of
the model.

ABCNN
(Attention-Based

Convolutional Neural
Networks)

This method attains the optimal
subset of bands by coupling
attention-based CNNs with
anomaly detection.

Deep learning incorporating an
attention mechanism is prone to
over-fitting.

DRL (Deep
Reinforcement

Learning)

It is a deep learning method for
environment simulation that
makes full use of hyperspectral
sequence to select bands.

Since this is an algorithm based
on deep learning, it takes more
time to train.

BS-Nets

It proposes a deep learning
method combined with an
attention mechanism and
rebuilding RecNet. The
framework is flexible and can
adapt to more existing networks.

Models need a long time to be
trained.

3. Methods

This part introduces our unsupervised band selection algorithm based on band
grouping and adaptive multi-graph constraints. Each step of the proposed method is
detailed below.

3.1. Model Construction

Let X =
(

x1 x2 · · · xmn
)
∈ Rr×mn be the high-dimensional data, which are recon-

structed from the original m× n× r data set. mn is the number of pixel points and r is the
number of the spectral bands. xi ∈ Rr×1 represents the information of the i-th pixel. We
want to project the pixel into the label space, assuming that all the data consists of c labels.
Self-expression matrix Z ∈ Rr×c maps each pixel point to the label space. Let Yp ∈ Rmn×c
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denote the pseudo-label matrix. The error between XTZ and Yp should be minimized on
this condition:

min
∥∥∥XTZ− Yp

∥∥∥2

F
, (1)

where Z can be optimized to obtain the best linear combination of r bands to approximate
the pseudo-label information. Maintaining the sparsity of the matrix reduces the number
of bands selected and as a result, the retained bands contain more valid information on
account of being less affected by noise. Consequently, the sparsity of the representation
matrix is maintained by the sparsity rule constraint, meanwhile, the selected bands are
guaranteed to better reflect the representative information. In this paper, l2,1 − norm is
exploited as the sparse regular constraint:

min α‖Z‖2,1, (2)

where α is a weight factor to control the scale of the sparse regular constraint.
To improve the performance of the self-expression model, the manifold regularization

method should be utilized to ensure that spatial information is maintained during opti-
mization. For instance, if the similarity between two pixels is large, this property should be
reflected after projecting them into the label space and the distance between their pseudo
label should be optimized to a small value. The global similarity matrix can be noted
as S = [sij]mn×mn, and sij denotes the similarity between xi and xj. Then, the manifold
regularization can be expressed as the following formula:

min
β

2

∥∥∥Yi
p − Yj

p

∥∥∥sij, (3)

where β is used to adjust the weight of the manifold regularization term. We set that the
similarity matrix S should satisfy the following conditions:

1. sij = sji, i.e., S is a real symmetric matrix;
2. For any sample xi and xj, the similarity value should between 0 and 1, i.e., 0 ≤ sij ≤ 1.

It means that the closer the similarity is to 1, the more similar the two columns of data;
3. The sum of each row (or each column) of S equals to 1, i.e., ∑mn

j=1 sij = 1 and
∑mn

i=1 sij = 1.

Considering the above constraints, and to further improve the classification effect, we
constrain the Yp matrix to be orthogonal. Equation (3) can be rewritten as follows:

min βTr
(

YT
p LYp

)
, s.t.ST

1 1mn = 1, YT
p Yp = Ic (4)

where Tr() denotes trace of matrix and 1mn is a m× n-dimensional all-one column vector.
Let L ∈ Rmn×mn be the Laplacian matrix used to keep the geometric structure of the data,
that is, to maintain the information of bands in the spatial dimension. L is calculated as the
following formula:

L = D− S, (5)

Here S is the global similarity matrix mentioned above. Additionally, define a diagonal
matrix D ∈ Rmn×mn. dii is the i-th diagonal element of D calculated by dii = ∑mn

i=1 sij, which
means dii is the sum of i-th column of S.

In previous experiments, S is computed from X representing the original data and
unchanged, so S will not be updated and optimized. However, in this paper, the pseudo-
label matrix, self-expression matrix, and other matrices mentioned later are updated step
by step using the idea of iterative optimization.

We think that other matrices will also affect the calculation of S during the iteration
process. For example, Yp should have an impact on it. When the categories of two pixels
are classified into one category and their pseudo labels are determined to be consistent, we
believe that this information should be fed back to S to update the similarity of the two
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pixels, indicating that they are more closely related. The result is that the same substance in
space tends to be grouped into the same class, which enhances the accuracy of classification
by mining spatial information. However, if the similarity of two pixels is misjudged due
to the influence of noise and continues to be iterative updated, the result will be that it is
difficult to reclassify correctly.

To solve the above problem, we divide the whole spectral band into five groups to
avoid the information redundancy caused by ignoring the strong correlation between
adjacent bands and construct a local similarity matrix in each group, then construct a
global similarity matrix S through their linear combination. This method can find out more
comprehensive similarity information in the spatial dimension and effectively select a more
informative subset of bands.

Specifically, we divide all the bands into five groups, where X(v) ∈ Rdv×mn represents
the data of group v and ∑V

v=1 dv = r. Then the local similarity matrix formed by group v is

S(v) ∈ Rmn×mn, where s(v)ij describes the similarity between the i-th pixel point and the j-th

pixel point in group, that is, the similarity between x(v)i and x(v)j . s(v)ij is calculated as the
following formula:

s(v)ij =

exp

{
−
∥∥∥x(v)i −x(v)j

∥∥∥2

σ

}
mn
∑

k=1
exp

{
−
∥∥∥x(v)i −x(v)k

∥∥∥2

σ

} , (6)

where s(v)ij represents the (i, j)-th element of S(v), σ is a hyperparameter.
Next, S is constructed. Si in column i of it and should be a linear combination of(

S(1)
i S(2)

i · · · S(V)
i

)
. Then the global similarity matrix can be constructed as follows:

min
mn

∑
i=1

∥∥∥∥∥Si −
V

∑
v=1

w(v)
i S(v)

i

∥∥∥∥∥
2

F

, s.t. ST
i 1mn = 1, WT

i 1V = 1, (7)

wv
i represents the weight of column i of the local similarity matrix for the v-th spectral

group. Moreover, wi =
(

w(1)
i w(2)

i · · · w(V)
i

)T
∈ RV×1 represents the weight of all

the local similarity matrices in i-th column, and the entire reconstructed weight matrix is
W =

(
W1 W2 · · · Wmn

)
∈ RV×mn.

To sum up, according to Equations (1)–(7), the loss function is constructed as follows:

L(Z, Yp, S, W) =
∥∥∥XTZ− Yp

∥∥∥2

F
+ α‖Z‖2,1 + βTr

(
YT

p LYp

)
+

mn

∑
i=1

∥∥∥∥∥Si −
V

∑
v=1

w(v)
i S(v)

i

∥∥∥∥∥
2

F

,

s.t. S ≥ 0, ST
i 1mn = 1, Yp

TYp = 1, WT
i 1V = 1,

(8)

Hence, the model construction for band selection has been completed. In order to
have a more intuitive understanding of our proposed method, we constructed a workflow,
which is shown in Figure 1.
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X ∈ Rr×mn

Initial Dataset

divide into

V groups

X(1) ∈ Rr1×mn

X(k) ∈ Rrk×mn

X(k) ∈ RrV×mn

...

...

Grouped Data Matrices

S(1) ∈ Rmn×mn

S(k) ∈ Rmn×mn

S(V) ∈ Rmn×mn

...

...

calculate

calculate

calculate

similarity

similarity

similarity

...

...

Local Similarity Matrices

∗

∗

∗


w(1)

1
. . .

w(1)
mn




w(k)

1
. . .

w(k)
mn




w(V)

1
. . .

w(V)
mn



Weight Matrices

...

...

...

...

...

...

+ S ∈ Rmn×mn

Global Similarity Matrix

Figure 1. The workflow of the idea of band grouping of the global similarity matrix reconstructed by
the local similarity matrix.

3.2. Model Optimization

In this paper, the strategy of iterative optimization is used to obtain the optimal values
of the four parameters (W, S, Yp, Z) involved in Equation (8). Specifically, it is to fix the
values of three parameters to optimize the other parameter. We update W, S, Yp, Z in each
iteration process and then calculate the loss function. The process will be ended in advance
when the loss function converges.

3.2.1. Fix S, Z, and Yp: Update W

Since S, Z, and Yp are fixed, we only need to care about the expressions and conditions
containing W when solving the optimal value of the parameters by the gradient. Therefore,
we should evaluate the following expression:

L1(W) =
mn

∑
i=1

∥∥∥∥∥Si −
V

∑
v=1

W(v)
i S(v)

i

∥∥∥∥∥
2

F

, s.t.WT
i 1V = 1, (9)

For this equation, using the augmented Lagrangian multiplier, it can be written as:

L1(W) =
mn
∑

i=1

∥∥∥∥Si −
V
∑

v=1
W(v)

i S(v)
i

∥∥∥∥2

F
+ ϕi

(
1−WT

i 1V
)

=
mn
∑

i=1

{
Tr
[(

A(i)Wi

)T(
A(i)W

)]
+ ϕi

(
1−WT

i 1V
)}

,
(10)

where ϕ = [ϕ1, ϕ2, · · · , ϕmn]
T is the Lagrangian multiplier vector. We define A(i) =

[Si − S(1)
i , Si − S(2)

i , · · · , Si − S(V)
i ] ∈ Rmn×V , i = 1, 2, · · · , mn. Next, we calculate the

partial derivatives of L1(W), with respect to Wi and ϕi. Then we set the partial derivatives
equal to 0 to get the following system of equations:

∂L1(W)
∂Wi

= 2
(

A(i)
)T

A(i)Wi − ϕi1V = 0
∂L1(W)

∂ϕi
= 1−WT

i 1V = 0
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The results of solving this system of equations are as follows:

Wi =

[(
A(i)

)T
A(i)

]−1
1V

1T
V

[(
A(i)

)TA(i)
]−1

1V

, (11)

3.2.2. Fix W, Z, and Yp: Update S

When W, Z, and Yp are fixed, only items related to S have the effect on the optimization
results, for others could be considered as constants. Therefore, at this moment, Equation (8)
has the identical resolvent with the following equation:

L2(S) =
mn
∑

i=1
||Si −

V
∑

v=1
w(v)

i S(v)
i ||

2
F+βTr(YT

p LYp)

=
mn
∑

i=1
tr

[(
Si −

V
∑

v=1
w(v)

i S(v)
i

)T(
Si −

V
∑

v=1
w(v)

i S(v)
i

)]
+ β

2

mn
∑

i=1

mn
∑

j=1
||YT

pi − YT
pj||2Fsij

=
mn
∑

i=1
tr
[
ST

i Si − 2bT
i Si + bT

i bi
]
+aT

i Si

s.t.sij ≥ 0, ST
i 1mn = 1

(12)

where YT
pi means the i-th column of transpose of Yp,

ai =
β

2

[
||YT

pi − YT
p1||2F, ||YT

pi − YT
p2||2F, ..., ||YT

pi − YT
pmn||2F

]T
∈ Rmn×1

and bi =
V
∑

v=1
w(v)

i S(v)
i ∈ Rmn×1. We use Lagrange multipliers to solve the problem of (12)

as follows:

L2(S, λ, Π) =
mn

∑
i=1

tr
[
ST

i Si − 2bT
i Si + bT

i bi

]
+aT

i Si + λ(1− ST
i 1mn)−ΠTSi (13)

where λ and Π = [Π1, Π2, ..., Πmn]T is the Lagrangian multiplier. In order to solve the
above inequalities and equations, we need to satisfy the KKT condition while using the
Lagrange multiplier: 

∂L2
∂Si

= 2Si − 2bi + ai − λ1mn −Π = 0,
Πj ≥ 0, j = 1, 2, ..., mn,
Πjsij = 0, j = 1, 2, ..., mn,
∂L2
∂λ = 1− ST

i 1mn = 0.

By simplifying the above formula, the updated formula can be written as follows:
Π = 1

mn

mn
∑

j=1
Πj

ci = 2bi − ai

sij = max(( ci
2 (Imn − 1mn×mn

mn ) + 1mn
mn −

1
2 Πi1mn), 0)

Πij = max(−2( ci
2 (Imn − 1mn×mn

mn ) + 1mn
mn −

1
2 Πi1mn), 0)

(14)
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3.2.3. Fix W, S, and Z: Update Yp

When W, S, and Z are fixed, the terms that are not related to Yp can be regarded as
constant terms. Consequently, Equation (8) is equivalent to:

L3(Yp) = ||XTZ− Yp||2F + βTr(YT
p LYp)

= Tr(XTZ− Yp)T(XTZ− Yp) + βTr(YT
p LYp)

= Tr(YT
p (I + βL)Yp)− 2Tr(YT

p XTZ)
= Tr(YT

p (AYp−2XTZ)) s.t.YT
p Yp = Ic

(15)

where A = I + βL ∈ Rmn×mn is the symmetric matrix. This is an optimization problem
constrained by an orthonormal matrix, the orthogonal Procrustes problem. Here we take
the generalized power iteration method (GPI) [42] to solve the quadratic problem on the
Stiefel manifold (QPSM), instead of the Lagrange multipliers to solve this problem. So
Equation (15) can be further relaxed to:

arg max Tr(YT
p (γAI−A)Yp + 2XTZ)), s.t.YT

p Yp = Ic (16)

where γA is the maximum singular value of the matrix A and it can be calculated by the
singular value decomposition (SVD) method. Then further simplify the above formula:

arg max Tr(FTM), s.t.FTF = Ic (17)

where F=Yp ∈ mn×c and M = (γAI−A)Yp + 2XTZ ∈ Rmn×c. We perform singular value
decomposition for M, assume that M = UΣVT and G = VTFTU, GGT = Ic. The solution
steps are as follows:

Tr
(
FTM

)
= Tr

(
ΣVTFTU

)
= Tr(ΣG)

= σ11g11 + σ22g22 + ... + σccgcc

=
c
∑

i=1
σiigii ≤

c
∑

i=1
σii,

(18)

If and only if all gii = 1, Equation (18) takes the equal sign, this moment G = [Ic|0].
Ultimately, YP can be indicated by

YP = U[Ic|0]TVT . (19)

3.2.4. Fix W, S, and Yp: Update Z

When fixing W,S, and Yp and removing items that do not contain Z, Equation (8) is
equivalent to the following formula:

L4(Z) = ||XTZ− Yp||2F + α||Z||2,1

= Tr
[
(XTZ− Yp)

T
(XTZ− Yp)

]
+ α||Z||2,1

(20)

Set the partial derivative of L4(Z) over Z to 0, then we gain:

∂L4(Z)
∂Z

= 2
(

XXTZ− XYp + αΛZ
)

(21)

where Λ is a diagonal matrix and its diagonal elements can be computed as follows:

Λii =
1

2

√
c
∑

j=1
z2

ij

, (i = 1, 2, · · · , r), (22)
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To ensure that the denominator meets the definition, a small enough positive constant
∆ is added and Λ is transformed into Λ = diag

(
Λ′11, Λ′22, · · · , Λ′dd

)
that the diagonal

element can be calculated by:

Λ′ii =
1

2

√
c
∑

j=1
z2

ij + ∆

, (i = 1, 2, · · · , r), (23)

When replacing Λ′ with Λ, Equation (21) can be rewritten as follows:

∂L4(Z)
∂Z

= 2
(

XXTZ− XYp + αΛ′Z
)
= 0, (24)

According to Equation (24), Z can be expressed as follows:

Z =
(

XXT + αΛ′
)−1

XYp, (25)

Owing to Λ′ being bound up with Z, Equation (25) is not an analytical solution for
Z. As a result, we need to utilize an iterative update algorithm to solve optimal Λ′ and
Z. That means that after each round of updating W, S, Yp, and Z, we will also update Λ′

according to Equation (23). The overall algorithm optimization is shown in Algorithm 1.

Algorithm 1: Alternative iterative algorithm to solve Equation (8).

Input: The data matrix X ∈ Rr×mn, X(v) ∈ Rrv×mn , and the hyperparameters α.
Output: K selected bands.

1 while not convergence do
2 a).Update W:
3 for i = 1; i ≤ mn do
4 A(i) =

[
Si − S(1)

i , · · · , Si − S(V)
i

]
;

5 Wi =

[
(A(i))

T
A(i)

]−1
1V

1T
V

[
(A(i))

T
A(i)

]−1
1V

;

6 b).Update Z:
7 while not convergence do
8 Z← (XXT + αΛ′)−1XYp ;
9 Λ′ii ←

1

2

√
c
∑

j=1
z2

ij+∆
, (i = 1, 2, · · · , r);

10 c).Update S:
11 for i = 1; i ≤ mn do
12 ai =

β
2 [||Yi

p − Y1
p||2F · · · ||Yi

p − Ymn
p ||2F]T ;

13 Ci = 2 ∗ [S(1)
i S(2)

i · · · S
(V)
i ]Wi − ai;

14 for j = 1; j ≤ mn do

15 φ = 1
2 (Imn − 1mn1T

mn
mn )Ci +

1mn
mn −

πi
2 1mn;

16 Sij ← max(φ, 0);
17 πij ← max(φ, 0);

18 d).Update YP:
19 UΣVT = SVD

(
(γAI−A)Yp + 2XTZ

)
;

20 Yp = UIT
c VT

4. Experiments
4.1. Dataset Descriptions

The proposed method is tested in the experiments on five publicly available benchmark
datasets. These publicly available datasets are presented below:

4.1.1. ROSIS Pavia University Image

The Pavia University (PaviaU) scene has a spatial resolution of 640 × 340 pixels and
115 bands, which covers a spectral range from 430 to 860 nm and contains nine classes.
After removing 12 noisy bands, the remaining 103 bands are utilized for our experiment. It
was acquired by the Reflective Optics System Imaging Spectrometer from the University
of Pavia.
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4.1.2. AVIRIS Indian Pines Image

Another dataset, Indian Pines (IndianP), has a size of 145 × 145 pixels. It has 20 m spa-
tial resolutions and 10 nm spectral resolutions covering a spectrum range of 200–2400 nm.
After removing 20 water absorption bands, the remaining 200 bands have 13 different
classes of ground truth. The data set was acquired by NASA in 1992 using the AVIRIS
sensor from JPL.

4.1.3. AVIRIS Salinas Scene

The Salinas scene is characterized by high spatial resolution (3.7-meter pixels), which
is collected by the 224-band AVIRIS sensor over Salinas Valley, California. After removing
water absorption bands (i.e., bands 108–112, 154–167, and 224) are removed. The remaining
204 bands are utilized for our experiment. The Salinas ground truth contains 16 classes and
comprises 512× 127 pixels.

4.1.4. Botswana Image

The image size of the dataset is 1476 × 256. Pre-processing of the data was per-
formed by the UT Center for Space Research to mitigate the effects of bad detectors,
inter-detector miscalibration, and intermittent anomalies. Water absorption bands and
noise-affected bands are discarded, and the remaining 145 bands have 14 identified
classes. These datasets are all public available (https://www.ehu.eus/ccwintco/index.
php/Hyperspectral_Remote_Sensing_Scenes).

4.1.5. University of Houston

The data were acquired by the NSF-funded Center for Airborne Laser Mapping (NCALM)
over the University of Houston campus and the neighboring urban area, which was provided
by the 2018 IEEE GRSS Data Fusion Contest. The data size is 601 × 2384, including 144 bands
with a spectral range from 380 to 1050 nm. The image contains 20 kinds of different feature
information (https://hyperspectral.ee.uh.edu/?page_id=1075).

4.2. Methods Taken for Comparison

We accessed the classification performance of our algorithm by comparing it with
nine popular band selection techniques, including NC-OC-IE [43], NC-OC-MVPCA [44],
TRC-OC-FDPC [24], UBS [45], ONR [46], LvaHAI [47], SOR-SRL [48], PCA (principal
components analysis), and PCAS (principal components analysis based on manifold struc-
ture) [49] . Our band selection strategy is denoted as the BAMGC method.

Normalized cut-based optimal clustering (NC-OC) is a group-wise selection method.
It searches for optimal clustering results through an optimization method of dynamic
programming and proposes a ranking-based strategy to select representative bands in
each group. We combine NC with information entropy (IE) and the maximum-variance
criterion (MVPCA) as criteria. Fast density-peak-based clustering (TRC-OC-FDPC) employs
a ranking-based as well as a clustering-based scheme, which can automatically identify the
cluster centers and reduce redundancy. The band subset usually has a certain uniformity in
earlier studies, and the index of the selected band should have a certain degree of uniform
distribution. Therefore, UBS simply selects the band uniformly. In optimal neighborhood
reconstruction (ONR), band selection is considered a combinatorial optimization problem.
It chooses a better band combination by evaluating its performance to reconstruct the
original data and applies a noise reducer to minimize the influence of noisy bands. In the
local-view-assisted discriminative band selection method with hypergraph autolearning
(LvaHAl), the whole band space is first randomly divided into several subspaces (LVs) of
different dimensions. For different LVs, a robust hinge loss function for isolated pixels
regularized by the row-sparsity is adopted to measure the importance of the corresponding
bands. Scalable one-pass self-representation learning (SOP-SRL) is a ranking-based scheme
that is proposed to address this problem by processing data in a streaming fashion without
storing the entire data ranking-based. PCA is a widely used dimension reduction method.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://hyperspectral.ee.uh.edu/?page_id=1075
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Its main idea is to project the n-dimensional features to the low-dimensional space to make
new orthogonal features. In addition, based on PCA, PCAS is an improved method by
adding manifold regular term constraints, which can preserve spatial information to a
greater extent.

4.3. Experimental Setting

Considering the complexity and efficiency of the algorithm, we first select a 20× 20× r
sub-block for preliminary experiments, corresponding to the label matrix size of mn × 1.
The BAMGC algorithm is used to process the extracted 400 × r sub-blocks to get the
rank of each band. In this experiment, we use support vector machine (SVM) and k-
nearest neighbor (KNN) classifiers. In order to fairly compare the performance of various
algorithms, the band subsets obtained by different algorithms are processed by the classifier
with the same parameters, and the performance of the algorithm is evaluated by the same
criteria. The kernel function of SVM uses the radial basis function (RBF), and the parameter
settings for different datasets are shown in Table 2. The parameter K employed by KNN is
set to 3 on all datasets (the code of this article can be found on https://github.com/misteru/
BAMGC). Meanwhile, the accuracy (ACC), overall accuracy (OA), and Kappa coefficient
(κ) are employed to demonstrate the performance of different methods, which are obtained
by nesting loops for all parameters. The larger values of the three indexes represent a better
effect. Since the optimal number of bands suitable for different datasets is unpredictable,
we evaluate the performance of algorithms through traversal search. Specifically, it is to
test the effect of different algorithms when selecting the same number of bands on the same
dataset. Furthermore, in order to minimize the number of result subsets, we finally decide
to select the number of bands to test the performance of these algorithms within the range
of {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}. Thus, 10 trials were conducted with different training
samples for reducing the random effect of the results.

Table 2. The table illustrates the SVM parameter settings for each dataset.

Parameter Pavia
University Indian Pines Salinas Botswana University

of Houston

C 10,000.0 100.0 100.0 10,000.0 10,000.0
gamma 0.5 4.0 16.0 0.5 0.5

4.4. Result Analysis

Next, we analyze the results of all 10 algorithms on 5 different datasets separately.

4.4.1. Experimental Results on Pavia University dataset

It can be seen from Figure 2 that the overall effect of the BAMGC method is relatively
consistent. For the SVM, BAMGC has a similar effect to NC-OC-MVPCA when the number
of bands is greater than 12, but before that, its effect is relatively better than others. Com-
pared with LvaHAI and SOR-SRL methods based on sorting strategy, BAMGC shows better
performance, as well as other methods. For the KNN, the OA and κ obtained with BAMGC
increased steadily by increasing the number of selected bands. When the number of bands
is less than 18, its effect is superior to other algorithms, which is similar to ONR when the
number of bands is greater than 18. Although the ONR and LvaHAI occasionally achieved
a higher classification accuracy than the proposed techniques, their performances are not as
consistent as that of BAMGC. Overall, BAMGC shows higher performance on this dataset,
and the visualization of classification is shown in Figure 3. There are ten algorithms in total,
and the visualized images from (b) to (h) are sorted according to the algorithms selected by
increasing OA. Here, we show the seven best algorithms.

https://github.com/misteru/BAMGC
https://github.com/misteru/BAMGC
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Figure 2. The comparison of OA and κ produced by SVM and KNN on the Pavia University dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Asphalt Meadows Gravel Trees

Bare Soil Bitumen Self-Blocking Bricks Shadows

Painted metal sheets

Figure 3. The visualization of classification on the Pavia University dataset. (a) Ground truth;
(b) TRC-OC-FDPC; (c) UBS; (d) PCAS; (e) ONR; (f) NC-OC-MVPCA; (g) NC-OC-IE; (h) BAMGC.

4.4.2. Experimental Results on Indian Pines

Figure 4 shows the result of each algorithm on the Indian Pines dataset. It can be
found that the NC-OC-MVPCA algorithm has an advantage when the number of bands
is 3, 6, and 9. When the number of bands is greater than 12, the performance of BAMGC
exceeds that of the other algorithms, and the classification effect is outstanding when 21 and
27 bands are selected. Especially in the case of KNN, BAMGC obtained an OA of 71.61%
with 27 bands, followed by SOR-SRL (68.26%). In the case of computing all bands, the OA
reaches 66.10%, indicating that BAMGC uses fewer bands to express clearer information
than the full band, reflecting its superior performance. The visualization of the classification
of the Indian Pines dataset is shown in Figure 5.
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Figure 4. The comparison of OA and κ produced by SVM and KNN on the Indian Pines dataset.
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（a） (b) (c) (d)

(e) (f) (g) (h)
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Oats Soybean-notill Soybean-mintill Soybean-clean

Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel-Towers

Figure 5. The visualization of classification on the Indian Pines dataset. (a) Ground truth; (b) PCAS;
(c) PCA; (d) ONR; (e) NC-OC-MVPA; (f) NC-OC-IE; (g) LvaHAI; (h) BAMGC.

4.4.3. Experimental Results on Salinas

Due to the advantages of SVM in dealing with small samples and high-dimensional
data classification, ONR, NC-OC-IE, TRC-OC-FDPC, NC-OC-MVPCA, and BAMGC have
achieved similar results (Figure 6). Nevertheless, under the condition of the KNN that
has weak classification ability, BAMGC has the best result, followed by ONR, NC-OC-IE,
and NC-OC-MVPCA. As shown in Figure 6, the OA and κ obtained with BAMGC firstly
increased sharply by increasing the number of selected bands from 3 to 6. Then, it slowly
grows when the number of selected bands is larger than 15. This also illustrates that
BAMGC has higher accuracy on different classifiers of various datasets. The visualization
of the effect is shown in Figure 7.
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Figure 6. The comparison of OA and κ produced by SVM and KNN on the Salinas dataset.
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Figure 7. The visualization of classification on the Salinas dataset. (a) Ground truth; (b) PCA;
(c) NC-OC-IE; (d) NC-OC-MVPCA; (e) PCAS; (f) ONR; (g) TRC-OC-FDPC; (h) BAMGC.

4.4.4. Experimental Results on Botswana Image

In Figure 8, it can be seen that BAMGC has an advantage when using the SVM and
KNN with the number of bands ranging from 3 to 15. In particular, our algorithm performs
better than others by selecting 15 bands, achieving 87.55% accuracy, especially in the KNN
classifier. However, when the band number is greater than 15, its OA and κ decrease slightly
and show similar results with ONR. Additionally, BAMGC remains relatively consistent
with small fluctuations by increasing the number of selected bands, especially when the
number is greater than 21. In general, the effect of BAMGC on the Botswana dataset is
superior to the other nine comparison algorithms. The visualization of the effect is shown
in Figure 9.
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Figure 8. The comparison of OA and κ produced by SVM and KNN on the Botswana dataset.

4.4.5. Experimental Results on University of Houston

Figure 10 records the statistical results of the ten algorithms on the University of
Houston dataset. It can be seen from the figure that BAMGC, NC-OC-IE, and NC-OC-
MVPCA have similar effects in the SVM classifier, especially when the number of selected
bands exceeds 21. Additionally, the classification effect of these three methods is obviously
better than other algorithms when the number of bands is small. When the KNN classifier
is used, BAMGC, NC-OC-IE, and NC-OC-MVPCA show satisfactory results for various
numbers of bands. It is worth noting that the PCA method has achieved good accuracy
in 12 bands, but it fluctuates with the increase in bands and the effect is unstable. Thus,
when the number of bands is more than 24, the classification accuracy of TRC-OC-FDPC
and BAMGC is relatively close. The visualization of the effect is shown in Figure 11, which
has been stretched to make it clearer.
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(c) (d)

(e) (f)
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Mixed mopane Exposed soils

Figure 9. The visualization of classification on the Botswana dataset. (a) Ground truth; (b) UBS;
(c) NC-OC-MVPCA; (d) SOR-SRL; (e) ONR; (f) LvaHAI; (g) SORSRL; (h) BAMGC.
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Figure 10. The comparison of OA and κ produced by SVM and KNN on the University of Hous-
ton dataset.

4.5. Experimental Result Summary

The experimental result performance of 10 algorithms is analyzed on 5 datasets,
respectively. For all of the data sets with 15 bands selected, BANGC provided the highest
values whether classified by SVM or KNN. We have marked these values in bold in Table 3.
This demonstrates that our proposed BAMGC method has consistent performance using
the different classifiers.
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(e) (f) (g) (h)
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Major thoroughfares Highways Railways Paved parking lots

Unpaved parking lots Cars Trains Stadium seats

Figure 11. The visualization of classification on the University of Houston dataset. (a) Ground
truth; (b) UBS; (c) ONR; (d) TRC-OC-FDPC; (e) PCA; (f) NC-OC-IE; (g) NC-OC-MVPCA; (h) TRC-
OC-FDPC.

Table 3. Results of each algorithm in different datasets with 15 bands selected.

Dataset Method
SVM KNN

OA κ OA κ

Pavia University

UBS 89.00 85.89 84.14 80.00
ONR 90.75 88.08 86.93 83.38

NC-OC-IE 91.73 89.34 85.74 81.92
TRC-OC-FDPC 88.28 84.93 85.40 81.54

NC-OC-MVPCA 91.55 89.11 85.75 81.94
LvaHAI 85.97 82.08 83.40 79.09
SOR-SRL 82.05 77.16 80.19 75.35

PCA 87.85 84.49 80.85 76.11
PCAS 89.32 85.23 80.80 75.23

BAMGC 91.83 89.46 87.29 83.41
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Table 3. Cont.

Dataset Method
SVM KNN

OA κ OA κ

Indian Pines

UBS 73.99 71.91 63.67 61.29
ONR 76.24 74.29 65.81 63.53

NC-OC-IE 76.26 74.20 66.31 63.96
TRC-OC-FDPC 75.34 73.26 67.47 65.14

NC-OC-MVPCA 76.10 74.10 67.02 64.76
LvaHAI 50.14 46.66 42.66 40.24
SOR-SRL 69.03 66.76 63.54 61.17

PCA 73.34 71.17 63.08 60.76
PCAS 68.95 66.39 57.97 55.51

BAMGC 77.47 75.52 68.13 65.84

Salinas

UBS 91.20 90.42 87.92 86.93
ONR 92.01 91.28 88.86 87.94

NC-OC-IE 91.63 90.88 88.19 87.22
TRC-OC-FDPC 92.37 91.67 88.99 88.08

NC-OC-MVPCA 91.68 90.93 88.72 87.79
LvaHAI 88.61 87.66 85.55 84.43
SOR-SRL 90.98 90.18 87.56 86.56

PCA 91.35 90.57 88.21 87.25
PCAS 91.94 90.83 89.33 88.25

BAMGC 92.41 91.67 89.35 88.45

Botswana

UBS 87.78 87.01 82.76 81.78
ONR 88.87 88.15 85.26 84.35

NC-OC-IE 90.34 89.69 83.14 82.16
TRC-OC-FDPC 86.35 85.51 80.65 79.57

NC-OC-MVPCA 88.05 87.29 82.12 81.09
LvaHAI 89.03 88.37 83.66 82.74
SOR-SRL 88.16 87.40 82.66 81.67

PCA 87.71 86.93 81.91 80.89
PCAS 86.25 85.22 77.27 75.99

BAMGC 90.87 90.19 87.55 86.66

Houston

UBS 78.89 74.04 76.34 71.44
ONR 79.38 74.59 75.66 70.66

NC-OC-IE 81.22 76.76 80.21 75.91
TRC-OC-FDPC 79.43 74.66 75.77 70.77

NC-OC-MVPCA 81.77 77.45 80.46 76.20
LvaHAI 65.85 59.25 67.94 62.37
SOR-SRL 69.45 63.25 70.28 64.75

PCA 80.26 75.74 79.73 75.37
PCAS 73.69 67.52 74.49 68.77

BAMGC 81.95 76.91 80.43 76.14

On the Pavla University dataset, NC-OC-IE and NC-OC-MVPCA were almost as
good when classified by SVM, and ONR was almost as good when classified by KNN. We
have marked these values in italics in Table 3. This illustrates that our proposed method
has consistent performance on different classifiers. On the Indian Pines dataset, BAMGC
achieves a more accurate classification effect than the whole band when using 18 bands on
SVM and when using 9 bands for the KNN. In addition, on the Salinas dataset, BAMGC
shows similar optimal performance together with TRC-OC-FDPC. Because the dataset is a
wheat field image, the data has the characteristics of high redundancy, demonstrating that
BAMGC also has consistent performance in removing redundant bands. On the Botswana
dataset, BAMGC mined the spatial information, measured the difference among different
pixels, and further improved the accuracy by band grouping, so it gained an outstanding
result. Therefore, it can be concluded that BAMGC is applicable to various datasets and
different classifiers, reflecting strong stability and high efficiency.
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Overall, when the band subsets include {3, 6, 9, 12, 18, 21, 24, 27, 30} bands, BAMGC
attains the best results. From Table 4, it can be seen that when using 30 bands, BAMGC
consistently gives the best results (Table 4: bold).With the Pavla University dataset, ONR is
nearly as good as BAMGC when classified with SVM and LavHAI is nearly as good when
classified with KNN (Table 4: italics). On the Salinas data, the performance of BAMGC and
TRC-OC-FDPC algorithms are more effective than others under SVM, and that of BAMGC
and SOR-SRL are better under KNN. On the Botswana dataset, BAMGC and LavHAI have
a better effect on the SVM.

We should note that the Salinas scene only has six distinctive classes, which are easier
to discriminate than other datasets. Therefore, the OA and κ on this image are higher than
those on the Indian Pines, Pavia University, and Botswana images, as shown in Table 4. In
order to further demonstrate the effect difference between the above algorithms, we verify
their classification result of them by selecting 15 bands from 5 datasets as band subsets.

By changing the sizes of training samples, the following conclusions can be drawn from
all the experiments, which compare the classification accuracy of all the above methods.
Firstly, the performance of the 10 methods is quite different for 5 datasets. LVaHAI and
SORSRL, for instance, can select a representative subset of bands on the Pavia University
dataset, whereas they perform much worse when applied to the Indian Pines dataset.
On the contrary, our proposed algorithm has stable and excellent performance on each
dataset and different classifiers, especially for Salinas with redundant band information
and Pavia University with large spans of spatially adjacent pixels, reflecting the advantages
of BAMGC in considering both band and spatial conditions. Additionally, we achieve
similar performance to NC-OC-MVPCA on the University of Houston with large size and
complex terrain, and better performance than other algorithms. Additionally, an increase
in the number of bands does not necessarily lead to better performance, because adding
bands that are heavily affected by noise will reduce the accuracy of classification. BAMGC
performs satisfactorily in selecting 15 bands, but after exceeding 15 bands, the efficiency
reaches a plateau or even declines. We calculate the OA of these algorithms when the
number of bands on each dataset is in the range of {3, 6, 9, 12, 18, 21, 24, 27, 30} by SVM,
and then calculate their weighted mean. The mean values, sorted from low to high, are
shown in Table 5. BAMGC achieves the best results (Table 5: bold).

Table 4. Optimal results of each method in 30 bands.

Dataset Method
SVM KNN

OA κ OA κ

Pavia University

UBS 93.41 91.46 85.77 81.95
ONR 93.69 91.81 89.12 86.06

NC-OC-IE 93.33 91.36 86.67 83.08
TRC-OC-FDPC 93.00 90.93 85.89 82.15

NC-OC-MVPCA 93.19 91.20 87.14 83.66
LvaHAI 93.52 91.60 89.18 86.14
SOR-SRL 92.93 90.86 86.90 83.34

PCA 91.93 89.59 83.99 79.76
PCAS 92.08 88.75 85.08 80.27

BAMGC 93.84 92.02 89.51 86.16

Indian Pines

UBS 78.66 76.79 65.54 63.16
ONR 79.63 77.83 67.94 65.71

NC-OC-IE 80.21 78.40 69.85 67.66
TRC-OC-FDPC 80.05 78.22 68.19 65.89

NC-OC-MVPCA 78.55 76.66 68.25 65.97
LvaHAI 59.51 56.77 48.15 45.82
SOR-SRL 78.19 76.39 68.26 66.00

PCA 77.11 75.18 67.38 65.10
PCAS 77.82 75.69 65.89 63.44

BAMGC 81.29 79.61 71.61 69.42
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Table 4. Cont.

Dataset Method
SVM KNN

OA κ OA κ

Salinas

UBS 92.64 91.96 89.02 88.11
ONR 92.95 92.29 89.23 88.33

NC-OC-IE 92.70 92.02 88.96 88.04
TRC-OC-FDPC 93.04 92.39 88.99 88.08

NC-OC-MVPCA 92.88 92.23 89.10 88.20
LvaHAI 92.27 91.57 87.28 86.25
SOR-SRL 92.57 91.88 89.35 88.45

PCA 92.67 92.00 88.78 87.85
PCAS 91.94 90.83 89.33 88.25

BAMGC 93.44 92.78 89.54 88.66

Botswana

UBS 89.35 88.65 85.56 84.68
ONR 90.31 89.66 86.89 86.07

NC-OC-IE 90.34 89.69 84.78 83.87
TRC-OC-FDPC 88.91 88.18 84.61 83.69

NC-OC-MVPCA 91.23 90.63 84.81 83.91
LvaHAI 91.84 91.33 86.30 85.49
SOR-SRL 91.57 90.99 84.16 83.22

PCA 90.14 89.48 84.06 83.12
PCAS 90.23 89.37 82.31 81.14

BAMGC 92.24 91.64 87.83 86.96

Houston

UBS 82.24 78.00 76.59 71.72
ONR 82.01 77.72 77.42 72.65

NC-OC-IE 84.16 80.27 80.96 76.75
TRC-OC-FDPC 84.06 80.15 81.15 76.97

NC-OC-MVPCA 84.14 80.25 80.99 76.79
LvaHAI 80.49 75.99 75.56 70.62
SOR-SRL 81.00 76.58 75.82 70.90

PCA 84.13 80.23 80.70 76.48
PCAS 84.20 80.29 78.40 73.22

BAMGC 84.56 80.34 81.00 76.69

Table 5. The table illustrates the weighted mean of OA when SVM is used.

Pavia
University

Indian
Pines Salinas Botswana University of

Houston
Mean
Value

LvaHAI 84.99 50.26 86.87 84.74 67.26 74.83
SOR-SRL 83.90 68.47 89.87 83.46 69.24 78.99

PCAS 85.91 67.37 90.58 81.03 73.48 79.67
PCA 84.79 69.38 89.54 80.75 74.76 79.85
UBS 89.10 69.89 88.50 84.77 75.68 81.59

TRC-OC-FDPC 88.78 74.34 91.67 84.89 76.58 83.25
ONR 89.38 74.54 91.36 86.58 77.23 83.82

NC-OC-IE 89.20 75.63 91.19 85.92 78.12 84.01
NC-OC-MVPCA 89.12 74.89 91.31 86.94 78.33 84.12

BAMGC 90.17 76.19 91.80 88.54 79.02 85.14

Yet this does not affect the algorithm completing the task of band selection, and we can
infer from these facts that our method can obtain superior classification results with fewer
bands, which indicates that it is sensitive to discriminative bands. Moreover, the sensitivity
of hyperparameters involved in the proposed method is also tested to validate the effect, as
shown in Figure 12 for α, Figure 13 for β, Figure 14 for the number of groups, and Figure 15
for σ. To sum up, the experimental results verify the validity of the proposed method.



Remote Sens. 2022, 14, 4379 21 of 23

(a) (b) (c) (d) (e)

Figure 12. The sensitivity of hyperparameter α on the five datasets. (a) Pavia University; (b) Indian
Pines; (c) Salinas; (d) Botswana; (e) Houston University.

(a) (b) (c) (d) (e)

Figure 13. The sensitivity of hyperparameter β on the five datasets. (a) Pavia University; (b) Indian
Pines; (c) Salinas; (d) Botswana; (e) Houston University.

(a) (b) (c) (d) (e)

Figure 14. The sensitivity of hyperparameter, the number of groups, on the five datasets. (a) Pavia
University; (b) Indian Pines; (c) Salinas; (d) Botswana; (e) Houston University.

(a) (b) (c) (d) (e)

Figure 15. The sensitivity of hyperparameter σ on the five datasets. (a) Pavia University; (b) Indian
Pines; (c) Salinas; (d) Botswana; (e) Houston University.

5. Conclusions

In this article, we propose an unsupervised band selection method for hyperspectral
images based on band grouping and adaptive multi-graph constraint (BAMGC). This
method solves the problem of different significance and redundancy of bands by grouping
original data and then combining them with weights. The global similarity matrix is
reconstructed by local similarity and the weight matrix to preserve the spatial structure
information. Furthermore, unsupervised adaptive graph constraints are introduced in order
to further optimize the model. We address the model optimization problem by the iterative
algorithm and then obtain the best parameters for it. A large number of experimental
results show that BAMGC gives consistent results in a wide range of situations and is
superior compared to the other nine advanced band selection methods.
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