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Abstract: Hyperspectral image (HSI) classification is one of the hot research topics in the field of
remote sensing. The performance of HSI classification greatly depends on the effectiveness of feature
learning or feature design. Traditional vector-based spectral–spatial features have shown good
performance in HSI classification. However, when the number of labeled samples is limited, the
performance of these vector-based features is degraded. To fully mine the discriminative features in
small-sample case, a novel local matrix feature (LMF) was designed to reflect both the correlation
between spectral pixels and the spectral bands in a local spatial neighborhood. In particular, the
LMF is a linear combination of a local covariance matrix feature and a local correntropy matrix
feature, where the former describes the correlation between spectral pixels and the latter measures the
similarity between spectral bands. Based on the constructed LMFs, a simple Log-Euclidean distance-
based linear kernel is introduced to measure the similarity between them, and an LMF-based kernel
joint sparse representation (LMFKJSR) model is proposed for HSI classification. Due to the superior
performance of region covariance and correntropy descriptors, the proposed LMFKJSR shows better
results than existing vector-feature-based and matrix-feature-based support vector machine (SVM)
and JSR methods on three well-known HSI data sets in the case of limited labeled samples.

Keywords: hyperspectral image classification; joint sparse representation; covariance; correntropy

1. Introduction

Hyperspectral images (HSIs) contain hundreds of continuous spectral bands, which
can provide a large amount of information for different types of applications, such as
military target detection, mineral identification, fine agriculture, natural resource surveys,
and so on [1]. In these applications, classification is usually needed. HSI classification is
to assign a land cover label to each pixel in an HSI based on the model built on available
training samples, which has been one of the hot research topics in the field of remote
sensing [2,3].

The performance of HSI classification greatly depends on the effectiveness of feature
learning or feature design [4–9]. Because HSI contains spectral and spatial information,
different types of spectral features, spatial features, and spectral–spatial joint features
have been designed. The spectral characteristics that provide reflections of materials at
specific spectral bands can be directly used for classification [10,11]. Early HSI classification
methods usually use the spectral features or dimension-reduced spectral features [10,11].
Due to the spatial local homogeneous property, different spatial features have been designed
to describe spatial textural or structural information [5]. The typical spatial features include
morphological profiles [4], Gabor features [12], and local binary pattern (LBP) features [13].
Integrating the rich spectral and spatial information of HSI, many spatial–spectral joint
feature extraction and classification methods have been proposed [2,14], such as composite
kernels-based methods [15–18], joint representation-based methods [19–22], and deep
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learning methods [23,24]. Typical deep learning methods are convolutional neural network
(CNN)-based methods [25], such as 3-D CNN [25], attention-based adaptive spectral-spatial
kernel improved residual network (A2S2K-ResNet) [24], and CNN with a noise-inclined
module and denoise framework (NoiseCNN) [26].

These vector-based spectral–spatial features have shown good performance in HSI
classification. However, when the number of available labeled samples is limited, these
vector-based features are usually no longer effective. There is an urgent need to develop
advanced feature-extraction methods that can fully exploit the correlation and similarity
in spectral and spatial domains. To describe the spectral correlation in a spatial local
neighborhood, local covariance matrix features have been designed [7,27]. Local covariance
descriptor computes the covariance matrix of samples in a local region and uses the matrix
as feature to reflect the correlation of samples in the region [28,29]. It is clear that the
covariance feature is a matrix feature whose size is only related to the dimensionality of
the data. Therefore, it can be performed on regions with different sizes or shapes [29].
Fang et al. proposed a local covariance matrix representation (LCMR) method for spatial–
spectral feature extraction of HSIs [7], where a covariance matrix of neighboring pixels
in a refined local spatial neighborhood is computed as features for the SVM classification
with the use of Log-Euclidean kernels. In [7], the original HSI data are first preprocessed
by the maximum noise fraction (MNF) method to reduce the dimensionality. Rather
then using MNF, Yang et al. first performed extended multi-attribute profile (EMAP)
transformations to reduce the dimensionality of the original HSI and then extracted the
covariance matrix features on the EMAP dimension’s reduced data for the kernel-based
joint sparse representation (KJSR) classification [27]. Considering the nonlinearity between
HSI pixels, Zhang et al. proposed a local correntropy matrix representation method (LCEM)
for HSI classification [30]. Correntropy is a robust similarity metric and can be used to
handle nonlinear and non-Gaussian data [31]. Peng et al. used the correntropy metric to
replace the least-squares metric in the JSR model, and the resulting model is robust to both
band noise and inhomogeneous pixels [20]. In [30], the correntropy matrix feature can
represent the correlation between spectral bands in a spatial local region and has shown
excellent classification performance.

In recent decades, the JSR-based classification method has attracted much attention due
to its simplicity and effectiveness [19–21,32]. Exploiting the similarity of neighboring pixels,
JSR uses a common training dictionary to sparsely and linearly represent all neighboring
pixels simultaneously and computes the class reconstruction residual for classification [19].
To cope with nonlinear problems, KJSR methods perform JSR in a kernel-based feature
space [33]. Traditional KJSR performs on vector-based features. To exploit region features,
Yang et al. used the region covariance matrix feature to replace vector feature and proposed
a Log-Euclidean kernel-based KJSR (LogEKJSR) method [27]. Although different linear
and nonlinear Log-Euclidean kernels are considered, the nonlinear representation ability of
covariance matrix feature itself is still insufficient [30].

In previous works [7,30], although both the covariance and correntropy matrices have
been introduced to reflect the relations of features in a local region, they are different
features. The covariance matrix mainly measures the correlation between neighboring
pixels, while the correntropy matrix measures the nonlinear similarity (low-level and high-
level similarities) between spectral variables. To make full use of local features from the
pixel and variable aspects, we combine the local covariance and correntropy matrix features
and design a novel local matrix feature (LMF) for a region in this paper. In the construction
of LMF, a new logarithmic transformed feature of covariance or correntropy matrix is first
defined to transfer the matrix distance computation in the Riemannian manifold to general
distance in the Euclidean space. Then, the LMF is designed as a linear combination of local
covariance matrix feature and local correntropy matrix feature, where the former describes
the correlation between spectral pixels and the latter measures the similarity between
spectral bands. Based on the constructed LMFs, a simple Log-Euclidean distance-based
linear kernel is introduced to measure the similarity between them, and an LMF-based
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kernel joint sparse representation (LMFKJSR) model is proposed for HSI classification. Due
to the superior performance of region covariance and correntropy descriptors, the proposed
LMFKJSR shows better results than existing vector-feature-based and matrix-feature-based
support vector machine (SVM) and JSR methods on three well-known HSI data sets in the
case of limited labeled samples.

2. The Proposed Method

Figure 1 shows the framework of the proposed local matrix feature-based kernel joint
sparse representation (LMFKJSR) method. The maximum noise fraction (MNF) method
is first used to reduce the the dimensionality of the original HSI data. Then, spatial
local neighborhoods are constructed and local matrix features (LMFs) are extracted. By
computing kernels for LMFs and performing the KJSR, HSI pixels can be classified.

HSI

MNF

LMF for neighboring pixels KJSR classification  

Dimension reduced HSI LMF for training pixels

Kernels for matrix features

KJSRKernelization

LMF

Figure 1. The framework of the proposed LMFKJSR algorithm, which mainly consists of three steps,
i.e., maximum noise fraction-based dimensionality reduction, local matrix feature extraction, and
matrix kernel-based JSR classification.

2.1. Maximum Noise Fraction

Considering that the original HSI has high dimensionality and meanwhile may contain
different types of noise, the maximum noise fraction (MNF) method is used to reduce the
dimensionality of and denoise HSIs [7,30,34]. It finds a linear transformation matrix A
to reduce the dimensionality of original data such that the signal-to-noise ratio of the
lower-dimensional data is maximized.

Given an observed data X ∈ RN×D with N observations and D variables, assume tht
X can be represented as the summation of an idea datum X0 and a noise E: X = X0 + E, and
the idea datum X0 and noise E are unrelated; then, the covariance of X is:

Cov(X) , ΣX = ΣX0 + ΣE. (1)

The linear transformation matrix A ∈ RD×d is obtained by solving the following problem:

arg max
A

{
ATΣX0A
ATΣEA

=
ATΣXA
ATΣEA

− 1

}
. (2)
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Equation (2) can be transferred to a generalized eigenvector and eigenvalue problem,
and its solution consists of the eigenvectors corresponding to the first d largest eigenvalues
of (ΣE)

−1ΣX. The dimension-reduced data are

Z = XA. (3)

In the experiments, the noise covariance ΣE is first estimated based on the mini-
mum/maximum autocorrelation factor method [7,34], and the dimension d is set to 25.

2.2. Local Neighborhood Construction

Previous works have demonstrated that inhomogeneous or interfering pixels in a spatial
neighborhood will affect the performance of spatial–spectral-based classifiers [7,9,21,27,30,32,35,36].
To reduce the effect of spatial inhomogeneous pixels, researchers have proposed differ-
ent methods to construct spatial adaptive neighborhoods, such as superpixel or image-
segmentation-based methods [9,36], neighboring-pixel-weighting methods [21,32,35], and
neighboring-pixel -selection methods [7,27,30].

As the focus of this manuscript is the local matrix feature representations, we use a
simple way to eliminate the effect of spatial inhomogeneous pixels by directly deleting
several inhomogeneous neighboring pixels [27]. Given a pixel z, a w1 × w1 spatial window
centered at z is first determined. Then, the distance between each spatial neighboring pixel
and the center pixel z is computed. By sorting the distance in ascending order, the first m1
pixels with the smallest distances are retained to construct a new local neighborhood (i.e.,
deleting w2

1 −m1 inhomogeneous pixels).

2.3. Local Matrix Representation
2.3.1. Local Covariance Matrix Representation

A local covariance descriptor is originally proposed to extract second-order features
in local image patches [37,38]. The covariance descriptor reflects the correlation of local
features and shows good discriminative performance for image classification [7,30,37].

For a local region R that contains m pixels, i.e., z1, z2, · · · , zm with zi ∈ Rd, we can
represent it as a matrix: ZR = [z1, · · · , zm]T ∈ Rm×d. The covariance matrix of size d× d
between these pixels is computed as:

ΣZR =
1

m− 1

m

∑
i=1

(zi − z)(zi − z)T, (4)

where z = 1
m ∑m

i=1 zi.

2.3.2. Local Correntropy Matrix Representation

Given two random variables u and v, the correntropy between them is defined as [31]:

Vσ(u, v) = E
[
κσ(u, v)

]
, (5)

where E is the expectation operator, and κσ(·) is the kernel function and usually uses the
Gaussian kernel κσ(u, v) = exp(−(u− v)2/σ2).

In the case of Gaussian kernel function, by the Taylor series expansion of Equation (5),
we can obtain

Vσ(u, v) =
∞

∑
n=0

(−1)n

n!σ2n E
[
(u− v)2n]. (6)

The correntropy with the Gaussian kernel contains all the even order moment infor-
mation of u− v and hence can reflect the high-level similarities between variables.
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In practice, the joint probability density function of u and v is often unknown, so the
expectation operation in Equation (5) cannot be computed. Given limited empirical data
{(ui, vi)}m

i=1, the correntropy can be estimated by the following empirical correntropy:

V̂m,σ(u, v) =
1
m

m

∑
i=1

κσ(ui, vi) (7)

Correntropy can be used to measure nonlinear similarity between variables. In the
local region R or matrix ZR, we denote zi,p as the p-th component of pixel zi and bp =

[z1,p, · · · , zm,p]T ∈ Rm×1 as a spectral variable or vector. If we regard spectral vectors bp
and bq as two variables, then the correntropy between them can be defined as [30]:

V(bp, bq) = κσ(bp − bq)/m =
1
m

exp
(
−
‖bp − bq‖2

2
σ2

)
(8)

The local correntropy matrix representation of features in the local regionR is:

CZR =
{

V(bp, bq)
}d

p,q=1 (9)

2.3.3. Local Matrix Feature

To make the covariance matrix ΣZR or correntropy matrix CZR strictly positive definite,
regularization is applied to the original matrix as [7,27]: C = C + 10−3 ∗ trace(C) ∗ I, where
I is the identity matrix. To measure the distance between symmetric positive definite (SPD)
matrices, the logarithmic operation is performed on the matrices and the Log-Euclidean
distance between two SPD matrices C1 and C2 is [37,38]:

dlog(C1, C2) = ‖ log(C1)− log(C2)‖F. (10)

If we consider log(C1) as the feature corresponding to matrix C1, then Equation (10)
measures the Euclidean distance between logarithmic transformed features in a Riemannian
manifold [38].

Although both the covariance and correntropy matrices can reflect the relations of
features in a local region, they are different features. The covariance matrix ΣZR mainly
measures the correlation between neighboring pixels, while the correntropy matrix CZR
measures the nonlinear similarity (low-level and high-level similarities) between spectral
variables. To make full use of local features from the pixel and variable aspects, we combine
the local covariance and correntropy matrix features and design a new local matrix feature
for a regionR as

LR = µ log
(
ΣZR

)
+ (1− µ) log

(
CZR

)
, (11)

where µ is a weighting parameter.

2.4. Local Matrix Feature Based Kernel Joint Sparse Representation
2.4.1. Joint Sparse Representation (JSR)

For a testing pixel h, all pixels in a spatial w2 × w2 neighborhood centered at h form a
matrix H = [h1, · · · , hT ] (T = w2

2). In the joint sparse representation (JSR) model [19], all
neighboring pixels are assumed to be similar and can be simultaneously represented by a
comment dictionary as:

H = [h1, · · · , hT ] = [Xβ1, · · · , XβT ] = XB, (12)

where X = [x1, · · · , xM] is a dictionary matrix consisting of all training pixels, and
B = [β1, · · · , βT ] is a coefficient matrix. Assume the coefficient matrix B is row-sparse;
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the simultaneous orthogonal matching pursuit (SOMP) algorithm can be used to solve it
as [19]:

B̂ = arg min
B
‖H− XB‖2

F, s.t. ‖B‖row,0 ≤ K, (13)

where ‖B‖row,0 refers to the number of non-zero rows of B, and K is a parameter to reflect
the sparsity level.

2.4.2. Kernel Joint Sparse Representation (KJSR)

It is clear that Equation (12) only performs linear representations for neighboring pixels.
To measure nonlinear relations between neighboring pixels and the training dictionary, the
kernel method is used [33]. A feature map φ is used to project all pixels onto feature space,
and the kernel-based JSR (KJSR) model is:

Hφ = [φ(h1), · · · , φ(hT)] = [Xφβ1, · · · , XφβT ] = XφB, (14)

where Xφ = [φ(x1), · · · , φ(xM)]. Similar to the JSR, the matrix B can be solved by the
following optimization problem [33]:

B̂ = arg min
B
‖Hφ − XφB‖2

F, s.t. ‖B‖row,0 ≤ K. (15)

2.4.3. Local Matrix Feature Based Kernel Joint Sparse Representation (LMFKJSR)

In the JSR-based model, the local neighborhood should be first constructed for the joint
representation. Here, we use the same strategy as shown in Section 2.2 to construct a spatial
local neighborhood [27]. That is, in a w2×w2 window centered at a testing pixel h, m2 most
similar pixels (i.e., h1, · · · , hm2 ) are picked to form local neighborhood pixel set. Then, we
can generate the local matrix feature for these neighboring pixels as Lhk

(k = 1, · · · , m2). For
training pixels x1, · · · , xM, the corresponding local matrix features are Lxi (i = 1, · · · , M).

By performing the KJSR on the local matrix features, one can generate:

HΦ = [Φ(Lh1), · · · , Φ(Lhm2
)] = [XΦβ1, · · · , XΦβm2 ] = XΦB, (16)

where Φ(Lhk
) = XΦβk (k = 1, · · · , m2), XΦ = [Φ(Lx1), · · · , Φ(LxM )] is the feature repre-

sentation of training set, and B = [β1, · · · , βm2 ] is the sparse representation coefficient.
The row-sparse matrix B can be obtained by solving the following problem:

B̂ = arg min
B
‖HΦ − XΦB‖2

F, s.t. ‖B‖row,0 ≤ K. (17)

For solving the problem Equation (17), a key step is the computation the correlation
between Φ(Lxi ) and Φ(Lhj),

〈Φ(Lxi ), Φ(Lhj)〉 = κ(Lxi , Lhj) = tr(Lxi · Lhj), (18)

where tr is the matrix trace operator, and the linear kernel is used.
Denote KX,H ∈ RM×m2 as the kernel matrix between the training samples and the

neighboring pixels whose (i, j)-th entry is κ(Lxi , Lhj), and KX,X ∈ RM×M as the kernel

matrix for training samples with (i, j)-th entry κ(Lxi , Lxj). The sparse coefficient matrix B̂
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can be solved by the kernel-based SOMP algorithm [33]. Then, the reconstruction residual
of the c-th class can be computed:

rc(h) =
∥∥HΦ − (XΦ):,Ωc B̂Ωc ,:

∥∥
F =

√√√√ m2

∑
k=1

∥∥Φ(Lhk
)− (XΦ):,Ωc B̂Ωc ,k

∥∥2
F

=

√√√√ m2

∑
k=1

(
κ(Lhk

, Lhk
)− 2B̂T

Ωc ,k(KX,Z)Ωc ,k + B̂T
Ωc ,k(KX,X)Ωc ,Ωc B̂Ωc ,k

)
, (19)

where Ωc is the index set of selected atoms.
Based on the reconstruction residuals, the testing pixel h can be classified into the class

with the minimal residual as:

Class(h) = arg min
c=1,··· ,C

rc(h). (20)

The pseudo-code of LMFKJSR is shown in Algorithm 1.

Algorithm 1 LMFKJSR.
Input: Dictionary X = [x1, x2, · · · , xM], parameter K
Output: The label of all testing pixels.
1. Reduce the dimensionality by the MNF
2. Compute the matrix features
3. Compute the training kernel KX,X
4. Perform KJSR for each testing pixel h:

4.1. Construct local neighborhood H = [h1, · · · , hm2 ]
4.2. Construct local matrix features Lhk

(k = 1, · · · , m2)

4.3. Compute kernels KH,H and KX,H
4.4. Solve the coefficient matrix:

B̂ = arg min
B
‖HΦ − XΦB‖2

F, s.t. ‖B‖row,0 ≤ K

4.5. Compute the class reconstruction residual:

rc(h) = ‖HΦ − (XΦ):,Ωc B̂Ωc ,:‖F

4.6. Classify the testing pixel h:

Class(h) = arg min
c=1,··· ,C

rc(h)

3. Experiments
3.1. Data Sets

(1) Indian Pines (IP) (ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip, ac-
cessed on 8 October 2015): These data have a size of 145× 145 pixels and 220 spectral
bands. After 20 bad bands are removed, the remaining 200 bands are used. The IP
data contain 16 land cover classes. The false color composite image and ground-truth
map are shown in Figure 2.

(2) University of Pavia (UP) (https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_
Remote_Sensing_Scenes, accessed on 8 June 2013): The UP data has the size of 610× 340
pixels and 115 spectral bands. After 12 bad bands are discared, 103 bands are retained.
The data contain nine ground-truth classes. The false color composition image and
the ground-truth map are shown in Figure 3.

(3) Salinas (SA) (https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes, accessed on 8 June 2013): The SA data have a size of 512× 217 pixels

ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.tif.zip
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_ Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_ Remote_Sensing_Scenes
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and 204 spectral bands. The data contain 16 ground-truth classes. The false color
composite image and the ground-truth map are shown in Figure 4.

(a) (b)

Figure 2. IP data set: (a) RGB composite image; (b) Ground-truth map.

(a) (b)

Figure 3. UP data set: (a) RGB composite image; (b) Ground-truth map.

(a) (b)

Figure 4. SA data set: (a) RGB composite image; (b) Ground-truth map.

3.2. Experimental Setting

The proposed LMFKJSR is compared with the following classification methods: SVM
with composite kernel (SVM-CK) [15], local covariance matrix representation (LCMR) [7],
local correntropy matrix representation (LCEM) [30], attention-based adaptive spectral-spatial
kernel improved residual network (A2S2K-ResNet, A2S2K for short) [24], NoiseCNN [26],
JSR [19], kernel-based JSR (KJSR) [33], self-paced KJSR (SPKJSR) [39], covariance feature-
based KJSR (LogEKJSR, here called as CovKJSR) [27], correntropy feature-based KJSR
(CEKJSR). It should be noted that LCMR and LCEM are SVM classifiers performed on
the local covariance matrix features and local correntropy matrix features, respectively.
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CovKJSR and CEKJSR are KJSR classifiers performed on local covariance and correntropy
matrix features, respectively. CovKJSR and CEKJSR are special cases of the proposed
LMFKJSR (CEKJSR is also our proposed method). A2S2K and NoiseCNN are recently
proposed deep learning HSI classification methods. The class-specific accuracy (CA),
average accuracy (AA), overall accuracy (OA), and κ coefficient on the testing set were
used for comparison.

Next, in [27], in the local neighborhood construction for local feature representation
and joint sparse representation, the window sizes w1 and w2 are set to 9, and the number of
similar pixels are set as m1 = 70 and m2 = 30, respectively. The sparsity level in KJSR is set
as K = 40.

3.3. Classification Results
3.3.1. Results from IP

For IP data, 1% labeled samples per class were randomly selected for training (in
total, 115 training samples) and the other samples were used for testing. All methods were
randomly run ten times, and the averaged classification are reported in Table 1.

Table 1. Classification results on the IP data set with 1% labeled training samples (115 training samples).
The bold values indicate the highest accuracy among all methods.

Class Train Test SVMCK LCMR LCEM A2S2K NoiseCNN JSR KJSR SPKJSR CovKJSR CEKJSR LMFKJSR

1 3 51 64.12 99.22 93.94 86.67 46.15 77.84 88.04 96.67 97.06 92.16 95.69
2 14 1420 75.45 75.68 89.66 68.12 48.86 58.40 70.57 78.11 83.68 90.80 94.05
3 8 826 61.11 57.03 71.44 88.32 37.07 40.11 58.68 66.23 69.62 76.27 83.00
4 3 231 56.02 73.85 78.92 89.26 72.09 36.36 58.70 77.19 82.90 80.65 84.11
5 5 492 70.87 71.69 83.46 86.96 58.33 68.72 75.22 77.76 80.77 83.44 84.59
6 7 740 85.54 78.12 95.28 92.08 57.58 96.95 95.18 87.58 85.20 95.42 97.43
7 3 23 93.04 100.0 100.0 49.02 8.54 58.70 85.65 100.0 100.0 100.0 100.0
8 5 484 88.59 94.36 97.12 97.42 82.99 89.67 97.91 98.31 98.51 98.12 99.79
9 3 17 89.41 100.0 100.0 34.69 22.22 31.18 51.18 90.00 100.0 100.0 100.0

10 10 958 62.46 57.39 76.81 80.52 31.46 40.45 76.82 80.04 71.36 86.10 88.80
11 25 2443 79.78 83.98 88.69 71.05 49.26 78.70 86.39 88.26 89.82 89.83 91.47
12 6 608 45.76 51.89 71.93 90.83 26.69 42.48 56.81 66.60 70.54 83.11 82.68
13 3 209 83.21 84.88 98.42 87.07 42.36 98.95 99.95 84.40 84.55 99.38 99.86
14 13 1281 92.45 94.04 94.36 86.89 79.27 98.51 99.02 98.09 98.75 95.15 96.66
15 4 376 54.39 70.45 79.34 70.70 46.51 46.52 37.26 54.76 76.99 83.22 83.80
16 3 92 96.52 93.80 95.76 75.86 47.62 94.13 87.07 84.46 94.57 99.35 99.24

Overall accuracy 74.75 76.53 86.43 78.90 51.58 69.18 79.34 82.66 84.82 89.16 91.36

Average accuracy 74.92 80.40 88.44 78.47 47.33 66.10 76.53 83.03 87.15 90.81 92.57

Coefficient κ 0.712 0.730 0.845 0.757 0.439 0.644 0.762 0.801 0.826 0.876 0.902

From the results, we can see that:

(1) Among the three SVM-based classifiers, the matrix-feature-based classifiers (LCMR
and LCEM) show much better results than the vector-feature-based SVM-CK. This
demonstrates that the local covariance or correntropy matrix feature representation is
more effective than the vector feature representation. In addition, due to the strong
nonlinearity similarity representation ability, LCEM shows much better results than
LCMR.

(2) The recently proposed deep HSI classification methods (A2S2K and NoiseCNN)
show poor results due to the limited number of training samples. In particular, for
Classes 7 and 9 with only three training samples, the OA of each method is lower
than 50%. To achieve satisfactory results, deep learning methods usually need a large
number of training samples.

(3) By mining nonlinear relations between pixels, KJSR improves JSR. By further selecting
similar pixels in the spatial neighborhood based on self-paced learning, SPKJSR im-
proves KJSR. By exploiting matrix representations, CovKJSR and CEKJSR improve the
traditional vector-feature-based KJSRs. CEKJSR shows better results than CovKJSR.
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(4) Comparing CovKJSR with LCMR (or CEKJSR with LCEM), it can be seen that the
KJSR methods show better results than SVM-based methods on these data. For IP
data, there are many large homogeneous regions and region-based characteristics that
can be used to improve the classification performance. Different from LCMR and
LCEM, which only use the region-based matrix features, CovKJSR and CEKJSR use
region-based characteristics in both the feature and classification parts. Therefore,
KJSR methods show relatively better results.

(5) By combining the local covariance and correntropy matrix features, the proposed
LMFKJSR improves both methods and provides the best results. It demonstrates that
the local covariance and correntropy features are complementary.

(6) On the subclasses of “Corn” (Classes 2, 3, 4) and “Soybean” (Classes 10, 11, 12), the
proposed LMFKJSR provides overall better results than the other methods (i.e., the
best results on Classes 2, 10, and 11, the second best results on Classes 3 and 4). The
results demonstrate that the local matrix feature representations exploiting both spec-
tral correlation with covariance features and band similarity with correntropy features
are more effective in distinguishing the subtle differences between similar materials.

The classification maps of different methods are shown in Figure 5. By seeing the
highlighted elliptic and rectangle regions in the CovKJSR, CEKJSR, and LMFKJSR maps,
we can find that LMFKJSR takes advantages of CovKJSR and CEKJSR. CovKJSR shows
better results on the elliptic region, while CEKJSR is much better in the rectangular region.
LMFKJSR shows consistently better results in both regions. In general, the classification
map of LMFKJSR is more consistent with the groundtruth map.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Classification maps on IP: (a) Groundtruth, (b) SVMCK, (c) LCMR, (d) LCEM, (e) A2S2K,
(f) NoiseCNN, (g) JSR, (h) KJSR, (i) SPKJSR, (j) CovKJSR, (k) CEKJSR, (l) LMFKJSR.
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3.3.2. Results from UP

Because the UP data have a large number of samples, only 0.1% labeled samples per
class were randomly selected for training (in total, 50 training samples), and the other
samples were used for testing. The averaged classification results over ten runs are recorded
in Table 2. When there were only 50 training samples, the traditional JSR-based methods
showed worse results than SVM-based methods because the dictionary representation
ability is insufficient in the case of limited training samples (i.e., the number of dictionary
atoms is limited). The deep learning methods produce very poor results because of the lack
of training samples. By combining the local covariance and correntropy matrix features,
the proposed LMFKJSR method provides the best results. Compared with the KJSR-based
methods, LMFKJSR improves the OA by 10% and the κ coefficient by about 13%. Although
LMFKJSR provides the best results on only two classes, it has the highest AA. This shows
that LMFKJSR can generate more consistent and stable results on different classes.

Figure 6 shows the classification maps of different methods, where the proposed
LMFKJSR produces a relatively better map than other methods with little “salt and pep-
per” noise.

Table 2. Classification results on the UP data set with 0.1% labeled training samples (50 training samples).
The bold values indicate the highest accuracy among all methods.

Class Train Test SVMCK LCMR LCEM A2S2K NoiseCNN JSR KJSR SPKJSR CovKJSR CEKJSR LMFKJSR

1 7 6624 74.54 83.47 84.67 76.78 64.24 31.01 68.13 73.91 80.91 77.72 83.38
2 19 18630 88.81 99.14 89.71 73.86 83.82 90.03 90.48 89.89 99.64 84.26 97.92
3 3 2096 63.19 66.82 68.76 56.74 29.10 67.56 65.84 67.29 51.57 73.78 79.90
4 3 3061 74.93 86.23 63.76 97.61 82.98 75.26 74.01 64.40 85.47 61.00 80.00
5 3 1342 99.61 89.52 97.76 98.82 97.27 99.69 99.84 99.33 99.30 99.52 99.57
6 5 5024 50.63 69.77 83.35 74.85 61.61 31.69 44.96 50.59 55.55 77.59 82.95
7 3 1327 79.16 77.12 96.67 73.24 13.20 80.78 66.44 74.15 74.62 100.0 99.01
8 4 3678 62.78 62.49 64.85 57.24 48.68 64.83 47.61 49.93 46.81 66.53 73.13
9 3 944 86.29 98.55 93.81 55.55 31.19 78.88 77.78 12.03 69.41 71.04 90.91

Overall accuracy 77.60 86.59 83.71 74.05 65.81 69.46 74.85 75.29 82.17 79.43 89.53

Average accuracy 75.55 81.46 82.59 73.85 56.89 68.86 73.71 64.61 73.70 79.05 87.42

Coefficient κ 0.702 0.819 0.786 0.633 0.541 0.590 0.661 0.667 0.755 0.733 0.860

(a) (b) (c) (d)

Figure 6. Cont.
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Classification maps on UP: Classification maps on IP: (a) Groundtruth, (b) SVMCK,
(c) LCMR, (d) LCEM, (e) A2S2K, (f) NoiseCNN, (g) JSR, (h) KJSR, (i) SPKJSR, (j) CovKJSR, (k) CEKJSR,
(l) LMFKJSR.

3.3.3. Results from SA

For SA data, only 0.1% labeled samples per class were randomly selected for training
(totally, 66 training samples), and the other samples were used for testing. The averaged
classification results over ten runs are recorded in Table 3. Except for the NoiseCNN, all
methods provide OAs higher than 80%. The LMFKJSR and A2S2K provide the best and
second best results. The classification of Classes 8 and 15 (i.e., “Grapes untrained” and
“Vinyard untrained”) is relatively difficult for the SA data. The traditional JSR methods
show poor results on Class 15, while the matrix-feature-based KJSR methods improve the
traditional JSR methods by almost 20% in OA. From the classification maps in Figure 7, it
can be seen that Classes 8 and 15 are located on the upper left of the image and are spatially
adjacent; our proposed LMFKJSR provides better results in these two classes.

(a) (b) (c) (d)

Figure 7. Cont.
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Classification maps on SA. Classification maps on IP: (a) Groundtruth, (b) SVMCK,
(c) LCMR, (d) LCEM, (e) A2S2K, (f) NoiseCNN, (g) JSR, (h) KJSR, (i) SPKJSR, (j) CovKJSR, (k) CEKJSR,
(l) LMFKJSR.

Table 3. Classification results for the Salinas data set with 0.1% labeled training samples (66 train-
ing samples). The bold values indicate the highest accuracy among all methods.

Class Train Test SVMCK LCMR LCEM A2S2K NoiseCNN JSR KJSR SPKJSR CovKJSR CEKJSR LCCKJSR

1 3 2006 89.82 98.84 99.40 99.97 88.63 99.79 99.86 99.91 99.91 99.27 99.21
2 4 3722 94.34 90.74 98.76 98.32 92.16 99.01 99.81 99.27 93.59 99.24 99.86
3 3 1973 74.35 96.15 93.58 97.17 74.27 78.86 76.90 83.02 95.39 95.97 95.48
4 3 1391 92.58 93.90 97.28 91.40 83.05 98.07 94.28 86.24 97.04 98.27 98.68
5 3 2675 79.97 64.85 99.19 86.71 84.22 85.76 94.05 95.90 73.79 99.27 98.37
6 4 3955 96.93 95.63 99.90 99.80 99.18 99.87 100.0 99.86 99.81 99.90 99.89
7 4 3575 94.95 92.58 100.0 99.50 73.89 99.93 99.68 100.0 98.88 99.99 99.94
8 11 11260 81.95 87.48 77.89 81.61 54.79 90.76 87.07 89.96 88.09 82.24 89.09
9 6 6197 94.07 98.48 99.91 98.92 99.11 99.95 99.78 99.97 99.85 99.97 100.0

10 3 3275 52.67 53.95 72.23 97.70 85.30 92.48 59.95 63.76 64.65 70.56 70.36
11 3 1065 90.01 80.45 96.85 90.78 65.57 94.42 87.19 99.59 98.57 99.25 99.66
12 3 1924 85.47 71.83 91.49 95.89 81.43 79.07 97.42 94.45 83.85 94.10 93.79
13 3 913 97.02 94.66 99.12 93.40 88.25 79.89 99.67 96.90 95.49 97.83 99.19
14 3 1067 93.87 85.81 97.23 92.33 98.02 95.49 98.86 99.76 87.67 97.96 95.91
15 7 7261 78.02 65.75 78.89 78.57 37.78 54.31 53.66 52.04 73.56 74.73 73.13
16 3 1804 66.46 79.00 92.21 97.96 69.14 99.05 81.01 85.10 88.87 87.88 88.65

Overall accuracy 84.29 83.84 89.71 90.95 73.27 83.64 86.30 87.27 88.44 90.10 91.29

Average accuracy 85.16 84.38 93.37 93.75 79.67 84.74 89.32 90.36 89.94 93.53 93.83

Coefficient κ 0.825 0.819 0.885 0.899 0.701 0.817 0.847 0.858 0.871 0.890 0.903
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4. Discussions
4.1. The Effect of the Number of Training Samples

Here, the effect of the number of training samples on different methods is analyzed.
For IP, the ratios of labeled samples per class are set as 1%, 2%, 3%, 4%, and 5%. As UP
and SA have more labeled samples than IP, and the ratios of labeled samples per class are
relatively smaller, i.e., 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%. The OAs of different methods such
as the changes in the ratio of training samples per class are shown in Figure 8. It can be
seen that the proposed LMFKJSR shows consistently better results than other methods in
different numbers of training samples.
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Figure 8. The OA versus the ratio of training samples per class: (a) IP; (b) UP; (c) SA.

4.2. The Effect of the MNF Dimension

Figure 9 shows the OA of LMFKJSR versus the MNF dimension d. It can be clearly
seen that the OA dramatically increases as the of the number of dimension d increases and
becomes stable when the dimension d is larger than 25. In the experiments, the dimension
d is set as 25.
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Figure 9. The OA versus the MNF dimension d: (a) IP; (b) UP; (c) SA.

4.3. The Effect of the Weighting Coefficient

The proposed LMFKJSR exploits the local matrix feature, which is a combination of
local covariance matrix feature and local correntropy matrix feature. The combination
coefficient µ in Equation (11) measures the importance of local covariance and correntropy
features. Figure 10 shows the effect of parameter µ on the LMFKJSR, where µ changes
from 0 to 1 with an increment 0.1. The best µ values for three data sets are 0.9, 0.7, and 0.7,
respectively. It should be noted that LMFKJSR is reduced to CEKJSR and CovKJSR in the
case of µ = 0 and µ = 1, respectively. The OA of LMFKJSR at the optimal parameter is
obviously better than either CEKJSR or CovKJSR.
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Figure 10. The OA versus the weighting coefficient µ: (a) IP; (b) UP; (c) SA.

5. Conclusions

In this paper, a local matrix-feature-based kernel joint sparse representation (LMFKJSR)
model has been proposed for hyperspectral image classification. In the proposed LMFKJSR,
a novel local matrix feature (LMF) is designed to reflect both the correlation between spectral
pixels and the spectral bands. In detail, the local matrix feature is a linear combination
of the local covariance matrix feature and the local correntropy matrix feature, where the
former can describe the correlation between spectral pixels and the latter measures the
similarity between spectral bands in a local spatial neighborhood. Based on the constructed
LMFs, a simple linear kernel is introduced to measure the similarity between them, and a
KJSR model is performed for classification. Compared with existing vector-feature-based
and matrix-feature-based SVM and JSR methods, the proposed LMFKJSR shows better
results on three well-known HSI data sets.
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