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Abstract: Maneuvering extended object tracking is a new research field due to the rapid development
of modern sensor technology. Multiple measurements may be resolved from different unknown
sources on an object by using a high-resolution radar. In this case, the object should be regarded as
an extended one with object extension, e.g., its shape may be described by the star-convex random
hypersurface model. This model is usually specified by a one-dimensional radial function. However,
the divergence of the shape estimation and a high error of the kinematic state estimation are likely to
occur when an extended object maneuvers. This is because the radial function may take a negative
value after Fourier series expansion, which leads to unpredictable estimation results. Unfortunately,
the model itself is unable to solve this problem via the subsequent iterations. In this paper, we
proposed a modified shape estimation approach to track an extended object with a star-convex
random hypersurface model based on minimum cosine distance. Both the extension state and
kinematic state at the current time are reinitialized once the radial function takes a negative value.
Moreover, a mathematical model was constructed by using the principle of minimum cosine distance,
so as to obtain more reasonable weight distribution coefficients for the correction of the extension
state. Simulation results in different scenarios demonstrated the effectiveness of the proposed
tracking approach.

Keywords: maneuvering extended object tracking; random hypersurface model; star-convex shape;
minimum cosine distance; radial function

1. Introduction

This paper focuses on radar object tracking. As illustrated in Figure 1, the ground
radar station first sends an electromagnetic wave to the object, and then the sensor receives
measurement data from the object [1]. Finally, the object state is continuously estimated
by developing a mathematical model and combining the filtering steps. In the traditional
radar tracking algorithm, it is assumed that each time only a single point positional mea-
surement of a target is available. With the fast development of high-resolution sensors, this
assumption is no longer valid in current tracking scenarios because the received multiple
measurements may originate from different unknown sources on an object. For example,
a high-resolution radar can resolve individual features and kinematic measurements. In this
case, the object should be considered as an extended one with spatial extension (i.e., size,
shape and orientation) [2].

The task of extended object tracking can be summarized as a joint estimation of the
kinematic state and extension state. There exists an inherent coupling relationship between
shape and motion. On the one hand, obtaining an accurate kinematic state will naturally
be conducive to the estimation of the shape since the orientation of the object is always
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aligned with its motion direction [3]. On the other hand, a description close to the true
shape will help to capture the position of the object, so that the object can be accurately
tracked. Overall, knowing the target’s range extent is extremely useful for improving the
precision and robustness of both shape and motion estimation [4]. As a result, modeling
the spatial extension is a critical component of extended object tracking in order to jointly
estimate shape extension and centroid kinematics.

Measurement Measurement Measurement source Geometric shape

Measurement 

model

State

estimation

Figure 1. Status diagram of radar object tracking.

The existing morphological modeling methods of an extended object primarily include
those based on random matrix (RM) [5–7] and the random hypersurface model [8,9]. They
are then integrated into a filtering algorithm based on random finite set (RFS) [10–12],
which can not only track the object accurately but also estimate its external contour shape
at the same time. Koch first proposed the Random Matrix modeling method in [13]. It is,
however, limited to objects whose shape can be simplified to an ellipse, and cannot describe
more complex shapes. To describe the vehicles on the road, Granstrom et al. proposed a
rectangular model. Using the measured data from the laser ranging sensor, this method
estimated the target’s size, shape and motion state [14]. Unfortunately, because more
details on the shape cannot be ignored when the object is close to the sensor, some simple
geometries (ellipse, rectangle, etc.) are insufficient to describe the shape. Then, Lan and Li
proposed that multiple ellipses be combined to describe the shape of non elliptical objects
or object groups [15]. In a nutshell, the Random Matrix-based methods are only appropriate
for describing some basic shapes (circle, ellipse, rectangle, etc.). Although those shapes can
reflect relevant information about orientation and extent, they are still insufficient for many
extended object tracking scenarios.

To solve this problem, Baum proposed the random hypersurface model (RHM), which
can describe not only elliptical but also more complex shapes such as star-convex [16,17].
A radial function can be used to describe the contour of the star-convex extended object. Its
size represents the distance between each contour point and the orientation. As a nonlinear
polar function, the radial function must be linearized, i.e., Fourier series expansion, and its
coefficients reflect the detailed information of the shape [18]. However, there exists an
inevitable defect. Once the radial function has a negative value in the linearization process,
the phenomenon of shape divergence will occur. Moreover, the error cannot be corrected
by the model itself, which will inevitably result in a sharp decline in estimation accuracy
or even a tracking failure. Both [18,19] pointed out that the estimation result will be
unpredictable if this constraint condition is not satisfied. Furthermore, ref. [19] improves
the original star-convex model by taking nonlinear inequality constraints into account,
in which a sampling constraint and a conservative constraint are discussed, respectively.
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This method can effectively avoid the problem of shape divergence, but there is still room for
further improvement of estimation accuracy. Nevertheless, to the best of our knowledge,
there is no effective solution to overcome this defect. Hence, this paper analyzes the
existing star-convex RHM and develops a modified shape estimation method to optimize
the original model.

Since the shape and motion state of the object change continuously, the prior infor-
mation and historical results can be effectively utilized to alleviate this inherent demerit.
Specific solutions are as follows: In the linearization process, once the radial function has a
negative value, the extension parameter and kinematic state can be reinitialized at current
time. This should be accompanied by the filtering process. The specific reinitialization
operation is to retain the kinematic state of the previous step. The extension parameters are
replaced by the weighted values of those at the initial time and the last time. The weight
here is adaptive based on the principle of minimum cosine distance. The basis for this
operation can be attributed to the fact that the state of the last time actually already contains
the information of all the previous times. Via numerical simulation experiments in three
different scenarios, the proposed method was shown to possess superior performance.

The paper is organized as follows. In Section 2.1, the random hypersurface model and
maneuver modeling for shape estimation of star-convex extended object are introduced.
Additionally the shape divergence problem when the constraint conditions are not satisfied
is analyzed simultaneously in Section 2.1. Section 2.2 presents the method proposed in this
paper. The simulation experiments are conducted in Section 3 to prove the effectiveness
and rationality of the proposed method. The next section summarizes and analyzes the
simulation results. The last Section 5 provides the conclusion.

2. Materials and Methods
2.1. Problem Formulation

The task of extended object tracking can be attributed to the joint estimation of kine-
matic and extension states. Suppose that the state vector of the object at k is xk =

(
xm

k , xe
k
)T ,

where xm
k and xe

k denote the kinematic and extension state vector, respectively. The dynamic
equation followed by the evolution of the object state is:[

xm
k+1

xe
k+1

]
=

[
Fm

k 0
0 Fe

k

][
xm

k
xe

k

]
+

[
wm

k
we

k

]
, k ∈ N (1)

where Fm
k and Fe

k are the state transition matrix of the kinematic state and extension state,
respectively. wm

k ∼ N
(
0, Qm

k
)

is an independent Gaussian process noise, we
k ∼ N

(
0, Qe

k
)

also denotes a Gaussian independent process, and both them are independent of each other.
The kinematic state of the object is denoted by a random variable

xm
k =

(
xk, vk(x), yk, vk(y)

)T
, where (xk, yk)

T and
(

vk(x), vk(y)

)T
represent the position and

velocity of the centroid, respectively. The dynamic evolution equation of the above motion
variables is

xm
k+1 = Fm

k xm
k + wm

k (2)

Supposing that the extended object makes constant-turning motion with a rotation
rate of ω, and the rotation angle within the same sampling time T is denoted as ϕ=ωT.
Then, the corresponding state transition matrix Fm

k (ϕ) of the dynamic variable xm
k is [20]

Fm
k (ϕ) =


1 sin(ϕ)

ω 0 − 1−cos(ϕ)
ω

0 cos(ϕ) 0 − sin(ϕ)

0 1−cos(ϕ)
ω 1 sin(ϕ)

ω
0 sin(ϕ) 0 cos(ϕ)

 (3)

In the two-dimensional Cartesian coordinate system, if the object makes a constant-
acceleration motion, then the kinematic state can be denoted by
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xm
k =

(
xk, vk(x), ak(x), yk, vk(y), ak(y)

)T
, where ax and ay denotes the acceleration along

the x-axis and y-axis directions, respectively. Additionally, the transition matrix of the
corresponding kinematic state is [20]

Fm
k
(
ax, ay

)
=



1 T T2

2 0 0 0
0 1 T 0 0 0
0 0 1 0 0 0
0 0 0 1 T T2

2
0
0

0
0

0
0

0
0

1
0

T
1


(4)

The extension state of the extended object is described by the random hypersurface
model, which has an advantage over other morphological modeling methods, in that it can
use more detailed information to describe some complex shapes [21]. For instance, the star-
convex shape can more accurately approximate the true shape of the aircraft compared
to other shapes (such as ellipse, see Figure 2 below). In other words, it can model a wide
range of object shapes, including irregular shapes with complex geometry. As such, more
detailed features can be captured. That is why we used the random hypersurface model to
model the extension state of an extended object as a star-convex shape in this paper.

Meaurement model

Random hypersurface 

model

Measurement source Measurement

Meaurement model

Random hypersurface 

model

Measurement source Measurement

(a) (b)

Figure 2. Illustration of approximating an extended object with ellipse/star-convex. (a) Ellipse.
(b) Star-convex.

2.1.1. Star-Convex Random Hypersurface Model

The contour of a star-convex object can be described by the radial function, and its
size represents the distance between each contour point and center point of the object.
As illustrated in Figure 3, ϕ represents the angle between the line from the center point xc

k
to the contour point, the X-axis, r(ϕ) denotes the distance, and ŝk ∈ [0, 1] represents the
scaling factor. The scaled object contour S(xk) can be described as follows:

S(xk) = {ŝkr(ϕ)e(ϕ) + xc
k|ϕ ∈ [0, 2π) , ŝk ∈ [0, 1]} (5)

e(ϕ) =

[
cos(ϕ)
sin(ϕ)

]
(6)
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Figure 3. Representation of a star-convex shape using a radial function. (a) Star-convex extended
object. (b) Radial function.

The radial function is then linearized, i.e., Fourier series expansion is applied, which
can be formulated as follows:

r(Bk, ϕ) = a(0)k + ∑
j=1,··· ,NF

(
a(j)

k cos(jϕ) + b(j)
k sin(jϕ)

)
= R(ϕ)Bk (7)

R(ϕ) =
[
1, cos(ϕ), sin(ϕ), ..., cos

(
NF ϕ

)
, sin

(
NF ϕ

)]
(8)

Bk =

[
a(0)k , a(1)k , b(1)k , ..., a(

NF)
k , b(

NF)
k

]T
(9)

where NF denotes the order of Fourier series expansion. In fact, the higher the order,
the more detailed features can be captured. On the contrary, if the order is low, only
rough features can be obtained, which will eventually result in the loss of information.
Equation (9) illustrates the coefficients expanded by the Fourier series, which can reflect
the shape information of the extended object. Therefore, the extension parameter vector xe

k
of the object can be represented by Bk as follows:

xe
k =

[
a(0)k , a(1)k , b(1)k , ..., a(

NF)
k , b(

NF)
k

]T
(10)

In this paper, the extension parameter contains nine variables, i.e., NF = 4. When
using the RHM to estimate the extension state, the initial shape is generally modeled as
a circle, then the measurement and filtering process are used to complete the subsequent
iterative process. Assuming that the object moves according to the maneuvering status
in Table 1, then a dynamic evolution process of the estimated shape can be shown in
Figure 4. Here, the black and red boundaries represent the true shape and estimated
results, respectively. Initially, the shape is generally modelled as a circle, and the estimated
result becomes gradually close to the true shape with the subsequent step-by-step iterative
process. From Figure 4, it can be easily noted that the estimated result gradually evolved
from the initial circle to the star-convex shape.

Table 1. Maneuvering process.

Step [1,20) [20,40) [40,60) [60,80) [80,100)

w(rad/s) −5 −10 0 −5 −10
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Figure 4. The whole iterative process of shape estimation for star-convex object. (a) Step-1. (b) Step-20.
(c) Step-40. (d) Step-60. (e) Step-80. (f) Step-100.

There exists a close coupling relationship between the motion direction and orientation
of the object during maneuvering. Especially in the scene of constant turning, the maneuver
of the centroid and the rotation of the extended form occur simultaneously. Of course, if the
object is treated as a point, the influence of maneuver on the shape does not need to be
considered. Nevertheless, as for the extended object, this problem can no longer be ignored.
Therefore, there is a pressing need to establish the maneuvering model of the extended
object with a star-convex shape.

2.1.2. Maneuvering Modeling of Extended Object with Star-Convex Shape

The simulation test in this paper was mainly completed in the constant turning scene,
so here only the evolution process of morphological variables during a turning maneuver is
provided. On the one hand, Fe

k(ϕ) is closely related to the coefficient vector after the Fourier
series expansion of the radial function. On the other hand, when the object rotates with an
angle θ, the radial function also shifts by the same angle [22]. Therefore, in consideration of
this property, the radial function after the rotation angle θ can be calculated according to
the radial function before maneuver, that is

r
(
xe

k+1, φ
)
= r(xe

k, φ− θ) + we
k (11)

where φ defines the angle after rotation, xe
k+1 represents the morphological variable ob-

tained at k+ 1, and we
k represents the noise in the process of morphological variable transfer.

The result of Fourier expansion can be expressed as

a(0)k+1 + ∑
j=1,··· ,NF

(
a(j)

k+1 cos(jφ) + b(j)
k+1 sin(jφ)

)
=

a(0)k + w(0)
k + ∑

j=1,··· ,NF

(
[

a(j)
k cos(jθ)− b(j)

k sin(jθ)
]

cos(jφ) + w(2j−1)
k +[

a(j)
k sin(jθ) + b(j)

k cos(jθ)
]

sin(jφ) + w(2j)
k )

(12)

Then, it can be further collated to the following equations.

a(0)k+1=a(0)k + w(0)
k (13)

a(j)
k+1 = a(j)

k cos(jθ)− b(j)
k sin(jθ) + w(2j−1)

k (14)
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b(j)
k+1 = a(j)

k sin(jθ) + b(j)
k cos(jθ) + w(2j)

k (15)

Therefore, the variables in the extension parameter vector xe
k+1 are denoted as follows.

xe
k+1 = Fe

k(θ)x
e
k + we

k (16)

Fe
k(θ) =



1 0 0 0 0 0 0 0 0
0 cos θ − sin θ 0 0 0 0 0 0
0 sin θ cos θ 0 0 0 0 0 0
0 0 0 cos 2θ − sin 2θ 0 0 0 0
0 0 0 sin 2θ cos 2θ 0 0 0 0
0 0 0 0 0 cos 3θ − sin 3θ 0 0
0 0 0 0 0 sin 3θ cos 3θ 0 0
0 0 0 0 0 0 0 cos 4θ − sin 4θ
0 0 0 0 0 0 0 sin 4θ cos 4θ


(17)

Following this, the dynamic evolution equation of morphological variables in the
turning maneuver scene can be obtained as illustrated in Equation (16), where Fe

k is the
state transition matrix, which has the form expressed in Equation (17). Taking Equations (3)
and (17) into Equation (1), the dynamic evolution equation of a star-convex extended object
under a turning scene can be obtained.

xk+1 =

[
Fk,m(φ) 0

0 Fk,e(φ)

]
xk + wk, k ∈ N (18)

The above model can uniformly describe the left-turning and right-turning motion
of a star-convex extended object under different rotation rates. When the rotation rate is
0, the above equation degenerates into a dynamic equation of uniform linear motion [22].
At this time, the transfer matrices of the kinematic and extension state are as follows.

Fm
k (θ) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (19)

Fe
k(θ) = diag(1, 1, 1, . . . , 1, 1) (20)

However, there still exists room for improvement in the above morphological modeling
process proposed in Sections 2.1.1 and 2.1.2. A defect of the radial function is that there
exists an implicit non-negative constraint, i.e., the distance from the center to the boundary
point given an angle θ must always be positive [18]. If this important constraint is not taken
into account, the estimation results will be unpredictable, which can be clearly confirmed
by the example in Figure 5. Therefore, the approximation of radial function must always be
positive to ensure that it conforms to the fundamental definition of geometry, especially the
star-convex shape. Nevertheless, since the radial function is a nonlinear function, only an
approximate value by performing Fourier expansion during the linearization process can
be obtained. It is obvious that such an operation cannot guarantee that the approximated
value is always nonnegative.
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Figure 5. Estimation results without considering the constraint. (a) Estimated shape. (b) Approxima-
tion of the radial function.

Furthermore, due to the inherent coupling relationship between shape and motion,
the estimation accuracy of the kinematic state will also be significantly reduced, leading to
tracking failure. As illustrated in Figure 6, the estimation results of shape at some steps
obviously deviated from the truth, leading to a huge estimation error. Moreover, the model
itself is unable to correct this error through the subsequent iterative process. In general, it is
sufficient to conclude that tracking fails due to such poor performance. Therefore, there is
an urgent need to propose a novel method to avoid tracking failure once the radial function
acquires a negative value.

Figure 6. Shape divergence in some typical scenarios.

Considering that the motion and shape of the object vary continuously between
uninterrupted sampling times, i.e., there exists consistency and continuity, the parameters
of the previous time must contain some information about the current time. Therefore, we
can make full use of the information carried in the historical results to improve or avoid
the serious consequences caused by this situation.
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2.2. Proposed Approach

According to the previous analysis of the causes of tracking failure, the root of the
problem can be found in the initialization process. Naturally, adding a novel reinitialization
process to the original model to avoid tracking failure when the radial function acquires a
negative value is considered in this paper. The process of reinitialization can be summarized
as follows: Initially, the value of the radial function after filtering at k is judged. If it is
positive, continue with the next iteration. However, if it is negative, a novel reinitialization
step needs to be executed, i.e., both the kinematic state xm

k and extension parameter xe
k

are reinitialized. Eventually, the multi-model estimation process [23] is performed again.
The following are the specific steps of parameter reinitialization:

Assuming that xe
o denotes the shape information at the initial time, x̂m

k−1 and x̂e
k−1

are the kinematic state and extension parameter vectors at k− 1, respectively. Compared
with the historical information of earlier steps, the state (both kinematic and extension)
at k− 1 is certainly closer to the current state. Therefore, the kinematic state (including
position, velocity, etc.) at k− 1 can be used to reinitialize xm

k . However, since the decline of
estimation accuracy is fundamentally caused by shape divergence, if only the extension
parameter at k− 1 is utilized for the reinitialization of xe

k, it will inevitably lead to tracking
failure again for the same reason. The shape at the initial time is assumed to be a circle,
which belongs to a kind of convex polygon, and the radial function in the polar coordinate
system must always be positive. Nevertheless, all the shape information obtained before k
will be lost if only the shape at the initial time is used to reinitialize the extension parameter.
This leads to a limited correction capability. Therefore, in this paper, the shape information
of initial time and historical time is fused to reinitialize the extension parameter.

Since the extension parameters of the first d steps carry the historical information of
the shape, weighting of the extension parameters at the initial step and the first d steps is
considered to obtain x̃e

k. x̃e
k denotes the extension parameter after reinitialization, and the

size of d is determined by traversing the value of d in this paper. Taking the second one
in Figure 6 as the maneuvering scenario, simulation tests were conducted for different d
values from 1 to 6. Under each hypothesis, a total of 100 simulation tests were carried
out. Figure 7 and Table 2 depict the correction ability corresponding to different d, where
Hausdorff distance [24] and root-mean-square error (RMSE) are used to evaluate the shape
and motion correction ability of different d, respectively. The smaller the value, the better
the correction capability.

As shown in Figure 7 and Table 2, a conclusion can be easily drawn in that the perfor-
mance is the best for d = 1. This suggests that a better correction ability can be achieved
only by using the shape information at k− 1 and the initial time. This is primarily because
the state of the object is continuously changing, so the shape at k− 1 (i.e., d = 1) actually
carries the historical information of an earlier time. If d > 1 (i.e., all the information of the
previous d steps are weighted), and by reusing some historical information, the operation
will not improve the correction ability but increase the computational burden. Therefore,
we decided to weight xe

o and x̂e
k−1 to obtain the extension parameter x̃e

k after reinitialization.

Table 2. The correction ability corresponding to different d.

Hausdorff Distance
(dH/m) Position RMSE (m) Velocity RMSE (m/s)

d = 1 347.398 21.024 12.679
d = 2 352.467 30.800 23.377
d = 3 354.406 29.167 20.527
d = 4 352.814 24.228 15.249
d = 5 350.161 23.259 16.296
d = 6 354.790 34.242 25.129
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Figure 7. The correction ability with different values of d. (a) Hausdorff distance. (b) RMSE of
position. (c) RMSE of velocity.

Meanwhile, the determination of weight here is still a crucial yet difficult problem.
If each weight distribution coefficient is artificially specified, a certain degree of subjective
randomness is inevitably introduced. Moreover, the authority and reliability of each distri-
bution cannot be guaranteed owing to the lack of experience. In general, the differences
between the weighted extension parameter vector x̃e

k and the two before combination
are expected to be small. As a result, some fuzzy decision-making problems typically
employ objective methods to establish a planning model for the determination of attribute
weights [25,26]. For instance, when using the combined weighting method to evaluate
the system performance, the principle of minimum relative entropy is skillfully applied to
determine the distribution coefficients of subjective and objective weights [27].

The difference between two random distributions is measured asymmetrically using
relative entropy, also known as Kullback–Leibler divergence [28]. Assuming that P(x)
and Q(x) are two probability distributions for a random variable x, the relative entropy
in the case of discrete and continuous random variables can be defined as follows, respec-
tively [29].

KL(P ‖ Q) = ∑ P(x) ln
P(x)
Q(x)

, KL(P ‖ Q) =
∫

P(x) ln
P(x)
Q(x)

dx (21)

If the two probability distributions are the same, their relative entropy is zero. When
the difference between the two probability distributions increases, their relative entropy
will also increase. The following is an equation used to calculate weight with the principle
of minimum relative entropy: min Q(p, q) =

N
∑

j=1
x̃e

k ln
(

x̃e
k

x̂e
k−1

)
+

N
∑

j=1
x̃e

k ln
(

x̃e
k

xe
o

)
p + q = 1, x̃e

k = p ∗ x̂e
k−1 + q ∗ xe

o

(22)
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where N indicates the number of variables in the extension parameter vector. xe
o and x̂e

k−1
are the extension parameters at the initial time and k − 1, p and q denote their weight
distribution coefficients, respectively.

However, the logarithmic function’s argument must be positive, i.e., the corresponding
weighted variables in xe

o and x̂e
k−1 must have the same sign, which obviously cannot

be satisfied here. Therefore, the principle of minimum relative entropy is ineffective in
determining the weight distribution coefficient in this paper. It is a blessing that it can be
roughly replaced by another scale criterion for measuring vector difference. Cosine distance,
also known as cosine similarity, can be used to evaluate the similarity of two vectors by
calculating the cosine value of the angle between them [30]. Additionally, the difference is
proportional to the cosine distance. As a result, the minimum cosine distance can be used
in this paper to construct the mathematical model and calculate a more reasonable weight
distribution coefficient [31]. The process can be formulated as follows: min Q(p, q) =

N
∑

j=1
dist

(
x̃e

k, x̂e
k−1

)
+

N
∑

j=1
dist

(
x̃e

k, xe
o
)

p + q = 1, x̃e
k = p ∗ x̂e

k−1 + q ∗ xe
o

(23)

dist
(

x̃e
k, x̂e

k−1

)
= 1− cos

(
x̃e

k, x̂e
k−1

)
=
‖x̃e

k‖2‖x̂e
k−1‖2

−x̃e
k·x̂

e
k−1

‖x̃e
k‖2‖x̂e

k−1‖2
(24)

dist(x̃e
k, xe

o) = 1− cos(x̃e
k, xe

o) =

∥∥x̃e
k

∥∥
2‖x

e
o‖2 − x̃e

k · xe
o∥∥x̃e

k

∥∥
2‖xe

o‖2
(25)

Figure 8 illustrates an example of obtaining adaptive weights p and q by using the
minimum cosine distance in one optimization process, where the x-axis represents the
number of variables included in the extension parameter vector, and the y-axis represents
the values corresponding to each variable. Each time the reinitialization step is performed,
the dynamic adaptive p and q values will be obtained according to the principle of minimum
cosine distance, so as to make the weight distribution more reasonable. Table 3 lists the
complete calculation process of the modified star-convex random hypersurface model
proposed above.
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Figure 8. An example of using the minimum cosine distance to obtain adaptive weights.
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Table 3. Pseudo codes of the proposed Method.

For k = 1
The scaled object contour can be described as

S(xk) =
{

ŝkr(ϕ)e(ϕ) + xc
k|ϕ ∈ [0, 2π) , ŝk ∈ [0, 1]

}
where e(ϕ) = [cos(ϕ), sin(ϕ)]T .
Then, perform step 1©.
1© Linearization process
r(ϕ) = a(0)k + ∑

j=1,··· ,NF

(
a(j)

k cos(jϕ) + b(j)
k sin(jϕ)

)
= a(0)k + a(1)k cos(ϕ) + b(1)k sin(ϕ) + · · ·+ a(NF)

k cos(ϕ) + b(NF)
k sin(ϕ)

If r(ϕ) ≥ 0
k = k + 1, proceed to the next iteration.

Else
Perform step 2©.

End if.
2© Reinitialization process

x̃m
k = x̂m

k−1, x̃e
k = p ∗ xe

o + q ∗ x̂e
k−1.

where x̃m
k , x̃e

k represent the kinematic and extension state after reinitialization.
p and q can realize adaptation through the following equations:

min Q(p, q) =
NF

∑
j=1

dist
(

x̃e
k, x̂e

k−1

)
+

NF

∑
j=1

dist
(

x̃e
k, xe

o
)

p + q = 1, x̃e
k = p ∗ x̂e

k−1 + q ∗ xe
o

dist
(

x̃e
k, x̂e

k−1

)
= 1− cos

(
x̃e

k, x̂e
k−1

)
=
‖x̃e

k‖2‖x̂e
k−1‖2

−x̃e
k ·x̂e

k−1

‖x̃e
k‖2‖x̂e

k−1‖2

dist
(

x̃e
k, xe

o
)
= 1− cos

(
x̃e

k, xe
o
)
=
‖x̃e

k‖2
‖xe

o‖2−x̃e
k ·xe

o

‖x̃e
k‖2
‖xe

o‖2
.

End for.

3. Results of Numerical Experiments

To prove the rationality and validity of the proposed method, the single maneuvering
extended object was considered as the tracking target, and simulation experiments for two
deterministic scenarios (DS1 and DS2) and one random scenario (RS) were performed,
respectively. It should be noted that the paper primarily focused on improving the shape
estimation method of star-convex RHM, so as to reduce the estimation error and eliminate
the tracking failure caused by a negative value of the radial function, in which clutter and
missed detection are not involved.

3.1. DS1

The simulation was carried out under the framework of Constant Velocity (CV) and
Constant Turn (CT) models, in which both structure and parameter were altered. Table 4
details the maneuvering process of the object.

Table 4. Maneuvering process in DS1.

Step [0,20) [20,40) [40,60) [60,80) [80,100) [100,120]

w(rad/s) −5 −10 0 −5 −10 0

The parameters of the initial value, state transition matrix and observation matrix
used in the simulation process are set as follows:

xm
o = [1000 m, 0 m/s, 5000 m,−200 m/s] (26)

xe
o = [70, 0, 0, 0, 0, 0, 0, 0, 0,] (27)

zj
k = H j

kxj
k + υ

j
k (28)
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where xm
o and xe

o are the initial kinematic and extension state, respectively. zj
k denotes

the jth two-dimensional measurement, υ
j
k denotes the observation noise, and xj

k in the

turning scenario is xj
k =

(
xk, vk(x), yk, vk(y)

)T
. Therefore, the observation matrix H j

k in this
simulation scenario can be set as follows:

H j
k =

[
1
0

0
0

0
1

0
0

]
(29)

In the above-mentioned simulation scenario, the traditional star-convex RHM was
compared with the modified star-convex RHM proposed in this paper. Furthermore,
to demonstrate the impact of weight on performance, the estimated results of using fixed
weight and adaptive weight obtained by using minimum cosine distance are also compared.
Figure 9, Tables 5 and 6 provide the performance comparisons of the three algorithms,
in which the estimation accuracy of extension and kinematic state are evaluated using
Hausdorff distance and RMSE, respectively. The smaller the values, the higher the estima-
tion accuracy.
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Figure 9. The performance comparisons of the three algorithms in DS1. (a) Trajectory. (b) Hausdorff
distance. (c) RMSE of position. (d) RMSE of velocity.

Table 5. Performance comparisons of the three algorithms in DS1.

Hausdorff Distance
(dH/m) Position RMSE (m) Velocity RMSE (m/s)

Divergence 1019.383 134.890 30.077
Fixed weight 347.398 21.024 12.679

Adaptive weight 337.000 19.051 11.110
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Table 6. Computational burden of the three algorithms in DS1.

Divergence Fixed Weight Adaptive Weight

Time (s) 1.000 1.049 1.046

According to the object trajectory in Figure 9a, the shape estimated by the original
tracking algorithm had serious divergence from step 80. This suggests that the estimation
results deviated from the true shape. Through the analysis of a large number of experi-
mental data, it can be inferred that this situation was caused by the negative value of the
radial function. Besides, from the subsequent tracking results of the original algorithm,
a conclusion can be drawn that such an error cannot be repaired by the star-convex RHM
itself. Therefore, after step 80, the original algorithm actually cannot complete the entire
tracking process.

In reality, an inherent coupling relationship exists between the motion and the shape
during the process of extended object tracking. For instance, the orientation of the object is
always consistent with the moving direction of its centroid. Undoubtedly, the performance
of both can benefit from the relationship, e.g., an accurate position is helpful to capture
the object, and a description closer to the true shape is also conducive to the continuous
tracking of the object. However, this relationship can also bring undesirable consequences.
It can be observed from Figure 9c,d that there are significant errors in position and velocity
due to shape divergence, especially in the estimation of centroid position, which directly
leads to a tracking failure.

By using a reinitialization process, the algorithm proposed in this paper effectively
solves this problem. Once the radial function is negative, the proposed algorithm can
fully utilize the prior information and historical results to reinitialize the kinematic state
and extension parameter, so as to effectively avoid the occurrence of tracking failure.
Moreover, the proposed algorithm uses the minimum cosine distance to obtain more
reasonable weight distribution coefficients and realize the weight adaptation. In this
simulation process, the consequences of using fixed weight and adaptive weight are
presented, respectively. The date in Tables 5 and 6 are sufficient to prove that using
adaptive weight can achieve a more powerful correction of tracking results while marginally
increasing the level of calculation.

3.2. DS2

To further validate the applicability and effectiveness of the proposed method in
various tracking scenarios, simulation experiments were carried out in another typical
turning scenario (DS2). The maneuvering process of the object is provided in Table 7.
The settings of parameters such as initial value and transition matrix are consistent with
those in DS1.

Table 7. Maneuvering process in DS2.

Step [0,20) [20,40) [40,60) [60,80) [80,100) [100,120) [120,140]

w(rad/s) 0 −10 0 −5 0 −10 0
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Similarly, the simulation results of the original star-convex RHM algorithm and the
proposed algorithm (using fixed weight and adaptive weight, respectively) were compared.
Figure 10, Tables 8 and 9 depict the performance comparison results of the three algorithms.
To evaluate the estimation accuracy of extension and kinematic state, Hausdorff distance
and RMSE were used, respectively.
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Figure 10. The performance comparisons of the three algorithms in DS2. (a) Trajectory. (b) Hausdorff
distance. (c) RMSE of position. (d) RMSE of velocity.

Table 8. Performance comparisons of the three algorithms in DS2.

Hausdorff Distance
(dH/m) Position RMSE (m) Velocity RMSE (m/s)

Divergence 749.464 64.666 22.318
Fixed weight 350.018 30.311 31.423

Adaptive weight 345.341 26.611 18.793

Table 9. Computational burden of the three algorithms in DS2.

Divergence Fixed Weight Adaptive Weight

Time (s) 1.000 1.030 1.040
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As demonstrated in Figure 10, when the program reaches 100 simulation steps,
the shape divergence of the original algorithm occurs. Due to the inherent coupling
relationship between shape and motion, the estimation results of the kinematic state are
also affected, leading to a sudden increase in the corresponding RMSE of position and
velocity. The error cannot be recovered by the model itself, and the shape estimation result
after 100 simulation steps deviates from the true shape of the object.

Since the reinitialization method proposed in this paper was used for tracking, the es-
timation error reduced significantly, and the occurrence of tracking failure was effectively
avoided. Furthermore, the proposed algorithm using adaptive weight can perform better
when allocating the weights of extension parameters at the initial time and k− 1. In partic-
ular, among the average error values of the three algorithms in Table 7, the average velocity
error when using fixed weight is even larger than that of the original algorithm in some
cases. The reasons include the following two aspects: on the one hand, the shape divergence
makes a larger impact on the estimation accuracy of the position, so the velocity error is
relatively small. On the other hand, the use of fixed weight actually introduces unnecessary
prior information to a certain extent, leading to the uncertainty of the estimation results.
In other words, once the fixed weight is assigned, the influence of human factors on the
estimation results is introduced, increasing a degree of subjective randomness.

Overall, it can be concluded that the reinitialization method using adaptive weight pro-
posed in this paper possesses superior performance when the radial function acquires a neg-
ative value, which can significantly reduce the tracking error so as to avoid tracking failure.

3.3. RS

To provide a fair performance comparison result, the experiment was carried out
in a random scenario (RS). The program executes 100 simulation steps each time and
randomly generates eight true motion states, in which both the time of duration τt and
the corresponding turning rate wk are random. The residence time τt of state w = wk is a

random number that satisfies
8
∑

t=1
τt = 100. wk represents a binomial distribution with mean

w̄ and variance ν2. In this scenario, the sampling time is 1 s, and other relevant parameters
are set as follows:

w̄ = 0, ν2 = 10 (30)

During the entire maneuvering process, the object keeps turning at a constant velocity,
and the turning rate changes eight times. This can be considered as a strong maneuvering
process. Figure 11, Tables 10 and 11 demonstrate the performance comparison results of
the three algorithms.

Table 10. Performance comparisons of the three algorithms in RS.

Hausdorff Distance
(dH/m) Position RMSE (m) Velocity RMSE (m/s)

Divergence 465.977 123.770 23.451
Fixed weight 329.154 22.494 18.765

Adaptive weight 325.364 20.495 12.305

Table 11. Computational burden of the three algorithms in RS.

Divergence Fixed Weight Adaptive Weight

Time (s) 1.000 1.056 1.059

In this simulation scenario, a total of 200 Monte Carlo simulation experiments were
carried out with a random true trajectory generated each time. One of the trajectories is
shown in Figure 11a. According to Figure 11a, when the program runs to step 70, the shape
estimated by the original algorithm begins to diverge, resulting in a sudden increase in the
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RMSE of the corresponding position and speed simultaneously. Combined with the Haus-
dorff distance of the three algorithms in Figure 11b, it can be observed that the proposed
algorithm eliminates the shape divergence by using the proposed reinitialization method.
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Figure 11. The performance comparisons of the three algorithms in RS. (a) Trajectory. (b) Hausdorff
distance. (c) RMSE of position. (d) RMSE of velocity.

Figure 11c,d illustrates the average error values of position and velocity in 200 Monte
Carlo experiments, respectively. It is not difficult to find that the reinitialization method
proposed in this paper can effectively reduce the tracking error compared with the original
algorithm whether using fixed weight or adaptive weight. However, based on the analysis
of values in Table 10, it is obvious that improved performance can be obtained when
using the minimum cosine distance principle for weight adaptation. This is because of
the automatic adjustment of the weight according to the initial and historical extension
parameters when the reinitialization step is executed. In this random scenario, the per-
formance comparison results of the three algorithms are more obvious than in the other
two deterministic scenarios (DS1 and DS2), confirming the superiority of the algorithm
proposed in this paper.

4. Discussion

According to the simulation results in Chapter 3, the algorithm proposed in this paper
outperformed the competition in three maneuvering scenarios. The proposed algorithm,
in particular, effectively solved the problem of shape divergence and greatly improved
estimation accuracy. The reasons can be summarized as follows:

• A novel reinitialization step was added to the original model, which can effectively
avoid the occurrence of tracking failure when the radial function acquires a nega-
tive value;
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• When the extension parameter is reinitialized, the initial information and historical
results are skillfully weighted, and the adaptive weight distribution coefficients are
realized using the principle of minimum cosine distance.

This simulation experiments primarily focused on the tracking problem of a single
maneuvering extended object; however, it is hoped that the proposed algorithm will be
applicable to multi-object tracking in subsequent research.

5. Conclusions

In this paper, to solve the problem of tracking failure caused by the negative value
of a radial function, a modified star-convex random hypersurface model was proposed.
Once a negative value is detected, the initial extension parameter and historical results are
fully utilized for reinitialization, and the principle of minimum cosine distance is used to
obtain more reasonable weight distribution coefficients. Numerical simulation experiments
were carried out in two typical deterministic scenarios (DS1 and DS2) and one random
scenario (RS). It can be inferred from the experimental results that the proposed method
can significantly improve the estimation accuracy of the original algorithm when the radial
function has a negative value, so as to effectively avoid the tracking failure.
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