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Abstract: It is known that synthetic aperture radar (SAR) images obtained by typical matched
filtering (MF)-based algorithms always suffer from serious noise, sidelobes and clutter. However, the
improvement in image quality means that the complexity of SAR systems will increase, which affects
the applications of SAR images. The introduction of sparse signal processing technologies into SAR
imaging proposes a new way to solve this problem. Sparse SAR images obtained by sparse recovery
algorithms show better image performance than typical complex SAR images with lower sidelobes
and higher signal-to-noise ratios (SNR). As the most widely applied fields of SAR images, target
detection and target classification rely on SAR images with high quality. Therefore, in this paper,
a target detection framework based on sparse images recovered by complex approximate message
passing (CAMP) algorithm and a novel classification network via sparse images reconstructed by
the new iterative soft thresholding (BiIST) algorithm are proposed. Experimental results show that
sparse SAR images have better performance whether for target classification or for target detection
than the images recovered by MF-based algorithms, which validates the huge application potentials
of sparse images.

Keywords: sparse synthetic aperture radar (SAR); convolutional neural network (CNN); complex
approximate message passing (CAMP); target classification; target detection

1. Introduction

Synthetic aperture radar (SAR) is a microwave remote sensing observation system which
can obtain high-resolution images due to its ability of working all day and under all weather
conditions. Thus, it plays an irreplaceable and important role in both the military and civilian
fields [1,2]. As important fields of SAR applications, target detection and target classification
have developed slowly due to the problems of hardware equipment and manual feature
extraction [3–5]. In 2006, Hinton et al. proposed the concept of deep learning, noting that
the multi-layer convolutional neural network (CNN) has the ability of automatic fea-
ture extraction, which is of great research significance for target classification [6]. In 2012,
Krizhevesky et al. proposed the first CNN model used for image classification, with its
top-five error ratio only being 17.0%, making deep learning popular in the field of image
classification [7,8]. Chen et al. [9] used an unsupervised sparse self-encoder in place of
typical back-propagation in 2014, so as to apply CNN to SAR image recognition. Since then,
more attention has been paid to radar image processing based on CNN [10,11]. After CNN
began being widely used in the field of image processing, scholars started to carry out
considerable research on whether CNN can show comparable performance in the field
of target detection. At present, CNN-based target detection frameworks can be mainly
divided into two types: one-stage frameworks [12–14] and two-stage frameworks [15–18].
The first two-stage framework, called a regional convolutional neural network (RCNN),
was introduced by Girshick et al. in 2014 [15]. Then, the improved RCNN series such as
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Fast RCNN [16], Faster RCNN [17] and Mask RCNN [18] were also proposed. Compared
with two-stage frameworks, one-stage frameworks can directly output the locations and cat-
egories of different targets, which improve the efficiency of target detection. The algorithms
represented by YOLO (You Only Look Once) series and single-shot multibox detectors
(SSD) [12] are widely used in target detection. In 2015, Redmon et al. [13] proposed a
YOLO algorithm based on a single neural network, which turns target detection into a
regression problem and uses the entire information of images to predict the target locations
and categories. Then, in 2020, Bochkovskiy et al. developed a target detection model called
YOLOv4 [14]. It integrates several advanced target detection techniques, which facilitates
real-time processing and improves the target detection ability of YOLO algorithms.

When it comes to target classification, different from optical images, SAR images have
both amplitude and phase information. However, traditional CNNs only use amplitude
information for SAR target classification, similar to the target classification of optical
images. Many research methods on how to use the phase information of SAR images
have been proposed in recent years, which show better performance than amplitude-based
methods [19–21]. Zhang et al. proposed a novel classification network called complex-
valued CNN (CV-CNN) in 2017 to extract the phase information of SAR images [19].
Compared with typical CNNs that only use amplitude information, CV-CNN achieves
lower classification error rate in experiments based on polarimetric SAR datasets. In 2018,
Coman et al. adopted the method of amplitude–real–imaginary three-layer data to form
the input of the network and achieved about 90% accuracy in the experiments based on the
MSTAR dataset, which alleviated the over-fitting problem caused by the lack of training
data [20]. In 2020, Yu et al. proposed a new framework on the basis of CV-CNN, named
the complex-valued fully convolutional neural network (CV-FCNN), in which the pooling
layers and fully connected layers are replaced by convolutional layers to avoid complex
pooling operation and over-fitting [21]. Experiments on MSTAR demonstrated that CV-
FCNN improves the classification accuracy, showing better performance over CV-CNN.

In the last decade or so, sparse signal processing technologies were widely used in
SAR imaging. The limitation of conventional Shannon–Nyquist sampling theory is bro-
ken by sparse SAR imaging algorithms. Benefiting from this, the sparse SAR imaging
algorithms can achieve the high-quality recovery of sparse scenes with less data, reducing
the complexity of radar systems [22,23]. In sparse SAR imaging, typical sparse recovery
algorithms, such as orthogonal matching pursuit (OMP) [24,25] and iterative soft thresh-
olding (IST) [26,27], could only improve the image quality of observed scenes with ruined
background statistical characteristics and phase information. This will lose the feature
information of focused targets and further hinder the development of sparse SAR image
processing. The introduction of complex approximate message passing (CAMP) [28,29]
and a novel iterative soft thresholding algorithm (BiIST) [30,31] into sparse SAR imaging
solves these problems. Both CAMP and BiIST-based sparse SAR imaging methods can
acquire two kinds of sparse SAR images, i.e., sparse solution and non-sparse solution of the
interested scenes. The sparse solution of BiIST and CAMP is similar to the results of typical
sparse reconstruction algorithms. However, non-sparse solutions of CAMP can retain
similar background statistical distributions to matched filtering (MF)-based images and the
non-sparse solution of BiIST can retain phase information, which will offer more feature
information for SAR target classification and detection, so as to theoretically improve the
performance of proposed methods.

In this paper, experiments will be carried out based on the sparse SAR images re-
covered by the CAMP and BiIST algorithms. In the case of the CAMP-based sparse SAR
imaging method, a target detection framework based on sparse SAR images is introduced.
It firstly constructs the sparse SAR image dataset using the results of CAMP. Then, YOLOv4
is introduced into target detection on the basis of reconstructed datasets. When it turns to
BiIST-based sparse imaging method, a classification network based on the amplitude and
phase information of SAR images is used to classify targets in a sparse SAR image dataset
composed of the non-sparse solution of BiIST.
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The rest of this paper is organized as follows. Sparse SAR imaging methods based on
complex image data are introduced in Section 2. Section 3 describes the models of YOLOv4
and the amplitude–real–imaginary classification network. Experimental results on the basis
of the MSTAR dataset are shown in Section 4, and performance analysis under different
situations is discussed in Section 5. Finally, Section 6 concludes our work.

2. Sparse SAR Image Recovery Algorithm

In order to protect the copyright of echo data and the system confidentiality of SAR,
compared with original data, complex SAR image data recovered by MF-based methods
is more convenient to obtain. Therefore, to get abundant sparse SAR images, sparse SAR
imaging methods based on complex image data via regularization-based algorithms are
introduced, i.e., CAMP [28,29] and BiIST [30,31]. The complex-image-based sparse SAR
imaging model can be write as:

XMF = X + N (1)

where X ∈ CNP(Azimuth)×NQ(Range) is the back-scattering coefficient of interested scenes,
XMF is the known complex-valued SAR image data and N ∈ CNP×NQ is a complex matrix
representing the difference between XMF and X.

2.1. CAMP Based Sparse SAR Recovery Algorithm

Based on the model shown in (1), X can be recovered from the following regularization
problem with regularization parameter λ, i.e.,

X̂CAMP = min
X

{
1
2
‖XMF − X‖2

F + λ‖X‖1

}
(2)

where ‖·‖F is the Frobenius norm of a matrix. Then CAMP is introduced to deal with the opti-
mization problem in (2), and the specific iterative process is listed in [28,29]. Compared with
other recovery algorithms, CAMP introduces a term of “state evolution” to evolve the stan-
dard deviation of “noise” during the iteration process, so that it can output the sparse X̂C
and non-sparse X̃C estimations of considered scenes, simultaneously. Different from typical
sparse images X̂C, X̃C not only has an improved image quality compared with MF-based
results, but it can also preserve the statistical characteristics in the image background.

To support our viewpoints, experiments based on the MSTAR dataset are used to
validate the CAMP-based algorithm in image performance improvement and the preser-
vation of image backgrounds’ statistical distributions. Figure 1 shows the image of five
point targets recovered by MF- and CAMP-based sparse SAR imaging methods, respec-
tively. Compared with MF-based result, it should be noted that X̂C highlights the target
with ruined background statistical characteristics, as shown in Figure 1b. However, X̃C
(Figure 1c) has a relatively close background distribution to that of the MF-based images
(see in Figure 2d) with improved image quality. The target-to-background ration (TBR)
is selected to evaluate the improvement of image quality quantitatively, which can be
defined as:

TBR(X) ∆
= 20log10

 max(u,v)∈T

∣∣∣(X)(u,v)

∣∣∣
(1/NB)∑(u,v)∈B

∣∣∣(X)(u,v)

∣∣∣
 (3)

where T is the target area, and B represents the background region. Then, NB denotes the
number of pixels in the background region. The TBR of five targets in Figure 1 is shown
in Table 1. It is seen that both X̂C and X̃C of the five selected targets can obtain a higher
TBR, with all of them reaching 50 dB, which shows better image performance than MF-
based images.



Remote Sens. 2022, 14, 4366 4 of 18

(a) (b)

(c) (d)

Figure 1. Images restored by different methods: (a) MF-based; (b) X̂C of CAMP; (c) X̃C of CAMP;
(d) Amplitude deviation between (c) and (a).

Table 1. TBR of images reconstructed by MF and CAMP-based methods.

Target Target 1 Target 2 Target 3 Target 4 Target 5

MF 38.20 dB 35.71 dB 34.11 dB 33.30 dB 34.75 dB
X̂c of CAMP 57.30 dB 55.04 dB 52.26 dB 53.39 dB 53.86 dB
X̃c of CAMP 60.73 dB 54.54 dB 55.17 dB 52.77 dB 57.53 dB

2.2. BiIST-Based Sparse SAR Recovery Algorithm

When it comes to the BiIST-based algorithm, the following optimization problem
based on the model in (1) is to be solved by:

X̂BiIST = min
X

{
‖XMF − X‖2

F + β‖X‖1

}
(4)

where β is the regularization parameter. The detailed iterative process of BiIST used to deal
with the above optimization problem is shown in [30,31]. Complex SAR images recovered
by the BiIST-based algorithm can also obtain two kinds of results of the observed scenes,
named sparse solutions (X̂B) and non-sparse solutions (X̃B). As shown in Figure 2, the
sparse solution X̂B and non-sparse solution X̃B are similar to the result of the CAMP-based
sparse recovery algorithm. However, it should be noted that the phase information of X̂C
recovered by CAMP is ruined, facing the same problem that phase information cannot be
introduced into the applications of SAR images. Different from the CAMP-based method,
X̃B of BiIST-based algorithm can retain the phase information, which will provide more
effective information for the SAR image applications.
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(a) (b)

(c) (d)

Figure 2. Images restored by different methods: (a) MF; (b) X̂B of BiIST; (c) X̃B of BiIST; (d) Amplitude
deviation between (c) and (a).

Take the real scene as an example. The phase difference between an MF-based image
and the recovered sparse image is shown in Figure 3. As represented in Figure 3b, the phase
difference between the MF-based image and the non-sparse solution is zero, different from
that between the MF-based image and the sparse solution (see Figure 3a). Therefore, X̃B
can retain the phase information of MF-based images, making phase-based SAR image
applications such as SAR interferometry (InSAR), constant false alarm rate (CFAR) detection
and the proposed classification network possible.
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-2

0

2

4

6

(a)

-6

-4

-2

0

2

4

6

(b)

Figure 3. The phase difference between an MF-based image and (a) sparse solution X̂B; (b) non-sparse
solution X̃B.
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3. SAR Image Application Based on Sparse SAR Images
3.1. Target Detection by YOLOv4

YOLOv4 integrates several advanced target detection techniques to improve the
accuracy and accelerate the training of CNNs, whose architecture is shown in Figure 4.
The low requirement of hardware equipment makes YOLOv4 able to be widely used.
YOLOv4 is made up of four parts. The main methods and tricks in each part are shown as
follows [13]:

• Input: Mosaic data augmentation, cross mini-batch normalization (CmBN) and self-
adversarial training (SAT);

• Backbone: Cross-stage partial connections Darknet53 (CSPDarknet53), mesh-activation
and dropblock regularization;

• Neck: SPP, modified feature pyramid network (FPN) and path aggregation network
(PAN);

• Prediction: Modified complete IOU (C-IOU) loss and distance IOU (D-IOU) nms.

Parts of these methods are able to obviously improve the network’s performance.
Mosaic data augmentation randomly utilizes four images with clipping and scaling and
then splices them, so as to enrich the dataset, reducing the size of the mini-batch and the
requirement for GPU computing. SAT changes original images to create the deception
of an undesired target. Methods in the input part are used to modify images which can
strengthen the robustness of the network for training in the next part. Cross-stage partial
connections in the second part of YOLOv4 divide the gradient flow, propagating it into
different paths to reduce the computational complexity and accelerate the detection speed
of the network. In addition, some modules such as SPP, PAN and FPN improve the feature
extraction ability of YOLOv4. Loss functions used in the network, such as modified C-IOU
loss and D-IOU nms make YOLOv4 achieve better performance.

3.2. Target Classification by Amplitude–Real–Imaginary CNN

Different from traditional amplitude-based classification networks, the three-channel
CNN is a novel framework based on the amplitude and phase information of SAR images
for target classification. As shown in Figure 5, the architecture of the amplitude–real–
imaginary CNN is made up of several convolutional layers, average pooling layers and fully
connected layers, which is similar to the typical structure of CNNs. The difference between
the amplitude–real–imaginary CNN and amplitude-based CNNs is mainly reflected in the
input layer. When using amplitude-based CNNs, input data are one-channel images that
only contain amplitude information of SAR images. However, the input layer of proposed
framework is a three-channel image with the amplitude layer, real layer and imaginary
layer (see in Figure 6), so as to utilize both amplitude and phase information during the
training process. Batch normalization is processed after the convolution operation to
accelerate the convergence speed of network and improve the stability of training process.
The activation function used in this framework is ReLU, which can relieve the problems of
gradient vanishing and gradient explosion.
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Figure 4. The architecture of YOLOv4 [13].
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Figure 5. Architecture of amplitude–real–imaginary CNN.
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(a) (b) (c)

Figure 6. Input data of the amplitude-real-imaginary CNN: (a) Amplitude layer; (b) Real layer;
(c) Imaginary layer.

4. Experiments Based on MSTAR Dataset

The dataset used in experiments is constructed based on the military vehicle samples
in MSTAR, which consists of ten kinds of targets and can be divided into standard op-
erating conditions (SOC) and extended operating conditions (EOC). The optical images
and corresponding SAR images of the ten category vehicles are shown in Figure 7. In this
section, all experiments are carried out both under SOC and EOC.

2S1 BMP2 BRDM2 BTR60 BTR70

D7 T62 T72 ZIL131 ZSU234

2S1 BMP2 BRDM2 BTR60 BTR70

D7 T62 T72 ZIL131 ZSU234

Figure 7. Optical images and corresponding SAR images of vehicles in the MSTAR dataset.
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4.1. Experiments under SOC

The data description for SOC is shown in Table 2, with serial numbers, depression
angles and numbers of targets in the dataset. From the table, it can be seen that the depression
angle of the target in the training set is 17◦, and targets for testing are collected at a 15◦

depression angle.

Table 2. Data description for SOC.

Class Serial No. Training Set Testing Set Scene Set(17◦) (15◦)

2S1 B01 299 274

15

BMP2 SN9563 233 196
BRDM2 E-71 298 274
BTR60 Kloyt7532 256 195
BTR70 C71 233 196

D7 92v13015 299 274
T62 A51 299 273
T72 SN132 232 196

ZIL131 E12 299 274
ZSU234 D08 299 274

Total 2747 2426 15

4.1.1. Target Detection Based on YOLOv4

CAMP-based sparse SAR image recovery algorithm is utilized in this part to form
the input data of YOLOv4 framework for target detection. For background fusion, all
of the target slices are randomly merged into 15 different scenes, with 15 targets drawn
from various classes in each scene. To support our viewpoints, experiments are conducted
according to the metrics of intersection over union (IOU), mean average precision (mAP)
and rendered frames per second (FPS). Average precision (AP) is usually used to evaluate
the recognition performance of models proportional to the models’ performance, and then
mAP is the average AP over several validation sets. In this part, the learning rate is set to
0.0013. Figure 8 presents the target detection results based on datasets recovered by MF-
and CAMP-based algorithms, respectively. In addition, quantitative experimental results
are presented in Table 3. It can be seen from Table 3 that the X̃C dataset with a 99.78%
mAP and an 89.34% IOU performs almost as well as the MF one. However, the X̂C dataset
underperforms compared to the MF dataset by 2.56% mAP and 11.35% IOU.

Table 3. Target detection under SOC.

Dataset
Category

mAP IOU FPS
2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234

MF 100.0% 99.72% 100.0% 99.49% 99.71% 100.0% 100.0% 99.69% 100.0% 99.97% 99.88% 88.43%
53X̂C 98.98% 92.98% 99.09% 93.49% 93.11% 99.24% 99.27% 97.87% 99.19% 99.96% 97.32% 77.08%

X̃C 99.99% 99.73% 100.0% 98.87% 99.35% 99.97% 99.98% 99.88% 100.0% 99.99% 99.78% 89.34%
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(a) (b)

(c)

Figure 8. The presentation of target detection under SOC by using different datasets. (a) MF dataset.
(b) X̂C dataset. (c) X̃C dataset.

4.1.2. Target Classification Based on Amplitude–Real–Imaginary CNN

In this part, the non-sparse solution of BiIST is used to compose the constructed sparse
datasets. Several experiments under different numbers of training samples are going on to
verify the classification performance of the three-channel CNN. In order to evaluate the
proposed framework in detail, a comparison based on classification networks and input
datasets are carried out.

1. Comparison based on networks
In order to validate the target classification performance of the proposed amplitude–
real–imaginary CNN, experiments based on an amplitude-based CNN and a three-
channel CNN are carried out. The number of training samples ranges from 100 to 200
per class. Experimental results are shown in Figure 9, and corresponding classification
accuracies are listed in Table 4. From Figure 9, it can be seen that the proposed
framework achieves higher accuracy than the amplitude-based CNN based on a
sparse SAR image dataset no matter the number of training samples. When the
training samples reduce to 1000, which means 100 of each category, the classification
accuracy based on the amplitude–real–imaginary CNN can still reach 95.47% (see in
Table 4).
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Figure 9. Experimental results based on different networks under SOC.

Table 4. Classification accuracy based on different networks under SOC.

Samples 1000 1200 1400 1600 1800 2000

Amplitude-based CNN 93.94% 95.42% 95.63% 96.74% 97.24% 97.89%
Amplitude-real-imaginary CNN 95.47% 96.17% 96.70% 97.03% 97.57% 98.06%

2. Comparison based on input datasets
Experiments based on the MF-based image dataset and sparse SAR image dataset
are carried out as well. In this part, the amplitude–real–imaginary CNN is used to
classify military vehicle targets in the datasets. The classification accuracy is listed in
Table 5, and Figure 10 visually shows the experimental results. It can be seen from
Figure 10 that sparse SAR images recovered by the BiIST-based algorithm show better
performance than MF-based images for target classification under different numbers
of training samples. When the number of training sample comes to 1000, shown in
Table 5, sparse SAR images improve the accuracy by 1.45% compared with MF-based
recovery images.

Table 5. Classification accuracy based on different input datasets under SOC.

Samples 1000 1200 1400 1600 1800 2000

bfMF 94.02% 95.42% 96.49% 96.94% 96.95% 97.36%
X̃B 95.47% 96.17% 96.70% 97.03% 97.57% 98.06%
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Figure 10. Experimental results based on different input datasets under SOC.

3. Analysis
As shown in the above experiments, it can be found that the combination of sparse SAR
images and the proposed three-channel CNN shows optimal performance in contrast
to others. The classification accuracy with 2000 samples based on the proposed
network and a sparse dataset can reach 98% under SOC, 0.15% and 0.7% higher than
the amplitude-based CNN with a sparse dataset and the three-channel CNN with an
MF-based dataset, respectively. The confusion matrix in Table 6 presents the accuracy
of each category, which shows that even if the accuracy of 2S1 is the lowest among
the ten classes, it can still reach 93.79%.

Table 6. Confusion matrix of the amplitude–real–imaginary CNN based on sparse images under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Total

2S1 257 0 0 1 0 0 2 0 2 0
BMP2 7 195 1 0 0 0 1 0 0 0

BRDM2 2 0 262 0 0 0 0 0 0 1
BTR60 0 0 3 193 1 0 0 0 0 0
BTR70 2 0 0 1 195 0 0 0 0 0

D7 0 0 0 0 0 272 1 0 1 0
T62 2 0 0 0 0 0 266 0 0 1
T72 2 1 2 0 0 0 0 196 0 0

ZIL131 1 0 6 0 0 2 3 0 271 0
ZSU234 1 0 0 0 0 0 0 0 0 272

Accuracy (%) 93.79 99.49 95.62 98.97 99.49 99.27 97.44 100.00 98.91 99.27 98.06



Remote Sens. 2022, 14, 4366 13 of 18

4.2. Experiments under EOC

To demonstrate the superiority of the proposed frameworks, similar experiments are
carried out under EOC. Unlike SOC, samples in the training and testing sets under EOC
differ a lot in the aspect of the depression angle. In addition, the serial numbers of several
targets are also different in the training set and testing set, which will increase the difficulty
of target detection and classification. The data description of the samples under EOC is
shown in Table 7.

Table 7. Data description for EOC.

Class Serial No. Training Set Testing Set
(17◦) (30◦)

2S1 B01 299 288
BRDM2 E-71 298 287

T72 SN132/A64 299 288
ZSU234 D08 299 288

Total 1195 1151

4.2.1. Target Detection Based on YOLOv4

Similar to the experiments under SOC, Figure 11 shows the detection results of an
MF-based image and a sparse SAR image under EOC, with quantitative experimental
results being listed in Table 8. The learning rate in this experiment is set to 0.0012. It can be
seen that the X̂C and X̃C datasets both show excellent performance in SAR target detection.
The X̃C dataset can obtain 92.00% mAP and 65.21% IOU, which is higher than the 90.80%
mAP and 55.36% IOU of the MF one. The X̂C dataset achieves the best performance with
a 96.32% mAP and a 70.85% IOU, which outperforms the MF-based dataset by 5.52%
mAP and 15.49% IOU. According to above results, it is seen that both non-sparse and
sparse solutions of CAMP have superior detection performance in the case of large angle
differences under EOC.

Table 8. Target detection under EOC.

Dataset
Category

mAP IOU FPS
2S1 BRDM2 T72 ZSU234

MF 91.85% 92.45% 85.31% 93.60% 90.80% 55.36%
48X̂C 96.48% 99.09% 93.45% 96.24% 96.32% 70.85%

X̃C 92.20% 97.99% 87.46% 90.34% 92.00% 65.21%

(a) (b)

Figure 11. Cont.
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(c)

Figure 11. The presentation of target detection of YOLOv4 under EOC by using different datasets:
(a) MF dataset; (b) X̂C dataset; (c) X̃C dataset.

4.2.2. Target Classification Based on Amplitude–Real–Imaginary CNN

1. Comparison based on networks
The number of training samples ranges from 800 to 1000, with a total of four kinds of
military vehicles under EOC. Table 9 and Figure 12 show a comparison of classification
accuracy between the amplitude-based CNN and the amplitude–real–imaginary CNN
on the basis of the sparse SAR image X̃B dataset. It can be found that similar to results
under SOC, the X̃B dataset performs better than the MF-based dataset at any number
of training samples.

Table 9. Classification accuracy based on different networks under EOC.

Samples 800 840 880 920 960 1000

Amplitude-based CNN 84.27% 86.44% 86.19% 87.23% 88.62% 92.79%
Amplitude-real-imaginary CNN 89.23% 90.10% 90.01% 90.96% 90.96% 93.83%

800 850 900 950 1000
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Figure 12. Experimental results based on different networks under EOC.
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2. Comparison based on input datasets
Experimental results based on different input datasets are shown in Table 10 and
Figure 13. We can conclude from the experimental results based on input datasets that
the proposed target classification framework always has better performance no matter
the number of training samples. It should be noted that although targets under EOC
show great challenges in target classification, when the training samples reduce to
800, that is, 200 of each category, the accuracy of the proposed method can still reach
89%, showing a great potential in practical application when the number of samples
is limited.

Table 10. Classification accuracy based on different input datasets under EOC.

Samples 800 840 880 920 960 1000

MF 85.66% 85.49% 87.14% 88.10% 89.49% 92.35%
X̃B 89.23% 90.10% 90.01% 90.96% 90.96% 93.83%

800 850 900 950 1000
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0.92

0.94
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Figure 13. Experimental results based on different input datasets under EOC.

3. Analysis
The same conclusion can be drawn under EOC with the accuracy being 93.83% when
the number of training samples is only 250 per class and the confusion matrix is
listed in Table 11. From the table, it can be found that the accuracy of T72 is only
81.25%, which is much lower than the other classes. Because the types of images in
the training set and testing set are different (see in Table 7), it increases the difficulty
of target classification.

Table 11. Confusion matrix of the amplitude–real–imaginary CNN based on sparse images un-
der EOC.

Class 2S1 BRDM2 T72 ZSU234

2S1 263 1 1 12
BRDM2 21 284 2 1

T72 4 0 260 2
ZSU234 0 2 25 273

Accuracy (%) 91.32 98.95 90.28 94.79 93.83
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5. Experimental Analysis

Experimental results on SAR target detection can be divided into two scenarios. In
SOC, the X̃C dataset shows similar performance to the MF-based dataset in the aspect
of mAP, but it outperforms MF by 0.91% in the aspect of IOU. However, the X̂C dataset
underperforms compared to the MF-based dataset by 2.56% mAP and 11.35% IOU. In
EOC, both the X̃C and X̂C datasets present excellent performance in target detection. X̃C
can obtain a 92.00% mAP and a 65.21% IOU, which is higher than the 90.80% mAP and
55.36% IOU of the MF-recovered images. The X̂C dataset achieves the best performance
with a 96.32% mAP and a 70.85% IOU, which outperforms the MF-based dataset by 5.52%
mAP and 15.49% IOU. The different results under SOC and EOC can be explained by
the sparse estimations recovered by the CAMP algorithm highlighting the main features
with lots of detailed features being ruined, and the non-sparse estimations highlight the
main features while retaining detailed features simultaneously. In SOC, the difference
between the testing set and training set is small, so that almost all the features learned
by the network can match the features of the actual testing set. Therefore, the non-sparse
estimations retain more detailed characteristics, showing better performance in target
detection. However, in EOC, the difference between the training set and the testing set is
huge. Some features learned from the training set may be changed or these features might
not even be in testing set, so the detection performance of non-sparse estimations will be
worse and the sparse estimations retaining main features will be better at target detection
in this case. In summary, the non-sparse estimations of CAMP can be used for routine
target detection tasks, and when it comes to more complex target detection tasks, the sparse
estimations will be more suitable.

In addition, results of SAR target classification show that the amplitude–real–imaginary
CNN performs better than typical CNNs based on sparse SAR datasets. Compared with
the MF-based dataset, a higher classification accuracy can be achieved with sparse SAR
images as the input data. Moreover, it should be noted that the accuracy of the proposed
classification framework is 95.47% under SOC when the training samples decrease to
100 per class, outperforming the amplitude-based CNN with a sparse dataset and the
amplitude–real–imaginary CNN with an MF-based dataset by 1.53% and 1.45%, respec-
tively. Similar conclusions can be obtained when the number of training samples come
to 800 under EOC, which shows great application potential of the proposed classification
network in the situation of limited samples.

6. Conclusions

In this paper, sparse SAR images are reconstructed by CAMP and BiIST-based recovery
algorithms for target classification and detection. Different from traditional MF-based
images, the CAMP-based recovery algorithm can obtain an image-quality-improved sparse
solution and a background-distribution-preserved non-sparse solution. Similarly, the non-
sparse solutions of the BiIST-based algorithm can retain the same phase information as
MF-based images with improved image quality. Experiments based on the reconstructed
sparse SAR image datasets and MF-recovered dateset demonstrate that in the classification
task, compared with MF-based images, sparse SAR images show better performance no
matter the number of training samples. When it comes to the detection task, the combination
of protruding target features and retaining SAR image background distributions can obtain
better results.

Author Contributions: Conceptualization, Y.W.; methodology, J.D. and Z.L.; validation, C.S. and
H.B.; writing—original draft preparation, J.D. and Z.L.; writing—review and editing, C.S., B.W. and
H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61901213, in part by the Guangdong Basic and Applied Basic Research Foundation under
Grant 2020B1515120060, in part by the Natural Science Foundation of Jiangsu Province under Grant
BK20190397, in part by the Aeronautical Science Foundation of China under Grant 201920052001,



Remote Sens. 2022, 14, 4366 17 of 18

in part by the Fundamental Research Funds for the Central Universities under Grant NE2020004,
University Joint Innovation Fund Project of CALT under Grant CALT2021-11, and in part by the
Science and Technology Innovation Project for Overseas Researchers in Nanjing.

Data Availability Statement: The complex SAR image data used in this paper are from the MSTAR
dataset, which can be found at https://www.sdms.afrl.af.mil/index.php?collection=mstar.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this paper:

SAR Synthetic Aperture Radar
MF Matched Filtering
TBR Target-to-background Ration
SNR Signal-to-noise Ratio
IST Iterative Soft Thresholding
OMP Orthogonal Matching Pursuit
CNN Convolutional Neural Network
RCNN Regional Convolutional Neural Network
SSD Single-Shot Multibox Detector
CV-CNN Complex-valued Convolutional Neural Network
CVFCNN Complex-valued Fully Convolutional Neural Network
SAT Self-adversarial Training
FPN Feature Pyramid Network
PAN Path Aggregation Network
MSTAR Moving and Stationary Target Acquisition and Recognition
CAMP Complex Approximate Message Passing
InSAR SAR Interferometry
CFAR Constant False Alarm Rate
SOC Standard Operating Conditions
EOC Extended Operating Conditions
IOU Intersection Over Union
mAP Mean Average Precision
AP Average Precision
FPS Frames Per Second
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