
����������
�������

Citation: Wang, X.; Fu, L.; Cheng, N.;

Sun, R.; Luan, T.H.; Quan, W.;

Aldubaikhy, K. Joint Flying Relay

Location and Routing Optimization

for 6G UAV–IoT Networks: A Graph

Neural Network-Based Approach.

Remote Sens. 2022, 14, 4377. https://

doi.org/10.3390/rs14174377

Academic Editor: Okan Yurduseven

Received: 13 July 2022

Accepted: 30 August 2022

Published: 3 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Joint Flying Relay Location and Routing Optimization for 6G
UAV–IoT Networks: A Graph Neural Network-Based Approach

Xiucheng Wang 1 , Lianhao Fu 2, Nan Cheng 1,*, Ruijin Sun 1, Tom Luan 3, Wei Quan 4 and Khalid Aldubaikhy 5

1 School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
2 School of Artificial Intelligence, Xidian University, Xi’an 710071, China
3 School of Cyber Engineering, Xidian University, Xi’an 710071, China
4 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
5 Department of Electrical Engineering, Qassim University, Buraydah 52571, Saudi Arabia
* Correspondence: dr.nan.cheng@ieee.org

Abstract: Unmanned aerial vehicles (UAVs) are widely used in Internet-of-Things (IoT) networks,
especially in remote areas where communication infrastructure is unavailable, due to flexibility and
low cost. However, the joint optimization of locations of UAVs and relay path selection can be very
challenging, especially when the numbers of IoT devices and UAVs are very large. In this paper,
we formulate the joint optimization of UAV locations and relay paths in UAV-relayed IoT networks
as a graph problem, and propose a graph neural network (GNN)-based approach to solve it in an
efficient and scalable way. In the training procedure, we design a reinforcement learning-based relay
GNN (RGNN) to select the best relay path for each user. The theoretical analysis shows that the
time complexity of RGNN is two orders lower than the conventional optimization method. Then,
we jointly exploit location GNN (LGNN) and RGNN trained to optimize the locations of all UAVs.
Both GNNs can be trained without relying on the training data, which is usually unavailable in the
context of wireless networks. In inference procedure, LGNN is first used to optimize the location of
UAVs, and then RGNN is used to select the best relay path based on the output of LGNN. Simulation
results show that the proposed approach can achieve comparable performance to brute-force search
with much lower time complexity when the network is relatively small. Remarkably, the proposed
approach is highly scalable to large-scale networks and adaptable to dynamics in the environment,
which can hardly be achieved using conventional methods.

Keywords: UAV; IoT network; graph neural network; scalability; reinforcement learning

1. Introduction

With the trend of seamless connection and supporting vertical services, in 6G net-
works, there will be a large amount of Internet-of-Things (IoT) devices deployed in diverse
scenarios to carry a wide range of applications, such as data collection and emergency
detection [1–3]. However, most IoT devices may be deployed in remote areas such as
remote suburban and rural areas, even mountains and deserts. In such regions, IoT devices
cannot communicate with others directly due to the long distance between them, and
infrastructures like base stations (BSs) are usually missing due to high economic costs [4–6].
Therefore, it is necessary to deploy flexible and low-cost relays to satisfy the communica-
tion demands of IoT devices [7]. As a promising technology, unmanned aerial vehicles
(UAVs) have attracted much attention from wireless communications researchers due to
their flexibility and low cost. According to [8], the research on UAVs in wireless com-
munications can be divided into three main directions, UAV-aided ubiquitous coverage,
information dissemination, and relaying. It has been demonstrated that a UAV can be
used to extend the coverage of wireless networks, provide services to more users [4], and
enhance communication performance for remote users in wireless networks [6,9–11].

Nowadays, many methods have been used to optimize the performance of UAV
networks, e.g., convex optimization [5], stochastic geometry [12], and learning-based

Remote Sens. 2022, 14, 4377. https://doi.org/10.3390/rs14174377 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14174377
https://doi.org/10.3390/rs14174377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1439-4875
https://orcid.org/0000-0002-4051-815X
https://doi.org/10.3390/rs14174377
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14174377?type=check_update&version=2

Remote Sens. 2022, 14, 4377 2 of 26

strategy [4,13]. However, in sixth generation (6G) communication networks, especially in
IoT networks, there are five main challenges to the application of traditional optimization
technology or learning-based methods.

• High performance. In a 6G network, there will be a large amount of image and
video monitoring tasks for IoT devices, and transmitting such data requires high
communication rates [1]. It is usually required to jointly optimize the trajectories,
relay paths, transmit powers, and so forth of the UAVs and IoT devices to maximize
the communication rates. However, this joint optimization is generally not a convex
problem, and it is challenging to find the optimal solution quickly [5]. In addition,
traditional optimization methods such as alternating minimization (AM) algorithm
usually fall into the false local optimal [14].

• High efficiency. In the 6G IoT network, the number of IoT devices can be very large,
and thus the algorithm’s time complexity should be very low to deal with the large-
scale optimization problem [15]. In addition, the ultra-low latency requirements
of certain 6G services make the algorithm’s execution time significantly affect the
quality of service (QoS), examples of which are mobile IoT services [16]. Therefore, the
algorithm should be executed by the system in a very efficient way such that the QoS
can be improved. Thus, exploiting traditional optimization and heuristic algorithms
is challenging since they usually need a long time to generate a solution, especially
when the network scale is large.

• High Robustness. As IoT devices may be moving, the algorithm should be robust
to small changes in the locations of the IoT device, i.e., the optimization results
can be directly inferred from the algorithm without iteration-based execution or re-
training. Traditional optimization algorithms need to be executed again as long as the
environment changes, resulting in extra delays when the environment is not sTable
Unfortunately, using traditional neural network (NN) methods is challenging due to
their low generalizability [17].

• High Scalability. In 6G networks, there will be many periodic hibernations and time-
triggered switch-on IoT devices [18]. Thus, the scale of the network can be changed at
different times. This requires the algorithm to be scalable to the increasing/decreasing
number of users in the network. However, traditional multi-layer perception (MLP),
convolutional neural networks (CNN), and recurrent neural networks (RNN), even
attention-based transformer network has no such scalability [19].

• Low complexity. Usually, in UAV networks the optimization algorithm runs on
the UAV’s processor. However, it is difficult for UAVs to carry high-performance
computing chips due to limitations such as UAVs’ weight and energy consumption.
Moreover, in 6G IoT networks, the number of users and UAVs might be very large,
leading to a possible increase in the algorithm complexity [5]. Therefore, the algorithm
should have low time complexity to improve the efficiency and low space complexity
such that the algorithm can run on the UAV without memory overflow, even when it
deals with very large IoT networks.

In recent years, an emerging neural network architecture named the graph neural
network (GNN) has gained increasing attention [20]. GNNs can discover not only features
of data but also relationships between them using a graph structure, which significantly
improves the power to analyze data [21]. Therefore, GNN has been successfully applied
in many fields, e.g., community detection [22], drug design [23], and combinatorial opti-
mization [24]. Furthermore, the message passing mechanism in GNN is highly consistent
with distributed optimization algorithms [25]. Thus, GNN-based optimization algorithms
are successful in several areas of wireless communication networks, such as power alloca-
tion [19], signal detection [26], network slicing [27], and virtual network function (VNF)
design [28]. Due to the message passing mechanism, GNNs do not need to process data
from all users simultaneously but only from each user locally. Therefore, the number of
trainable parameters in GNNs is significantly lower than in traditional neural network ar-
chitectures such as MLPs and CNNs, inducing much lower computational complexity [29].

Remote Sens. 2022, 14, 4377 3 of 26

This allows GNNs to be easily deployed in UAVs with poor computational and storage
capabilities. Moreover, as the message passing of GNN is structure-independent, the GNN
has good scalability and can flexibly cope with network scenarios with different numbers
of users and topologies.

In this paper, we focus on a general scenario in remote areas with no terrestrial
communication infrastructures, where multiple IoT devices communicate with others using
UAVs as relays. Inspired by the above distinctive features of GNN, we proposed a GNN-
based method to jointly optimize UAV-relay location and routing in order to enable efficient
simultaneous data transmissions among multiple pairs of ground IoT devices. The major
contributions are summarized as follows.

(1) We model the problem of joint relay path selection and UAV location optimization in
multi-user multi-UAV networks as a graph optimization problem and solve it using a
GNN-based approach. Compared with traditional optimization-based methods and
non-GNN neural network-based methods, GNN models have the benefits of flexible
structure, lower computation requirement, and fast convergence, making them very
suitable in dynamic environments of UAV networks and UAVs with low power and
computation capabilities.

(2) We propose a two-stage GNN-based optimization framework. The problem is decou-
pled into optimal relay path selection and UAV position optimization, each of which
is solved by an individual GNN model. Through this, the complexity of the initial
problem is significantly reduced, and the learning convergence and performance
are improved.

(3) With the two-stage framework, in the training procedure, a relay GNN (RGNN) is
first trained to select the best relay path, and a location GNN (LGNN) is trained to
optimize the locations of UAV relays with trained RGNN to select the paths such that
the loss of LGNN can be calculated. Specifically, we exploit reinforcement learning and
unsupervised learning to train RGNN and LGNN, respectively, which do not require
any training data or knowledge of optimal solutions. In the inference procedure,
LGNN is first used to optimize the location of UAVs, and then RGNN is used to select
the best relay path based on the location of UAVs optimized by LGNN.

(4) We evaluate the performance of the proposed method through extensive simulations.
The results show that the proposed method achieves comparable performance to brute-
force search with much lower time complexity. Furthermore, the proposed method is
also scalable to very large networks and can adapt to environmental dynamics, which
is significant in UAV–IoT networks.

The remainder of the paper is organized as follows. In Section 2, we give a brief
introduction to graph neural networks and long short-term memory. Section 3 describes
the system model, and the joint optimization problem of the location of UAVs and relay
path selection is formulated. The proposed GNN-based method is described in Section 4.
Section 5 evaluates the performance of the proposed method, and Section 6 concludes
the paper.

2. Related Work and Preliminary
2.1. Related Work

In recent years, many works focuse on the optimization of the communication quality
in IoT networks. Some early studies optimize the location of a single or small number
of UAVs [30,31]. The joint location optimization of multi-UAVs has a broader prospect
in practical applications. Taking into account the timeliness, Galkin [32] uses the more
traditional and efficient Kmeans clustering algorithm to plan the location of each UAV
and determine the service objects of each UAV with high efficiency but sacrificing some
performance. With higher optimization requirements, most studies are proposed based on
convex optimization and evolution algorithms.

In the deployment of multiple UAVs, some works obtain local optimal solutions
based on the local information. For example, in the research of Huang [33], the coverage

Remote Sens. 2022, 14, 4377 4 of 26

maximization algorithm is used to find the local optimal solution, which only needs local
information. The calculation of the algorithm is simple and can be completed in real-
time. Another work from Huang [34] uses a distributed solution. An efficient sub-region
partitioning method is proposed to make each UAV serve almost equal traffic demands and
minimize the maximum traffic demand of the sub-regions under the constraints of the traffic
demand and the shape of the sub-regions. Besides, a local search procedure to relocate
the UAV using the backtracking line search algorithm is proposed in this work. Solutions
based on local information are usually easier to achieve fast solutions, but usually, only
locally optimal solutions can be obtained, which can be useful in some specific situations.
There is more work using global information to optimize UAV locations.

Since there are many works focusing on linear programming and other convex opti-
mization methods to solve the UAV deployment problem, the work of Cicek [35] conducts
a comprehensive survey of the literature on UAV position optimization. In this work, a
general optimization framework is constructed through a general mixed integer nonlinear
programming (MINLP) formulation, and the specification of its components is specified.
Sabzehali [36] formulates the UAV locations optimization problem as integer linear pro-
gramming and proposed a low-complexity algorithm. A novelty work from Kang [37]
proposes placement learning based on Gibbs-sampling-based (GSB), which gradually learns
sub-optimal UAV locations by generating a series of sampling for the UAV locations that
constitute a Markov chain where the transition probability determined by the maximum
and minimum rates of the different configurations placed by the UAV. However, this work
is difficult to adapt to dynamic IoT networks, and the convergence speed is highly depen-
dent on the initial UAV locations. The methods based on linear programming and convex
optimization usually achieve satisfactory solutions, but the time complexity is high, and
they are usually difficult to adapt to dynamic IoT networks. Especially for large-scale IoT
networks, it is difficult to obtain a better solution in real-time.

Since UAV location optimization problems are often modelled as non-convex problems
such as mixed-integer optimization problems, which is difficult for convex optimization to
obtain a better solution in real-time, heuristic algorithms, especially genetic algorithms, are
also often used to optimize UAV deployment problems. Košmerl [38] proposed a method
with the genetic algorithm as the core principle for complete coverage with a minimum
number of UAVs for Portable Ground Station and Low Altitude Platform. Kalantari [39]
proposed a heuristic algorithm based on particle swarm optimization. In this work, the
number of UAVs and their 3D layouts are estimated while the coverage and capacity
constraints of the system are satisfied. Otherwise, Plachy [40] investigated the performance
of two joint association and localization methods based on Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). The methods based on the evolution algorithm can
usually achieve satisfactory results, but it is difficult to obtain a solution in a short time,
especially with rapidly changing IoT communication requirements.

With the rapid development of deep learning, more and more scholars use deep
learning technology to solve UAV-Assisted communication-related problems [41]. In [42] a
CNN-based method is used to optimize the placement of the sensor in the sensors network,
and in [43] DDQN is used to solve the task scheduling problem by RL. The actor-critic-based
RL method is proposed to solve the comprehensive offloading problem in satellite-UAV-
ground network [4]. However, there are relatively few related studies optimizing the
location of UAVs through the deep neural network model directly. Our paper contributes a
scheme of using neural networks to optimize UAV locations.

2.2. Preliminary
2.2.1. Graph Neural Networks

GNN is designed to deal with the problems associated with a graph which is of non-
euclidean structure. A graph consists of a node-set and an edge set. Each node v has feature xv,
and node v is connected with its neighbouring nodes through edges. GNN propagates and
aggregates features through edges to learn the representation of nodes. The main purpose of
GNN is to study node features xv by extracting information from neighbouring nodes [44].

Remote Sens. 2022, 14, 4377 5 of 26

The most important part of the GNN structure is the message passing mechanism, including
message propagation and message aggregation. The framework of GNN is described as

mv
u = φ(xl−1

v , xl−1
u) ∀u ∈ N (v), (1)

xl
v = Ψ(xl−1

v , ρ({mv
u : u ∈ N (v)})). (2)

where N (v) is the set of neighboring nodes of node v. xl−1
v is the feature of node v in

layer l − 1 and xl−1
u represents the feature of one neighboring node u. φ(·) represents the

parametric message propagation function which determines the message passing from
neighbourhood u to node v. mv

u represents the message propagated from neighboring node
u to v. In Equation (2), ρ(·) represents the aggregation function which aggregates all the
message from neighboring nodes. The aggregation function used to be set to “Mean”,
“Add” or “Max”. Function Ψ(·) updates the features of node v according to feature xl−1

v
and the message aggregated.

2.2.2. Long Short Term Memory

Long short-term memory (LSTM) is a special kind of recurrent neural network (RNN)
suitable for learning long sequences. An LSTM block generally consists of a cell state, a
hidden state, and three gates, i.e., forget gate, input gate, and output gate. The cell state ct
serves as the memory for storing past inputs’ information. The hidden state ht is the output
vector in the t-th LSTM unit and will be passed to the next LSTM unit. The forget gate ft
determines how much information of cell state ct−1 from the last unit will be passed to
the current cell state ct. The input gate decides the amount of information of input vector
xt and hidden state ht−1 from the last unit delivered to the current cell state ct. Moreover,
the output gate determines the information current cell state ct transferred to the current
hidden state ht, which is also used as the output vector. The forget gate, input gate and
output gate are given respectively by [45]

ft = σ(W f xt + U f ht−1 + b f), (3)

it = σ(Wixt + Uiht−1 + bi), (4)

ot = σ(Woxt + Uoht−1 + bo). (5)

where W f , Wi, and Wo are associated with input vector xt are the weights of forgetting gate,
input gate, and output gate, respectively, while the weights U f , Ui, and Uo are associated
with hidden state vector ht−1. b f , bi, and bo are the bias vectors. σ(·) is the sigmoid function
that serves as the activation function. The cell state ct and hidden state ht with these gates
are updated as

ct = ftct−1 + it tanh(Wcxt + Ucht−1 + bc), (6)

ht = ot tanh(ct), (7)

where Wc and Uc are the weights, and bc is the bias. LSTM is widely used in processing long
sequences, but the order of the information passing affects the representations seriously.
BiLSTM [46], with information passing bidirectionally in each layer of LSTM networks, can
relieve the impact of the order of information passing.

3. System Model and Problem Formulation
3.1. System Model

In this paper, we consider the scenario that there are multiple IoT devices in remote
areas and need to transfer data to other IoT devices, which is very common in intelligent
agriculture. The system controller or automatic machinery needs to analyze information
from remote areas to determine if specific equipment, i.e. automatic welding machine,
automatic pesticide spreader, automatic watering machine, needs to be activated [47–50].
However, due to the sparse geographical distribution of IoT devices and the lack of terres-

Remote Sens. 2022, 14, 4377 6 of 26

trial communication infrastructure in remote areas, IoT devices are considered incapable of
communicating with each other directly. Although satellites can be used to support the
communication requirement between users, the cost of using satellites is too high, and the
moving speed of satellites is too high to provide stable and continuous service to users
in a certain area [51]. As a result, in this paper, the satellite is only used as a centralized
controller to optimize the location of UAVs and relay paths, while the UAVs are used as
mobile relays to assist the data transfer. In this paper, we consider K pairs of IoT senders
and receivers (In this paper, we use the term user to represent an IoT device, i.e., a sender
and a receiver.) and M UAVs. To simplify the problem, we consider that one IoT sender
has the request to transfer data to a specific IoT receiver and vice versa. We further assume
that for each UAV, it can communicate with the IoT devices and other UAVs at a distance
of up to ξ meters.

To generalize the relay problem, every UAV can be used as the relay node for users
and UAVs within the coverage area, and the number of hops is not limited until the user
receives the data, thus the minimum number of hops is 1, and the maximum number of
hops is the same as the number of UAVs M. In addition, each pair of users selects the relay
path respectively, and the number of hops among different pairs of users can be different.
For example, in Figure 1 the sender 1 can select UAV 1 or UAV 2 as the first relay hop,
as they are within the communication coverage. Then, if UAV 2 receives the data from
sender 1, it can transmit the data to receiver 1 or to UAV 3 based on the quality of the link,
but UAV 2 cannot transmit data to UAV 1 because this will lead to a loop in relay path.
Therefore, there are a total 4 optional relay paths for sender 1, and the relay path selection
method of sender 2 is same as sender 1.

For Each Pair of
Sender and Receiver

Communication Link
Optional Relay Path for Sender 1

Optional Relay Path for Sender 2

Sender 1

Sender 2

Receiver 2

Receiver 1

UAV 1 UAV 2
UAV 3

Sender 1

Sender 2

Receiver 2

Receiver 1

Sender 1

Sender 2

Receiver 2

Receiver 1

UAV 1
UAV 2

UAV 3

Figure 1. The illustration of the system model, where M = 3, K = 2. The relay path for each pair of
users is selected independently, and there can be multiple users and UAVs.

considering the high deploying costs of UAVs, its more efficient to deploy the minimal
number of UAVs as long as all IoT users are covered. Thus, similar to [4–6] in this paper we
focus on the scenario that the K � M. Obviously, when there are M UAVs in the network,
which can cover a maximum network area of Mξ2π. Therefore, in this paper, the network
area is proportional to the maximum coverage area for M UAVs.

To elucidate the essence of the underlying problem and emphasis the influence of
location of UAVs and relay path network on average communication rate, in this paper,
the simple yet typical orthogonal frequency division multiplexing (OFDM) is considered.
Every data link, including UAV–IoT device links and UAV–UAV links, can use a specific
frequency with equal bandwidth B to transmit the data. In addition, for simplicity, the
transmit powers of all users, including IoT devices and UAVs, are considered the same,
denoted by P. Consider a path from a sender device to a receiver device composed of

Remote Sens. 2022, 14, 4377 7 of 26

multiple hops, and apparently, the flow rate of the path is determined by the least rate
among the hops. Generally, the channel model consists of the large-scale path-loss and the
small-scale channel fading, however, since the small-scale channel information changes
in the time-scale of millimeter second, it is impossible to design the location of UAVs
according to this fast-varying channel state information. Thus, in this paper, only large-
scale characteristics are considered [52,53]. Therefore, the flow rate fs of sender s can be
calculated by

fs = min
is

ris = min
is

B log2

(
1 +

g0P
BN0dγ

is

)
, (8)

where ris is the rate of hop i for data from sender s, dis is the distance between the two nodes
of hop is, g0 is the path loss for unit distance, γ is the path-loss exponent, and N0 is the
additive white Gaussian noise (AWGN) at the receiver. It can been seen from Equation (8)
that the flow rate f is finally determined by the hop with minimal distance di. In this
paper, given K pairs of senders and receivers, the UAVs locations and the paths of each pair
should be jointly optimized to maximize the total system flow rate, i.e.,

max
K

∑
j=1

f j, (9)

3.2. Problem Formulation

To formulate the problem, we use a weighted undirected graph G = (V , E) to represent
the topology of all users and UAVs. The vertex set V represents the nodes in the network,
including IoT devices and UAVs. The edge set E represents wireless links. N (u) is the set
of all neighbour nodes of node-u. The set V consists sender device set Vs, receiver device
set Vr, and UAV set Vu, where |Vs| = |Vr| = K, |Vu| = M, thus V = {Vs,Vr,Vu}. Define V r

s
as the set of receivers for sender user s. The feature of node i is its location di. The link
eij ∈ E if and only if i, j ∈ Vu or i ∈ Vs

⋃ Vr, j ∈ Vu. The weight of link eij is the transmission
rate rij between node i and node j.

Given the graph G, we formulate the problem considering the following decision variables:

- A set of binary variables X =
{

x1, x2, · · · , x|Vs |

}
, where xs =

{
xij

s |i, j ∈ V
}

is set of

relay path for sender s, and xij
s = 1 if node i, j are used to transmit data from sender i,

otherwise xij
s = 0.

- A set of continuous variables F =
{

f1, f2, · · · , f|Vs |

}
, where fs =

{
f ij
s |i, j ∈ V

}
is the

data flow from sender s, and f ij
s is the amount of traffic from node i to node j to relay

data from sender s.
- A set of continuous variables D =

{
d1, d2, · · · , d|Vu |

}
, where du is the location of

UAVs u.

Therefore, the problem of maximizing the communication rate for all pairs of users
can be formulated as the following network flow maximization problem.

The objective function (17) aims at maximizing the flow from all senders, which is
equal to maximizing the sum rate of all pairs of users as Equation (9). Note that when the
UAVs position D and the relay path X are determined, the value of each f that maximizes
the objective function is necessarily equal to the lowest hop rate in the relay path. Therefore,
we just need to optimize the UAVs position D, and relay path X . Constraint (11) shows
that the flow between two nodes cannot be larger than the communication rate between
them. Since the UAVs should transmit all received data to another neighbor nodes, the
received flow from all neighbor ∑i∈N (j) xij

s f ij
s should equal to the flow transmitting to other

neighbor nodes ∑i∈N (j) xji
s f ji

s = 0. Constraint (13) ensures the sender’s flow is equal to the
receiving flow of its corresponding receiver. Constraints (14) and (15) ensure that the data
from sender s is only transmitted to one neighboring node. Constraint (16) determines

Remote Sens. 2022, 14, 4377 8 of 26

the communication rate between node i and node j, and when the distance between user
and UAV or two UAVs is longer than ξ the communication link between them cannot be
established, thus the rate is set to be 0. As mentioned above, to simplify the problem, we
assume that α is the same for all nodes, i.e., same transmit power. However, the proposed
approach can be easily extended to general cases.

Problem 1.

max
X ,D ∑

s∈Vs

∑
u∈Vu

f su
s (10)

s.t. f ij
s ≤ rij

s ∀i, j ∈ V ∧ ∀s ∈ Vs (11)

∑
i∈N (j)

xij
s f ij

s − ∑
i∈N (j)

xji
s f ji

s = 0 ∀j ∈ Vu ∧ ∀s ∈ Vs (12)

∑
u∈Vu

xsu
s f su

s − ∑
u∈Vu

xur
r f ur

r = 0 r ∈ V s
r ∧ ∀s ∈ Vs (13)

∑
j∈N (i)

xij
s ≤ 1 ∀i ∈ V ∧ ∀s ∈ Vs (14)

xij
s =

{
1 f ij

s 6= 0,
0 otherwise.

∀i ∈ V ∧ j ∈ N (i)∀ ∧ ∀s ∈ Vs (15)

rij
s =

 B log2

(
1 + g0P

BN0‖di−dj‖
γ
2

)
‖di − dj‖2 ≤ ξ,

0 otherwise.
∀s ∈ Vs ∧ ∀i, j ∈ V (16)

4. GNN-Based Efficient and Scalable Solution
4.1. Two-Stage Training and Inference Algorithm

According to Problem 1, there are two objectives in this system, i.e., determining
the locations for all UAVs and selecting a relay path for each pair of sender and receiver.
Since the target is to maximize the overall system rate, the locations of UAVs should be
determined based on how the relay paths are selected for all users. Therefore, we first
design an algorithm for selecting an optimal relay path for all users when UAVs are in
any position and then design another algorithm for determining the UAV positions. The
problem of choosing the optimal relay path for each sender s can be formulated as

Problem 2.

P2s : max
X ∑

u∈Vu

f su
s (17)

s.t. f ij
s ≤ rij

s ∀i, j ∈ V ∧ ∀s ∈ Vs (18)

∑
i∈N (j)

xij
s f ij

s − ∑
i∈N (j)

xji
s f ji

s = 0 ∀j ∈ Vu ∧ ∀s ∈ Vs (19)

∑
u∈Vu

xsu
s f su

s − ∑
u∈Vu

xur
r f ur

r = 0 r ∈ V s
r ∧ ∀s ∈ Vs (20)

∑
j∈N (i)

xij
s ≤ 1 ∀i ∈ V ∧ ∀s ∈ Vs (21)

xij
s =

{
1 f ij

s 6= 0,
0 otherwise.

∀i ∈ V ∧ j ∈ N (i)∀ ∧ ∀s ∈ Vs (22)

Therefore, we can use two GNNs to solve Problem 1, one to optimize the positions
of all UAVs D, and the other to select relay paths X . Although D and X are coupled in
Problem 1, the neural network can learn their relationship through gradient propagation

Remote Sens. 2022, 14, 4377 9 of 26

and jointly optimize D and X . Therefore, as is shown in Figure 2, we train a reinforcement
learning-based relay GNN (RGNN), which is used to solve the Problem 2. Then, we use
the location GNN (LGNN) to optimize the locations of all UAVs. The performance of the
best relay path is used to optimize the LGNN, such that the optimization goal of the LGNN
is the best performance under the current network topology. Unlike the AM algorithm,
we do not need to iterate multiple times, but only need to train each model only once.The
details of how to train RGNN and LGNN are shown in Algorithm 1. After training, the
algorithm first uses LGNN to optimize the locations of all UAVs and RGNN to select the
best relay paths for all users based on the locations of all UAVs and users, and the details of
how to use RGNN and LGNN to optimize the location of UAVs and relay paths are shown
in Algorithm 2.

LSTM …

Embedding

……

UAVs Users

LGNN

Linear Embedding LSTM Embedding

Pre-Trained RGNN

Best Relay PathSNR LOSS

Back-Propagation
Learning

Inference Process

Training Process

……

Information Exchanging among UAVs

…

…

.

.

.

.

.

.

.

.

.

.

.

.

...

LSTM LSTM LSTM

Locations of UAVs

Figure 2. The structure of GNN driven relay and UAV location optimization method. In the training
process, we first train an RGNN to optimize the relay path. Then we train the LGNN based on the
relay path selected by RGNN. In the inference process, we optimize the location of the UAVs with
LGNN first, then we use RGNN to select the best relay path for each pair of users.

There are four main advantages of the proposed two-stage training and inference
framework. Firstly, we decompose Problem 1 into two sub-problems, and use two NN to
solve each sub-problem, thus reducing the decision space for each NN, which is helpful
to converge fast. Secondly, since each NN only needs to learn the features relevant to its
problem, its features are more capable of extracting the valuable features pertinent to the
specific sub-problem. Thus, the performance is further improved. In addition, it has been
proved that decomposing the problem into multiple cascaded sub-problems and using
different NNs to solve these sub-problems helps improve the robustness of the NN and the
ability of the NN to handle data outside the training sample distribution [54]. Therefore, the
proposed method improves the robustness of GNN. Moreover, depending on the accuracy
and computational latency requirements, we can replace any GNN with an NN using
arbitrary architecture, even heuristics and traditional optimization algorithms.

4.2. RGNN Based Relay Selection Method
4.2.1. Reinforcement Learning Based RGNN Training Method

The best relay path for each pair of users can be obtained by Bellman-Ford (BF)
algorithm [55]. However, since the complexity of BF is O(|Vs||Vu|3), it is challenging for

Remote Sens. 2022, 14, 4377 10 of 26

BF to get the best relay path when the number of users and UAVs is huge. In this paper,
we propose a reinforcement learning-based GNN method, named RGNN, to obtain the
best relay path for all users with low complexity. The advantage of the proposed approach
on low complexity is proved later in this part. The RL framework in RGNN is described
as follows.

State: Since all users cannot be used as relay nodes, the state space for each pair of
sender s and receiver r is a graph Gs =

(
V all

s , Es

)
, where V all

s = Vu
⋃{s, r}, and Es is the

subset of E that removes edges formed by nodes not in V all
s . Besides, in order for the RGNN

to know which nodes can be selected as next-hop relay nodes, the state space also contains
the currently selected relay nodes V selected

s and the nodes that can be selected Vnext
s , where

Vnext
s = V all

s \V selected
s . Therefore, the state S =

{
Gs,V selected

s ,Vnext
s

}
, the state in t is denoted

by st. Moreover, in the initial state, V selected
s = {s}.

Action: Since the RGNN needs to select one node as next-hop, the action space
A = Vnext

s , and the action in t is denoted by at. The relay selection process ends when
receiver r is in V selected

s .
Reward: Since the communication rate of a pair of users is represented by distance,

the agent should select nodes to minimize the longest distance between any two nodes in a
relay path.

R = max
∀vt∈V selected

s

{
−‖dvt − dvt+1‖

}
, (23)

where vt is the t-th hop relay node, the reward is negative to the maximum distance in
relay path, and thus when RL maximizes the reward, the distance will be decreased.

According to Equation (23), we define the objective function of RGNN as

ψ = max R = min Es∈Vs

[
max

vt∈V selected
s

{‖dvt − dvt+1‖}
]

. (24)

Since we use RL to select the best next-hop relay node, the RGNN cannot know
how good the chosen path is until a complete pathway has been selected. This makes
it impossible for RGNN to derive a derivative about the objective function directly after
each output to obtain an updated gradient of the parameters. Moreover, because of
the large number of relay nodes, the max operation causes Equation (24) to have many
discontinuities, making it difficult to derive. Therefore, the gradient of the parameters
in NN cannot be calculated directly using the chain rule of derivation. We calculate the
gradient of policy for RGNN to update the parameter in RGNN. According to [56], the
policy gradient of parameter θ for NN Hθ to optimize the objective function ψ can be
described as

∇θHθ = ψ∇θ logHθ , (25)

Therefore, the parameter θRGNN of RGNN can be updated as follows to minimize the
maximum distance between cascaded nodes in relay link.

θRGNN = θRGNN + µR
1
|Vs| ∑

s∈Vs

max
vt∈V selected

s

{‖dvt − dvt+1‖} ∑
s∈Vs

∇θ log RGNNθ , (26)

where µR is the learning rate of RGNN.

4.2.2. Structure of RGNN

Figure 3 shows the structure of RGNN. It consists of an encoder and a decoder whose
details are introduced as follows. The encoder consists of graph nodes encoder to encode
the feature of each graph node as a vector, and relay path encoder to encode the feature
of the entire relay path as a vector. Then the attention modular is used to compute the

Remote Sens. 2022, 14, 4377 11 of 26

influence for each node in graph on the communication rate of relay path, by calculating
the value of dot product between relay path encoding vector and all graph node encoded
vector. The node has biggest influence on relay path is chosen as the next relay hop.

Encoder: The encoder consists of two parts, i.e., a GNN to extract the features of all
nodes, and an LSTM to extract the features of the selected relay path.

Firstly, we use a GNN to embed the information for the feature of each node and the
influence of its neighbours on it into a one-dimensional vector [24]. The embedding process
for node i in k-th layer of GNN is described as

mk
ir = φθ

(
1

|N (i)|

{
xk−1

ir

}
i∈N (i)∪{i}

)
(27)

xk
ir = γW1xk−1

ir + (1− γ)mk
ir (28)

where W1 are trainable parameters, γ is a factor, and φθ is a trainable aggregating function,
and N (i) is the neighbor nodes set of node i, and the subscript r is used to denote that
this vector is calculated by RGNN. In GNN, we use Equation (27) to process the features
from neighbouring nodes and aggregate the features of all neighbouring nodes through the
aggregation function φθ . Equation (28) is used to process the node i and the features of the
aggregated neighbouring nodes. Thus, RGNN embeds the features of node i and its effect
on other nodes in the graph into a one-dimensional vector xi.

Candidate Nodes

Complete Graph

GNN

LSTMLSTM

…
…

Last Node Current Node

Attention Value

Context

…
…

Attention

Next Node

… …

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑢𝑢𝑟𝑟

… …

𝑝𝑝1𝑝𝑝𝑟𝑟

Graph nodes encoding

Relay Path Nodes Encoding

LSTM

Selected Probability

Figure 3. The Structure of RGNN

Secondly, LSTM is exploited to extract the features of the currently selected relay node.
There are two main reasons to use LSTM: (1) relay nodes are sequential, and the previously
selected node affects which node should be selected later as the next relay; (2) the LSTM can
extract the features of the whole path consisting by the selected nodes, due to its memory
capability. The LSTM extracts the features of the current relay link as follows:

ht, ct = LSTM(xt
r; ht−1, ct−1) (29)

where ht and ct are the features of the total selected relay path and the feature of t-th relay
node in the relay path respectively, and xt is the embedded feature of the node which are
selected as t-th relay node. In the initial, the feature extracted by GNN for sender xsr is
input to LSTM, and then feature for all relay nodes extracted by GNN are entered into the
LSTM in turn.

Remote Sens. 2022, 14, 4377 12 of 26

Decoder: The decoder uses Equation (30) to calculate the attention value for each
node in Vnext

s , the higher attention value means the node has more influence on the rate of
relay path.

pt
u =

{
(ht−1)Ttanh(W2xvr + W3ht−1) v ∈ Vnext

s ,
−∞ otherwise,

(30)

where W2 and W3 are trainable parameters, and tanh(·) is hyperbolic tangent function.
Then, we use the Softmax function to calculate the selecting probability for each node, and
select the node with the highest output value as the next hop, i.e.,

πθ(st, at) = So f tmax(pt
u), (31)

For a node u already in the current path, i.e., u ∈ V selected
s , pt

u is manually set to −in f ,
avoiding loops in the relay path.

Algorithm 1 Training procedure of LGNN-RGNN method

1: /* Training RGNN */
2: for train← 0 to epoch do
3: Randomly generate a graph G to train RGNN
4: for s in Vs do
5: Gs =

(
V all

s , Es

)
, where V all

s = Vu
⋃{s, r}, and Es is the subset of Es that removes

edges formed by nodes not in V all
s .

6: Using RGNN to calculate the embedding vector x for each node in Gs
7: Initialize the state V selected

s = {s};
8: for t← 0 to |Vu| do
9: if r ∈ V selected

s then
10: Break
11: end if
12: Calculate the featurte of relay path through Equation (29).
13: Calculate probability for all nodes in Vnext

s by Equations (30) and (31).
14: Select the node with maximum probability as next-hop relay node nnext.
15: Update the Vnext

s = Vnext
s \{nnext}, V selected

s = V selected
s

⋃{nnext}
16: end for
17: Calculate the reward of selecting relay path of sender s by Equation (23).
18: end for
19: Update the parameters of RGNN by Equations (24) and (26).
20: end for
21:
22: /* Training LGNN */
23: for train← 0 to epoch do
24: Randomly generate a graph G to train LGNN.
25: Calculate the location D of all UAVs by Equations (37)–(42).
26: Update the parameters of LGNN by Equation (36).
27: end for

Algorithm 2 Inference procedure of LGNN-RGNN method

1: Input the graph G to LGNN to optimize the location D of UAVs by Equations (37)–(42).

2: Move all UAVs to the new location according to D.
3: for s in Vs do
4: Calculate the relay path for sender s using RGNN based on the new location D of

UAVs.
5: end for

Remote Sens. 2022, 14, 4377 13 of 26

Theorem 1. The complexity of the BF-based best relay path selecting algorithm is two orders higher
than the RGNN-based method.

Proof. According to [55], the complexity of finding the best relay path for one pair of users
is O(n3) using BF, where n is the number of relay nodes, i.e., n = |Vu|. Since there are |Vs|
pairs of users, the BF algorithm is executed |Vs| times, and therefore the total complexity of
BF is O(|Vs||Vu|3). Since the RGNN removes each next-hop node from the set of optional
nodes when selecting a relay link, the RGNN removes that node from the set Vnext

s of
optional nodes. Therefore, RGNN will find a relay path by traversing all the elements in
the set of optional nodes Vnext

s at most. In initial state, the |Vnext
s | = |Vu|, since there are

O(|Vs|) pairs of users, the complexity of RL-based RGNN is O(|Vs||Vu|). Consequently,
the time complexity of the BF-based best relay path selecting algorithm is two orders higher
than the RGNN-based method.

4.3. LGNN Based UAV Location Optimization
4.3.1. Unsupervised Learning-Based LGNN Training Method

Recent research has proved that supervised learning methods can train neural net-
works to solve optimization problems. However, it is necessary to know the problem’s
optimal solution as labeled training data, which is unsuitable for solving the UAV location
optimization problem. When the number of UAVs and users is large, it is difficult to find a
feasible algorithm to solve the problem to produce labeled data. Plus, the robustness of
supervised learning is usually poorer than unsupervised and reinforcement learning [57].
Fortunately, since the objective function (17) is differentiable, and the LGNN outputs the
locations of all UAVs simultaneously, the RL-based training method in Equation (26) is
unnecessary. Therefore, this paper uses unsupervised learning-based methods to train
LGNN, which does not need labeled data and has high robustness. Firstly, the derivative
of the LGNN output D concerning the objective function (17) is calculated, and then by the
chain rule, the derivative of the LGNN parameters θLGNN concerning D can be obtained
by following equation. Firstly, according to Problem 1, the objective value is determined by
D and X , thus we rewrite the objective function as

J (D,X |G) = ∑
s∈Vs

∑
u∈Vu

f su
s . (32)

The derivative of the objective function concerning D is

∇DJ (D,X |G) = ∇D ∑
s∈Vs

∑
u∈Vu

f su
s . (33)

Since the location of UAVs is determined by LGNN, the D in this paper is obtained by

D = LGNNθ(G). (34)

By replacing the D is Equation (33) as Equation (34), and calculating the derivative of
D concerning θLGNN , we can get the derivative of objective function concerning θLGNN as

∇θLGNNJ (LGNNθ(G),X |G) = ∇DJ (D,X |G)|D=LGNN(G),X=RGNN(G)∇θLGNN LGNNθ(G),
= ∇D ∑

s∈Vs

∑
u∈Vu

f su
s |D=LGNN(G),X=RGNN(G)∇θLGNN LGNNθ(G). (35)

Thus, we can update the θLGNN by gradient descent as

θLGNN = θLGNN + µL∇D ∑
s∈Vs

∑
u∈Vu

f su
s |D=LGNN(G),X=RGNN(G)∇θLGNN LGNNθ(G), (36)

Remote Sens. 2022, 14, 4377 14 of 26

where µL is the learning rate to update LGNN,∇D ∑s∈Vs ∑u∈Vu f su
s |D=LGNN(G),X=RGNN(G)

is the gradient of LGNN’s output D, and ∇θLGNN LGNNθ(G) is the gradient derived by
chain rule to update all parameters in LGNN.

4.3.2. Structure of LGNN

Since LGNN aims to maximize the communication rate for all pairs of users, it is
essential to know which two users need to communicate with each other. A naive method
is adding a flag to the feature of each user; the users with the same flag mean there is
communication demand. However, it has poor performance since it is challenging for
LGNN to learn the flag’s meaning. Therefore, as is shown in Figure 4, we propose an
LSTM-based method to solve this problem. In this method, the features of two users
with communication demand are entered into the LSTM as a sequence with length 2, and
the output of the LSTM is used as the embedded feature for each user. Since the LSTM
only inputs the feature of two users at a time, the LGNN can know which two users
have communication demands while calculating the gradient. This is because only the
information of these two users has an interrelationship, and the other users are independent
of these two users in calculating the gradient.

After embedding the feature of all users, a GNN is used to extract the relationships
among users and UAVs, such that UAVs can optimize their location based on their initial
location and the location of all users. Obviously, the optimized locations of each UAV
should be close to the initial location, and different users should have different impacts on
UAVs, which means users closer to the UAV have a more significant impact on it. Therefore,
we use the attention method to calculate the impact of different users on UAVs. Details of
the process of LGNN are as follows.

mil ,jl = MLP1(xil , xjl), (i, j) ∈ E , (37)

xil = MLP2(xil , ρ{αijmil ,jl : (i, j) ∈ E}), (38)

αij =
exp

(
LeaklyReLu

([
W4xil ||W5xjl

]))
∑k∈N (i) exp

(
LeaklyReLu

([
W4xil ||W5xkl

])) , (39)

LeaklyReLu(x) =

{
x x ≤ 0,
εx otherwise,

(40)

xib = concat(LSTM1(xil), LSTM2(xil)), (41)

di = W6xib , (42)

where W4, W5 and W6 are trainable parameters, and ε is a factor much more minor than 1.
ρ(·) is the aggregation function, and the function concat(·) is used to concatenate the
output of LSTM1 and LSTM2 into a vector xib . The LSTM1 and LSTM2 are two LSTMs
with opposite directions, and di is the optimized position of UAV i. Equation (37) is used
to process the information from neighbour nodes and the LGNN uses Equation (38) to
extract the feature both from itself and aggregated feature from neighbors. Equation (39)
are used to calculate the impact of different users on UAVs. Since there are multiple UAVs
in the system, they should cooperate to optimize the overall performance. Therefore, we
further use a bi-directional LSTM (BiLSTM) in Equation (41) to process the feature of UAVs
extracted by GNN, such that the position of each UAV can impact other UAVs. Finally, in
Equation (42) trainable parameters W6 are used to process the output of BiLSTM, and the
di is taken as the optimized position of UAV i.

Remote Sens. 2022, 14, 4377 15 of 26

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Linear

Locations of UAVs

BiLSTM

GNN

…

…
…

…

…

…

BiLSTMLinear BiLSTM…
LSTM LSTM

LSTM LSTM

…

…

Figure 4. The structure of LGNN.

5. Performance Evaluation and Discussion

In this section, we conduct extensive simulations to evaluate our proposed LGNN-
RGNN, comparing it with the genetic algorithm (GA), MLP, and Bellman-Ford algorithm.
We mainly use the two metrics, “communication rate” and “computation time”, to show
the characteristics of different algorithms. The communication rate is to show the average
communication rate for all pairs of user, which is same as the value of objective function
in Equation (17), and the computation time is to show the running time for different
algorithms to get the optimized location of UAV and relay path for each pair of users. We
take the genetic algorithm and MLP as the benchmarks for location model LGNN, and
Bellman-Ford algorithm is taken as the benchmark for relay path searching model RGNN.

The benchmarks for comparison are as follows.

• LGNN-BF: In this scheme, the proposed LGNN is used to optimize the UAV-relay
locations. However, the Bellman-Ford (BF) algorithm is used for relay path selection.
The loss of LGNN is set as the opposite of the average Rate of relay paths calculated
by BF algorithm.

• GA-RGNN: GA is used to optimize the locations of UAVs. GA generates a large
population. Every individual in the population includes all the locations of UAVs.
The fitness of individuals is set to the rate output from RGNN. In every iteration,
the selection operator is used to keep individuals with higher rate alive and disuse
other individuals with low rate. The crossover operator and mutation operator are
applied to generate new individuals. The mutation rate of GA is set to 0.2, the scale
of population is set as 100 and the multi-point crossover is taken as the crossover
operator. The deterministic selection is taken as the selection operator to ensure the
best individual could be kept and the top 30 percent of individuals are kept by GA
while the left 70 percent individuals can be kept with a 0.3 probability.

• GA-BF: GA is set to optimize the locations of UAVs and the commucation rate output
from Bellman-Ford algorithm is set as the fitness of individuals.

• MLP-RGNN: A MLP takes users’ locations as the input, indicating that the number
of nodes in input layers is two times the number of users. There is one hidden layer
with 128 nodes. The MLP outputs the locations of all UAVs in the output layer. ReLU
is used as the activation function of the hidden layer. The opposite of the average rate
calculated by RGNN is used as the loss value. The learning rate of MLP is 1e-4.

Remote Sens. 2022, 14, 4377 16 of 26

• MLP-BF: The hyper-parameters of MLP are the same as MLP-RGNN. Loss is set to
the opposite of average rate calculated by the BF algorithm.

5.1. Simulation Configurations

In experiments, we evaluate the performance of the proposed method with the dif-
ferent number of users and UAVs. In the training and testing procedure, the users are
randomly distributed by uniform distribution from 0 to the maximum length of the network
area. In the simulation, the sender randomly chooses one receiver to communicate with
the same probability. Obviously, when there are |Vu| UAVs in the network, the maximum
network area can be covered is 2|Vu|ξ2π. Therefore, we consider the network as a square
area with side length ξ

√
2|Vu|π. The communication coverage ξ is 5.0 km. The bandwidth

B is 500 kHz. More simulation parameters in the training procedure are shown in Table 1.
Remarkably, B, P, N0, and g0 are always the same in the network of any scale, both in
training and testing procedures. The central self-critic baseline is used during the training
process. The update of parameters of RGNN is based on Policy gradient descent according
to Equation (26). The communication requirements between users are also generated ran-
domly. RGNN model uses a three-layer GNN in Encoder, where every layer of GNN is set
as in Equation (28). The message passing function is a two-layer MLP with ReLU as the
activation function, and the dimension of hidden layer is 128. The update function is also a
two-layer MLP, with the dimension of the hidden layer being 128. The aggregation function
ρ is the average function mean. In the training procedure, we first train the RGNN with the
random location of UAVs and users, and the communication requirements among users are
also randomly generated. With the trained RGNN offering the relay path of each pair of
users, we pre-train our proposed LGNN according to Equation (36). To prevent overfitting,
LGNN is pre-trained on samples with different scales. In each sample, the number of UAVs
is selected randomly from the range of 2–20, while the number of user pairs is randomly
selected from the range of 5–100. We pre-train LGNN with 4096 samples.

Table 1. Simulation Parameters in the training procedure.

Parameter Definition Notation Value

Number of User Pairs in
small-scale network K (or |Vs|) [2, 20]

Number of User Pairs in
large-scale network K (or |Vs|) [50, 250]

Number of UAVs in small-scale network M (or |Vu|) [2, 10]

Number of UAVs in large-scale network M (or |Vu|) [10, 35]

Network area in small-scale network \ [100, 500] π km2

Network area in large-scale network \ [500, 1750] π km2

Learning rate of RGNN µRGNN 0.001

Learning rate of LGNN µLGNN 0.0001

Transmission Power P 0.1 w

Noise Power N0 −174 dBm/Hz

Path-loss constant g0 −40 dB

Path-loss exponent γ 2

UAV communication coverage range ξ 5.0 km

5.2. Performance of Pre-Trained RGNN and LGNN

The BF Algorithm is taken as the baseline, providing the best relay path for every user.
We evaluate the performance of trained RGNN by comparing it with BF Algorithm. The
hyper-parameters of training process of RGNN is discussed in Section 5.1. In testing data,

Remote Sens. 2022, 14, 4377 17 of 26

we set |Vs| = 4|Vu|. Figure 5 shows the communication rate and computation time for
RGNN and BF algorithm. For GNN-based methods, the computation time in this paper
includes the training or fine-tuning time plus inference time, while for GA-based methods
the computation time is the algorithm execution time via iterations until certain finishing
conditions are met. According to Figure 5a, the RGNN achieves very close performance to
the BF algorithm when |Vu| is lower than 8, which means that when the network is not too
large, the RGNN can find the best relay path. However, the optional relay paths for each
pair of users are proportional to the factorial of |Vu|. Therefore, the RGNN may not be able
to select the optimal relay path when |Vu| is large. Figure 5b shows that as |Vu| increases,
the computation time of BF algorithm increases dramatically while that of RGNN only
arises a little. This is because not only the time complexity of RGNN is two orders lower
than BF, but also the RGNN can use graphics processing unit (GPU) to compute in parallel
while BF cannot.

2 4 6 8 10 12 14 16
Number of UAVs

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

R
at

e/
M

bp
s

RGNN
Bellman-Ford

(a)

2 4 6 8 10 12 14 16
Number of UAVs

0

0.5

1

1.5

2

2.5

T
im

e/
s

RGNN
Bellman-Ford

(b)

Figure 5. The relation of |Vu| on communication rate and computation time for different algorithms.
(a) The relation of |Vu| on communication rate. (b) The relation of |Vu| on computation time.

According to [58], pre-training is a useful method to improve convergence speed and
even convergence performance. Therefore, in this paper, we randomly generate many
graphs with different scales to pre-train LGNN. Figure 6 shows the performance of pre-
trained LGNN and non-pre-trained LGNN. It can be seen that the initial performance of
pre-trained LGNN consistently outperforms the performance of non-pre-trained LGNN
by a wide margin across all sizes of networks. This means that pre-training allows the
LGNN to learn generalised features of the network, thus improving zero-shot performance
and allowing the network to converge to a good performance quickly, which is specifically
beneficial for changing environments and services sensitive to delay performance. It
also shows the pre-trained LGNN can get better convergence performance than non-pre-
trained LGNN. Therefore, in the following paper, if not specified, the LGNN denotes
pre-trained LGNN.

5.3. Optimality Analysis of the Proposed LGNN-RGNN Approach

To analyze whether our proposed algorithm achieves near-optimal performance, we
compare the proposed LGNN-RGNN method with the brute-force search method and a
greedy algorithm. In brute-force search, we discretize the locations of the UAVs into a
20 ∗ 20 grid, and each UAV can be placed in any grid. Iterate through all possible UAVs
location, and the BF algorithm is used to calculate the best performance for the current
placement using the best relay path. The location of UAVs that achieves the best network
performance is recorded as the optimal solution. A greedy algorithm is also used that
clusters all users and places the UAVs in the center of the cluster. Simulation results in
terms of UAV locations are shown in Figure 7, the horizontal and vertical coordinate values
represent the coordinate positions of the user and the UAV in the plane, respectively. In all
these four sub-figures the location optimized by greedy algorithm is always far away from

Remote Sens. 2022, 14, 4377 18 of 26

the location optimized by brute-force and proposed method, and the performance of greedy
method is always the worst. Because the communication rate between two nodes is not
proportional to the distance between two nodes, thus it is not the optimal solution to deploy
UAVs at the center of user cluster. In Figure 7a the performance of proposed LGNN-RGNN
method is a little lower than brute-force, this is because in Figure 7a the distribution of users
is dense, when the location of the UAV deviates from the optimal location, it can lead to a
significant change in overall performance due to the concentration of users in a few specific
areas. Similarly, in in Figure 7b since the distribution of user locations is more dispersed,
even if the location of the UAV deviates from the optimal location, the overall performance
of the system will be almost unaffected due to the influence of different users. Remarkably,
in Figure 7c,d shows when both LGNN-RGNN and brute-force methods output locations
near the actual optimal location, LGNN-RGNN may obtain better performance since LGNN
outputs the deployment location of the UAV as a continuous value, while the brute-force
can only output discrete values.

0 100 200 300 400 500
Epoch

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

R
at

e/
M

bp
s

Pre-trained
Not Pre-trained

(a)

0 100 200 300 400 500
Epoch

2.5

3

3.5

4

4.5

R
at

e/
M

bp
s

Pre-trained
Not Pre-trained

(b)

0 100 200 300 400
Epoch

1.5

2

2.5

3

3.5

4

4.5

R
at

e/
M

bp
s

Pre-trained
Not Pre-trained

(c)

0 100 200 300 400 500
Epoch

0.5

1

1.5

2

2.5

3

3.5

4

R
at

e/
M

bp
s

Pre-trained
Not Pre-trained

(d)

Figure 6. Converge performance for pre-trained and non-pre-trained LGNN. (a) Vs = 10, Vu = 2.
(b) Vs = 15, Vu = 3. (c) Vs = 20, Vu = 5. (d) Vs = 50, Vu = 10.

5.4. Convergence Speed and Performance

In Figure 8, we show the convergence speed and communication rate for the different
algorithms with the different |Vs| and |Vu|. We test the performance of six different algo-
rithms. Because the convergence time of GA-based algorithms is far longer than others, we
demonstrate it in a separate figure. The GA-based methods are used as the near-optimal
solution since, after sufficient time iterations, the GA can get a locally optimal solution [59].
Figure 8 shows that the proposed LGNN-based algorithms achieve near-optimal perfor-
mance when the number of users and UAVs is not very large, with a high convergence
speed due to pre-training. The LGNN-BF has a higher convergence speed than LGNN-
RGNN in a small-scale networks but has lower convergence speed in a large-scale networks.

Remote Sens. 2022, 14, 4377 19 of 26

This is because the BF algorithm can always get the optimal relay path, and thus when
the scale of the network is small, it can quickly give an accurate gradient to update θLGNN
according to Equation (36), rendering the LGNN converge quickly. However, due to the
high computational complexity of the BF algorithm, Figure 8c shows LGNN-BF converges
slower than LGNN-RGNN in large-scale networks, mainly due to the computation time of
BF itself. Figure 8 also shows that MLP has low convergence speed and ill convergence
performance. This is because MLP only tasks all the features of users and UAVs as input
without any analysis of the relation of features, therefore, it has low feature extraction
ability and poor performance.

LGNN-RGNN Solutions Brute-Force Solutions Greedy Solutions User Locations

(a)

(c) (d)

Brute-Force Rate:
4.30Mbps
LGNN-RGNN Rate:
3.97Mbps
Greedy Rate: 3.85Mbps

Brute-Force Rate:
4.40Mbps
LGNN-RGNN Rate:
4.42Mbps
Greedy Rate: 4.12Mbps

Brute-Force Rate:
4.21Mbps
LGNN-RGNN Rate:
4.22Mbps
Greedy Rate: 4.02Mbps

Brute-Force Rate:
4.14Mbps
LGNN-RGNN Rate:
4.12Mbps
Greedy Rate: 3.95Mbps

(b)

Figure 7. Results comparison among LGNN-RGNN, Brute-force, and greedy algorithm, with
|Vs| = 10, |Vu| = 2 using different algorithms. (a) Performance of Brute-Force is 4.30 Mbps, and
performance of LGNN-RGNN is 3.97 Mbps, (b) Performance of Brute-Force is 4.14 Mbps, and perfor-
mance of LGNN-RGNN is 4.12 Mbps, (c) Performance of Brute-Force is 4.40 Mbps, and performance
of LGNN-RGNN is 4.42 Mbps, (d) Performance of Brute-Force is 4.21 Mbps, and performance of
LGNN-RGNN is 4.22 Mbps.

5.5. Relation of |Vs| and |Vu| on Performance

Figure 9 shows the impact of |Vs| on communication rate and computation time with
|Vu| = 4. Figure 9a shows that as the number of users increases, the performance of the
LGNN-based approach gradually decreases. This is because the increase in the number of
users makes the network have more complex connection relationships, and therefore the
LGNN confronts greater difficulty in extracting the relationships between users, resulting
in a decrease in performance. As the MLP can hardly extract the relationships among
users, an increase in the number of users has no significant impact on the MLP the overall
performance is oscillatory. As for the computation time, Figure 9b shows the BF-based
algorithm increasing faster than the RGNN-based method since the RGNN can compute
in parallel using GPU while BF cannot. Moreover, the LGNN-based method has a faster
computational speed since LGNN has much fewer parameters than MLP.

Remote Sens. 2022, 14, 4377 20 of 26

0 2 4 6 8 10
Time/s

1

1.5

2

2.5

3

3.5

4

4.5

5

R
at

e/
M

bp
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF
GA-RGNN
GA-BF

0 50 100 150 200 250

4.3

4.35

4.4

4.45

4.5

(a)

0 2 4 6 8 10
Time/s

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
at

e/
M

bp
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF
GA-RGNN
GA-BF

0 50 100 150 200 250 300 350 400 450
3.9

4

4.1

4.2

4.3

(b)

0 2 4 6 8 10
Time/s

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
at

e/
M

bp
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF
GA-RGNN
GA-BF

0 200 400 600 800 1000 1200
3.6

3.8

4

4.2

(c)

Figure 8. Convergence speed and performance for the different algorithms with a different number
of users and UAVs. Because the convergence time of GA-based algorithms is far longer than others,
we demonstrate it in a separate figure. (a) |Vs| = 10, |Vu| = 2. (b) |Vs| = 15, |Vu| = 3. (c) |Vs| = 20,
|Vu| = 5.

10 20 30 40 50
Number of User Pairs

2

2.5

3

3.5

4

4.5

R
at

er
/M

bp
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF

(a)

10 20 30 40 50
Number of User Pairs

2

4

6

8

T
im

e/
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF

(b)

Figure 9. The relation of |Vs| and on communication rate and computation time with constant
|Vu| = 4. (a) The relation of |Vs| on communication rate. (b) The relation of |Vs| on computation time.

Figure 10 shows the impact of |Vu| on communication rate and computation time
with |Vs| = 20. Figure 10a shows that as |Vu| increases, the performance of all algorithms
increases since increasing |Vu| reduces the average distance between UAVs and UAVs and
between UAVs and users, thus improving the network communication rate. LGNN-based
methods increase faster than MLP-based methods since LGNN can extract the relation
among UAVs and thus get better performance. As is shown in Figure 5a, when the number
of UAVs is large, the performance of RGNN is lower than BF. Therefore, in Figure 10a, when
|Vu| is large, the performance of the BF-based method is higher than the RGNN-based
method. Thus, the LGNN and MLP obtain the incorrect update gradient according to
Equation (36), which degrades the performance of the LGNN and MLP. Figure 10b shows
that LGNN-based methods always compute faster than MLP-based methods due to fewer
parameters. Moreover, the computation time of BF-based methods increases much more
dramatically than RGNN-based methods. This is because when |Vu| is constant, the time
complexity of BF is two orders higher than that of RGNN according to Theorem 1. Therefore,
we can choose relay path selecting methods based on preference on time and performance.

Both Figures 9a and 10a show that the |Vu| has more impact on communication rate
than |Vs|, mainly due to the relay path selection. When |Vu| increases, the average distance
between UAV and user decreases; thus the average rate for all optional relay paths increases.
However, since each pair of user selects their relay path, the average communication rate
for all users changes little with constant |Vu|.

Remote Sens. 2022, 14, 4377 21 of 26

2 4 6 8 10
Number of UAVs

1.5

2

2.5

3

3.5

4

4.5

R
at

e/
M

bp
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF

(a)

2 4 6 8 10
Number of UAVs

0

20

40

60

80

100

120

T
im

e/
s

LGNN-RGNN
LGNN-BF
MLP-RGNN
MLP-BF

(b)

Figure 10. The relation of |Vu| on communication rate and computation time with constant |Vs| = 20.
(a) The relation of |Vu| on communication rate. (b) The relation of |Vu| on computation time.

5.6. Performance in Large-Scale Networks

Scalability is a critical consideration since many algorithms cannot fit the large-scale
problems due to poor performance or unacceptably long solving time. In this part, we
evaluate the performance of the proposed method on a large-scale network, and the
results are shown in Table 2. We conduct this experiment in four different large-scale
networks. Besides, we pre-trained LGNN and RGNN with large-scale samples to improve
the performance of proposed LGNN-RGNN. RGNN is pre-trained with each sample having
20 nodes including 18 UAVs and 2 IoTs. LGNN is pre-trained with 4096 samples. In each
sample, the number of UAVs is selected randomly from the range of 50–350, while the
number of user pairs is randomly selected from the range of 10–40. According to the
analysis and results above, the GA-based and BF-based methods cost much time to get the
solution. Therefore, in a large-scale network, it is impossible for GA-based and BF-based
methods to get a solution in an acceptable time range. Thus, we compare the performance
of LGNN-based, MLP-based, and greedy methods. “LGNN-RGNN (DI)” means directly
using the pre-trained LGNN and RGNN for solution inference without any fine-tuning.
Note that with “LGNN-RGNN (FT)”, the pre-trained LGNN and RGNN continue to train a
few epochs for better performance. All these four algorithms use RGNN to calculate the
best relay path.

Table 2. Performance on a large-scale network for different algorithms.

(a) Performance on |Vs| = 50 |Vu| = 15 for different algorithms (b) Performance on |Vs| = 100 |Vu| = 20 for different algorithms

Algorithms Rate/Mbps Computation Time/s Algorithms Rate/Mbps Computation Time/s

MLP 2.24 10.59 MLP 2.31 20.03

Greedy 3.03 0.09 Greedy 3.00 0.13

LGNN-RGNN (DI) 3.79 0.05 LGNN-RGNN (DI) 3.44 0.06

LGNN-RGNN (FT) 3.88 7.98 LGNN-RGNN (FT) 3.65 15.72

(c) Performance on |Vs| = 150 |Vu| = 25 for different algorithms (d) Performance on |Vs| = 250 |Vu| = 35 for different algorithms

Algorithms Rate/Mbps Computation Time/s Algorithms Rate/Mbps Computation Time/s

MLP 2.15 21.88 MLP 1.71 48.68

Greedy 2.67 0.17 Greedy 2.36 0.22

LGNN-RGNN (DI) 3.22 0.08 LGNN-RGNN (DI) 3.02 0.15

LGNN-RGNN (FT) 3.43 15.73 LGNN-RGNN (FT) 3.18 44.79

Table 2 shows that the fine-tuned LGNN achieves the best performance. The pre-
training method helps the LGNN being robust and learning the general features of the
problem for optimizing the location of UAVs, while MLP can hardly extract features
of the networks to optimize the problem. Therefore, directly using pre-trained LGNN

Remote Sens. 2022, 14, 4377 22 of 26

achieves better performance than MLP. Moreover, the above analysis and results show that
it is challenging for MLP to optimize the location of UAVs even in small-scale networks.
Therefore, in large-scale networks, the performance of MLP is worse than directly using
pre-trained LGNN. Moreover, Table 2 shows that LGNN-RGNN (DI) always cost least time,
which only costs 0.15 s even there are 200 pairs of users and 35 UAVs, in all these four
methods, while only sacrificing little performance compared to LGNN-RGNN (FT). This
is because not only the pre-training method helps the LGNN-RGNN being robust to the
problem, which enables pre-trained LGNN-RGNN to optimize the problem in large-scale
network with high performance, but also the message passing mechanism of the graph
network allows when directly using LGNN-RGNN to inference the optimization solution,
only a number, which is proportional to Vu, of matrix multiplications is needed [25]. Table 2
shows that the LGNN-RGNN (FT) always achieves best performance, while the time of
LGNN-RGNN (DI) costs least time by sacrificing little performance. Thus, if the user is
delay-sensitive, directly using the pre-trained LGNN-RGNN to inference is the best choice,
while the fine-tuned LGNN-RGNN can get the best performance within an acceptable time.

5.7. Performance on Robustness

In practical applications, the environment and service demands may change over
time. For example, the mobile sensors result in location changes of communication devices,
and the random communication demands may change the number of communication
pairs. These changes are generally not significant in a short period of time. The algorithm,
therefore, needs to be robust to these small changes. Genetic Algorithm does not have
any generalization ability means that it needs to be completely calculated again after any
change in the network. In this part, we test the robustness of algorithms with the probability
density function of computation time for model with differently initialized parameters to
converge and communication rate. We set 4 ways to initialize the parameters of LGNN.
The “Fine-tuning” means LGNN-RGNN that inherits the parameters after training conver-
gence in the original network, and fine-tunes in the network after feature changes. The
“Pre-trained” means fine-tuning the parameters using general pre-trained network weights.
The difference between “Fine-tuning” and “Pre-trained” is the initial parameters. The “Pre-
trained” use the parameters trained through general networks as the initial graph, while
the “Fine-tuning” uses the parameters trained by the specific network before changing.
Therefore, the “Pre-trained” has more general network knowledge, while the “Fine-tuning”
focuses on the original unchanged network. The “Not Pre-trained” means randomly ini-
tializing the parameters of LGNN, and then training it to convergence. Moreover, the
“Directly-Inference” means doing inference directly with the pre-trained model without any
updating, and the time required by this way could be relatively ignored.

In Figure 11a, we change the position of 10% of users randomly within a circle of
radius 0.2 centred on its original position, according to a uniform distribution. In Figure 11b,
we randomly choose 10% of users and disrupt their connections randomly. In Figure 11c,
we randomly increase and decrease the number of users by 10%. Figure 11a,b show that
the LGNN-RGNN inheriting parameters in the original network need less computation
time to converge. The convergence time of the model initialized with the “Fine-tuning”
way is more concentrated in the shorter time, and the parameters even do not need to
update in some cases. Besides, general pre-trained LGNN-RGNN can also converge quickly.
“Fine-tuning” demonstrates robustness to location changes and connection changes, and
it is a practical way to initialize parameters of our proposed LGNN-RGNN in practical
application scenarios. Figure 11c shows that the two ways of “Fine-tuning” and “Pre-trained”
need similar time to converge and the time required by the two ways is concentrated in
a short time. Meanwhile, Figure 12 shows that the communication rate converged in the
way of “Fine-tuning” concentrated in higher value. Moreover, the communication rate
calculated by “Directly-Inference” shows obvious concentration, which further demonstrates
the robustness of our proposed LGNN-RGNN is strong. This indicates that when the
network features change, the proposed LGNN-RGNN method can quickly adapt to new

Remote Sens. 2022, 14, 4377 23 of 26

features and achieves good performance, thus reducing the time required to generate new
networking solutions.

0.00

0.05

0.10

0.15

0.20

0 5 10
Time/s

Pr
ob

ab
ili

ty
 D

en
si

ty

G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

(a)

0.0

0.1

0.2

0.3

0 5 10 15
Time/s

de
ns

it
y

G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

(b)

0.00

0.25

0.50

0.75

0.0 2.5 5.0 7.5 10.0 12.5
Time/s

de
ns

it
y

G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

(c)

Figure 11. The probability density function for computation time when small changes occur to the
network. (a) PDF for computation time when location of users changes. (b) PDF for computation
time when E changes. (c) PDF for computation time when |Vs| changes.

0

1

2

3

2.8 3.2 3.6 4.0
Rate/Mbps

Pr
ob

ab
ili

ty
 D

en
si

ty G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

Directly-Inference

(a)

0

10

20

3.4 3.6 3.8 4.0 4.2
Rate/Mbps

de
ns

it
y

G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

Directly-Inference

(b)

0

5

10

15

3.5 4.0 4.5
Rate/Mbps

de
ns

it
y

G ro u p

Fine-tuning

Pre-Trained

Not Pre-trained

Directly-Inference

(c)

Figure 12. The probability density function for communication rate when small changes occur to the
network. (a) PDF for communication rate when location of users changes. (b) PDF for communication
rate when E changes. (c) PDF for communication rate when |Vs| changes.

6. Conclusions

In this paper, we have investigated the problem of optimizing the location of UAVs
and selecting an optimal relay path for each pair of users in IoT networks. We have
proposed the RGNN method to choose the best relay path, which has two orders lower
time complexity than BF, and proposed the LGNN method to optimize the location of UAVs.
To train the GNN efficiently without labeled training data, we have applied reinforcement
learning to train RGNN and unsupervised learning to train LGNN. Simulation results have
validated the efficiency and robustness of the proposed method, especially in large-scale IoT
networks. Our work can offer valuable insights into the importance yet the under-explored
field of GNN-driven UAV optimization in large-scale IoT networks. In the future, we will
focus on the trajectory design for UAVs in IoT networks using GNN.

Author Contributions: Conceptualization, X.W. and L.F.; methodology, X.W. and L.F.; validation,
X.W. and N.C.; investigation, X.W., L.F. and N.C.; resources, L.F. and R.S.; writing—original draft
preparation, X.W., L.F.; writing—review and editing, N.C., R.S., T.L., W.Q. and K.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (2020YFB1807700), the National Natural Science Foundation of China (NSFC) under Grant
No. 62071356, and the Fundamental Research Funds for the Central Universities under Grant
No. JB210113.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2022, 14, 4377 24 of 26

References
1. Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [CrossRef]
2. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving

Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [CrossRef]
3. Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Shvetsova, S.V.; Alhartomi, M.A.; Hawbani, A.; Rajput, N.S.; Srivastava, S.; Saif, A.;

Nyangaresi, V.O. UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment
Mitigation. Drones 2022, 6, 154. [CrossRef]

4. Cheng, N.; Lyu, F.; Quan, W.; Zhou, C.; He, H.; Shi, W.; Shen, X. Space/Aerial-Assisted Computing Offloading for IoT
Applications: A Learning-Based Approach. IEEE J. Sel. Areas Commun. 2019, 37, 1117–1129. [CrossRef]

5. Gholami, A.; Torkzaban, N.; Baras, J.S.; Papagianni, C. Joint mobility-aware UAV placement and routing in multi-hop UAV
relaying systems. In Proceedings of the International Conference on Ad Hoc Networks, Bari, Italy, 19–21 October 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 55–69.

6. Zhong, X.; Guo, Y.; Li, N.; Chen, Y. Joint optimization of relay deployment, channel allocation, and relay assignment for
UAVs-aided D2D networks. IEEE/ACM Trans. Netw. 2020, 28, 804–817. [CrossRef]

7. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Gupta, S.K. Collaboration of Drone and Internet of Public Safety Things in Smart Cities: An
Overview of QoS and Network Performance Optimization. Drones 2019, 3, 13. [CrossRef]

8. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36–42. [CrossRef]

9. Yin, Z.; Jia, M.; Cheng, N.; Wang, W.; Lyu, F.; Guo, Q.; Shen, X. UAV-Assisted Physical Layer Security in Multi-Beam Satellite-
Enabled Vehicle Communications. IEEE Trans. Intell. Transp. Syst. 2022, 23, 2739–2751. [CrossRef]

10. Yin, Z.; Jia, M.; Wang, W.; Cheng, N.; Lyu, F.; Shen, X. Max-Min Secrecy Rate for NOMA-Based UAV-Assisted Communications
with Protected Zone. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
9–13 December 2019; pp. 1–6. [CrossRef]

11. Gupta, A.; Sundhan, S.; Gupta, S.K.; Alsamhi, S.; Rashid, M. Collaboration of UAV and HetNet for better QoS: A comparative
study. Int. J. Veh. Inf. Commun. Syst. 2020, 5, 309–333. [CrossRef]

12. Hou, T.; Liu, Y.; Song, Z.; Sun, X.; Chen, Y. Multiple antenna aided NOMA in UAV networks: A stochastic geometry approach.
IEEE Trans. Commun. 2018, 67, 1031–1044. [CrossRef]

13. Zhou, C.; Wu, W.; He, H.; Yang, P.; Lyu, F.; Cheng, N.; Shen, X. Deep reinforcement learning for delay-oriented IoT task scheduling
in SAGIN. IEEE Trans. Wirel. Commun. 2020, 20, 911–925. [CrossRef]

14. Xia, J.Y.; Li, S.; Huang, J.J.; Yang, Z.; Jaimoukha, I.M.; Gündüz, D. Metalearning-Based Alternating Minimization Algorithm for
Nonconvex Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2022 . [CrossRef] [PubMed]

15. Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet
Things J. 2021, 8, 11891–11915. [CrossRef]

16. Ghaleb, S.M.; Subramaniam, S.; Zukarnain, Z.A.; Muhammed, A. Mobility management for IoT: A survey. Eurasip J. Wirel.
Commun. Netw. 2016, 2016, 1–25. [CrossRef]

17. Kandel, I.; Castelli, M. The effect of batch size on the generalizability of the convolutional neural networks on a histopathology
dataset. ICT Express 2020, 6, 312–315. [CrossRef]

18. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A
comprehensive survey. IEEE Internet Things J. 2021, 359–383. [CrossRef]

19. Shen, Y.; Shi, Y.; Zhang, J.; Letaief, K.B. Graph neural networks for scalable radio resource management: Architecture design and
theoretical analysis. IEEE J. Sel. Areas Commun. 2020, 39, 101–115. [CrossRef]

20. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]

21. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of 7th International Conference
on Learning Representations (ICLR) 2019, New Orleans, LA, USA, 6–9 May 2019; pp. 1-17.

22. Chen, Z.; Li, L.; Bruna, J. Supervised Community Detection with Line Graph Neural Networks; In Proceeding of 7th International
Conference on Learning Representations (ICLR) 2019, New Orleans, LA, USA, 6–9 May 2019; pp. 1-24.

23. Lim, J.; Ryu, S.; Park, K.; Choe, Y.J.; Ham, J.; Kim, W.Y. Predicting drug–target interaction using a novel graph neural network
with 3D structure-embedded graph representation. J. Chem. Inf. Model. 2019, 59, 3981–3988. [CrossRef]

24. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial Optimization by Graph Pointer Networks and Hierarchical Reinforce-
ment Learning. arXiv 2019, arXiv:1911.04936.

25. Shen, Y.; Zhang, J.; Song, S.; Letaief, K.B. Graph Neural Networks for Wireless Communications: From Theory to Practice.
arXiv 2022, arXiv:2203.10800.

26. He, H.; Kosasihy, A.; Yu, X.; Zhang, J.; Song, S.; Hardjawanay, W.; Letaief, K.B. Graph Neural Network Enhanced Approximate
Message Passing for MIMO Detection. arXiv 2022, arXiv:2205.10620.

27. Wang, H.; Wu, Y.; Min, G.; Miao, W. A graph neural network-based digital twin for network slicing management. IEEE Trans. Ind.
Inform. 2020, 18, 1367–1376. [CrossRef]

28. Sun, P.; Lan, J.; Li, J.; Guo, Z.; Hu, Y. Combining deep reinforcement learning with graph neural networks for optimal VNF
placement. IEEE Commun. Lett. 2020, 25, 176–180. [CrossRef]

http://doi.org/10.1038/s41928-019-0355-6
http://dx.doi.org/10.1109/ACCESS.2019.2934998
http://dx.doi.org/10.3390/drones6070154
http://dx.doi.org/10.1109/JSAC.2019.2906789
http://dx.doi.org/10.1109/TNET.2020.2970744
http://dx.doi.org/10.3390/drones3010013
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/TITS.2021.3090017
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013815
http://dx.doi.org/10.1504/IJVICS.2020.110995
http://dx.doi.org/10.1109/TCOMM.2018.2875081
http://dx.doi.org/10.1109/TWC.2020.3029143
http://dx.doi.org/10.1109/TNNLS.2022.3165627
http://www.ncbi.nlm.nih.gov/pubmed/35439147
http://dx.doi.org/10.1109/JIOT.2021.3063686
http://dx.doi.org/10.1186/s13638-016-0659-4
http://dx.doi.org/10.1016/j.icte.2020.04.010
http://dx.doi.org/10.1109/JIOT.2021.3103320
http://dx.doi.org/10.1109/JSAC.2020.3036965
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1021/acs.jcim.9b00387
http://dx.doi.org/10.1109/TII.2020.3047843
http://dx.doi.org/10.1109/LCOMM.2020.3025298

Remote Sens. 2022, 14, 4377 25 of 26

29. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
30. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone Small Cells in the Clouds: Design, Deployment and Performance Analysis.

In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015;
pp. 1–6. [CrossRef]

31. Saif, A.; Dimyati, K.; Noordin, K.A.; Shah, N.S.M.; Alsamhi, S.; Abdullah, Q. Energy-efficient tethered UAV deployment in B5G
for smart environments and disaster recovery. In Proceedings of the 2021 IEEE 1st International Conference on Emerging Smart
Technologies and Applications (eSmarTA), 10–12 August 2021; pp. 1–5.

32. Galkin, B.; Kibilda, J.; DaSilva, L.A. Deployment of UAV-mounted access points according to spatial user locations in two-tier
cellular networks. In Proceedings of the 2016 Wireless Days (WD), Toulouse, France, 23–25 March 2016; pp. 1–6. [CrossRef]

33. Huang, H.; Savkin, A.V. Reactive Deployment of Flying Robot Base Station over Disaster Areas. In Proceedings of the 2018 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1665–1670.
[CrossRef]

34. Huang, H.; Savkin, A.V. A Method for Optimized Deployment of Unmanned Aerial Vehicles for Maximum Coverage and
Minimum Interference in Cellular Networks. IEEE Trans. Ind. Inform. 2019, 15, 2638–2647. [CrossRef]

35. Cicek, C.T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. UAV Base Station Location Optimization for Next Generation Wireless
Networks: Overview and Future Research Directions. In Proceedings of the 2019 1st International Conference on Unmanned
Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; pp. 1–6. [CrossRef]

36. Sabzehali, J.; Shah, V.K.; Fan, Q.; Choudhury, B.; Liu, L.; Reed, J.H. Optimizing Number, Placement, and Backhaul Connectivity
of Multi-UAV Networks. IEEE Internet Things J. 2022, 1. [CrossRef]

37. Kang, Z.; You, C.; Zhang, R. Placement Learning for Multi-UAV Relaying: A Gibbs Sampling Approach. In Proceedings of the
ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [CrossRef]

38. Košmerl, J.; Vilhar, A. Base stations placement optimization in wireless networks for emergency communications. In Proceedings
of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; pp. 200–205.
[CrossRef]

39. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the Number and 3D Placement of Drone Base Stations in Wireless Cellular
Networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21
September 2016; pp. 1–6. [CrossRef]

40. Plachy, J.; Becvar, Z.; Mach, P.; Marik, R.; Vondra, M. Joint Positioning of Flying Base Stations and Association of Users:
Evolutionary-Based Approach. IEEE Access 2019, 7, 11454–11463. [CrossRef]

41. Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Hassan, J.; Alhartomi, M.A.; Shvetsova, S.V.; Sahal, R.; Hawbani, A. Computing in the
Sky: A Survey on Intelligent Ubiquitous Computing for UAV-Assisted 6G Networks and Industry 4.0/5.0. Drones 2022, 6, 177.
[CrossRef]

42. Chaudhri, S.N.; Rajput, N.S.; Alsamhi, S.H.; Shvetsov, A.V.; Almalki, F.A. Zero-padding and spatial augmentation-based gas
sensor node optimization approach in resource-constrained 6G-IoT paradigm. Sensors 2022, 22, 3039. [CrossRef]

43. Salh, A.; Audah, L.; Alhartomi, M.A.; Kim, K.S.; Alsamhi, S.H.; Almalki, F.A.; Abdullah, Q.; Saif, A.; Algethami, H. Smart Packet
Transmission Scheduling in Cognitive IoT Systems: DDQN Based Approach. IEEE Access 2022, 10, 50023–50036. [CrossRef]

44. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.
2009, 20, 61–80. [CrossRef] [PubMed]

45. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

46. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.
Neural Netw. 2005, 18, 602–610. [CrossRef] [PubMed]

47. Yan-e, D. Design of intelligent agriculture management information system based on IoT. In Proceedings of the Fourth
International Conference on Intelligent Computation Technology and Automation (ICICTA), Shenzhen, China, 28–29 March 2011;
Volume 1, pp. 1045–1049. [CrossRef]

48. Dan, L.; Xin, C.; Chongwei, H.; Liangliang, J. Intelligent agriculture greenhouse environment monitoring system based on IOT
technology. In Proceedings of the 2015 International Conference on Intelligent Transportation, Big Data and Smart City, Halong
Bay, Vietnam, 19–20 December 2015; pp. 487–490.

49. Chiaraviglio, L.; Blefari-Melazzi, N.; Liu, W.; Gutiérrez, J.A.; Van De Beek, J.; Birke, R.; Chen, L.; Idzikowski, F.; Kilper, D.; Monti,
P.; et al. Bringing 5G into rural and low-income areas: Is it feasible? IEEE Commun. Stand. Mag. 2017, 1, 50–57. [CrossRef]

50. Maluleke, H.; Bagula, A.; Ajayi, O. Efficient airborne network clustering for 5G backhauling and fronthauling. In Proceedings
of the 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob),
Thessaloniki, Greece, 12–14 October 2020; pp. 99–104.

51. Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-air-ground integrated network: A survey. IEEE Commun. Surv. Tutori. 2018,
20, 2714–2741. [CrossRef]

52. Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tutori. 2016,
18, 1123–1152. [CrossRef]

53. Wu, Q.; Zeng, Y.; Zhang, R. Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Trans.
Wirel. Commun. 2018, 17, 2109–2121. [CrossRef]

54. Mittal, S.; Bengio, Y.; Lajoie, G. Is a Modular Architecture Enough? arXiv 2022, arXiv:2206.02713.

http://dx.doi.org/10.1109/GLOCOM.2015.7417609
http://dx.doi.org/10.1109/WD.2016.7461487
http://dx.doi.org/10.1109/ROBIO.2018.8664865
http://dx.doi.org/10.1109/TII.2018.2875041
http://dx.doi.org/10.1109/UVS.2019.8658363
http://dx.doi.org/10.1109/JIOT.2022.3184323
http://dx.doi.org/10.1109/ICC40277.2020.9149409
http://dx.doi.org/10.1109/ICCW.2014.6881196
http://dx.doi.org/10.1109/VTCFall.2016.7881122
http://dx.doi.org/10.1109/ACCESS.2019.2892564
http://dx.doi.org/10.3390/drones6070177
http://dx.doi.org/10.3390/s22083039
http://dx.doi.org/10.1109/ACCESS.2022.3168549
http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
http://dx.doi.org/10.1109/ICICTA.2011.262
http://dx.doi.org/10.1109/MCOMSTD.2017.1700023
http://dx.doi.org/10.1109/COMST.2018.2841996
http://dx.doi.org/10.1109/COMST.2015.2495297
http://dx.doi.org/10.1109/TWC.2017.2789293

Remote Sens. 2022, 14, 4377 26 of 26

55. Bellman, R. On a routing problem. Q. Appl. Math. 1958, 16, 87–90. [CrossRef]
56. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage

estimation. In Proceeding of the 4th International Conference on Learning Representations (ICLR) , San Juan, Puerto Rico,
2–4 May 2016; pp. 1-14 .

57. Hendrycks, D.; Mazeika, M.; Kadavath, S.; Song, D. Using self-supervised learning can improve model robustness and
uncertainty. In Proceeding of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, (NeurIPS) 2019, Vancouver, BC, Canada, 8–14 December 2019; pp. 1-13.

58. Qiu, X.; Sun, T.; Xu, Y.; Shao, Y.; Dai, N.; Huang, X. Pre-trained models for natural language processing: A survey. Sci. China
Technol. Sci. 2020, 63, 1872–1897. [CrossRef]

59. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]

http://dx.doi.org/10.1090/qam/102435
http://dx.doi.org/10.1007/s11431-020-1647-3
http://dx.doi.org/10.1038/scientificamerican0792-66

	Introduction
	Related Work and Preliminary
	Related Work
	Preliminary
	Graph Neural Networks
	Long Short Term Memory

	System Model and Problem Formulation
	System Model
	Problem Formulation

	GNN-Based Efficient and Scalable Solution
	Two-Stage Training and Inference Algorithm
	RGNN Based Relay Selection Method
	Reinforcement Learning Based RGNN Training Method
	Structure of RGNN

	LGNN Based UAV Location Optimization
	Unsupervised Learning-Based LGNN Training Method
	Structure of LGNN

	Performance Evaluation and Discussion
	Simulation Configurations
	Performance of Pre-Trained RGNN and LGNN
	Optimality Analysis of the Proposed LGNN-RGNN Approach
	Convergence Speed and Performance
	Relation of |Vs| and |Vu| on Performance
	Performance in Large-Scale Networks
	Performance on Robustness

	Conclusions
	References

