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Reliably modelling and monitoring the climate requires robust data that can be used
to feed meteorological models, and, most importantly, to independently validate those
models. For over three decades now, global navigation satellite systems (GNSS) have
proven to be a powerful technology that can provide accurate position, navigation, and
timing information. However, GNSSs can also serve as an atmospheric sounding sensor
typically through an inversion procedure. The estimation of the total propagation delay
encountered by GNSS electromagnetic signals at the receiver’s zenith, the total zenith
delay (ZTD), can be used to derive the amount of precipitable water vapor (PWV) in
a column. This quantity has been extensively used in meteorology, either incorporated
into numerical weather prediction (NWP) models by a number of meteorological services
organizations around the world, or being used to validate the NWP models and other
observational datasets (e.g., radiometers or spectrometers onboard satellite platforms).
GNSS-derived ZTD can also be used to build climatological models, which are valuable
tools for initial predictions.

Continuous GNSS observations have been collected for over 30 years now and have
offered an unprecedented opportunity in exploiting the potential of these valuable mea-
surements for climate studies through geodetic data analytics. As an essential climate
variable, water vapor is a key component for the earth’s climate. It is the most important
natural greenhouse gas and responsible for the largest known feedback mechanism for
driving climate change. Like for weather research (e.g., for nowcasting applications), there
is a growing interest in assessing and maximizing the benefits of GNSS measurements for
climate studies. This includes the evaluation of PWV trends and variability in addition to
the interest of feeding and validating climatic models.

This Special Issue consists of twelve research papers, which cover a variety of top-
ics, ranging from analyzing long-term GNSS-derived PWV, NWP evaluation using GNSS
measurements, GNSS radio occultation (RO), to GNSS ionospheric modelling. Those pa-
pers can be arranged in major groups. Several papers [1–3] discuss different aspects in
dealing with the estimation of long-term GNSS-derived water vapor trends and intercom-
parisons with external sources and NWP models. Other papers [4] use GNSS-estimated
tropospheric parameters to evaluate NWP models and use these parameters for building
ZTD climatological [5–7] or precipitation [8,9] models. Paper [10] focuses on GNSS-radio-
occultation-retrieved temperature and specific humidity profiles. Paper [11] presents an
application of GNSS- and radiosonde-derived PWV for the monitoring of forest fires.
To determine tropospheric parameters to be used in the climate, other biases that affect
GNSS measurements need to be properly dealt with. Paper [12] discusses modelling of
the ionospheric delay with TEC maps using Australian national positioning infrastructure
(regional GNSS network) with an artificial neural network method.
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Finally, we thank those authors for the contribution of their quality work and con-
gratulate them for the publication. We are very grateful to the reviewers for their valuable
time and efforts without which this Special Issue could not have been published in a
timely manner.
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