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Abstract: Rapid and accurate identification of landslides is an essential part of landslide hazard assess-
ment, and in particular it is useful for land use planning, disaster prevention, and risk control. Recent
alternatives to manual landslide mapping are moving in the direction of artificial intelligence—aided
recognition of these surface processes. However, so far, the technological advancements have not
produced robust automated mapping tools whose domain of validity holds in any area across the
globe. For instance, capturing historical landslides in densely vegetated areas is still a challenge. This
study proposed a deep learning method based on Light Detection and Ranging (LiDAR) data for
automatic identification of historical landslides. Additionally, it tested this method in the Jiuzhaigou
earthquake-hit region of Sichuan Province (China). Specifically, we generated a Red Relief Image
Map (RRIM), which was obtained via high-precision airborne LiDAR data, and on the basis of this
information we trained a Lightweight Attention U-Net (LAU-Net) to map a total of 1949 historical
landslides. Overall, our model recognized the aforementioned landslides with high accuracy and
relatively low computational costs. We compared multiple performance indexes across several deep
learning routines and different data types. The results showed that the Multiple-Class based Semantic
Image Segmentation (MIOU) and the F1_score of the LAU-Net and RRIM reached 82.29% and 87.45%,
which represented the best performance among the methods we tested.

Keywords: lightweight attention U-Net; historical landslide; RRIM; deep learning; artificial intelligence

1. Introduction

Landslides pose severe threats to human lives, activities, and infrastructure in moun-
tainous terrains [1–3]. Understanding their genesis and dynamics is fundamental to reduce
landslide risks [4,5]. In this context, record and monitoring data help gain insights on
how landslides behave. The way the geoscientific community gathering landslide records
fundamentally boils down to landslide identification routines. These have originally been
based on field surveys and expert-based landslide recognition practices using orthophotos
or satellite scenes [6]. However, such practices suffer from a high degree of subjectiv-
ity, and they also require a significant amount of time and resources [7]. Conversely,
more recent technological advancements have pointed out the use of automated land-
slide recognition to standardize the procedure towards objective results produced with
a significant speed-up [8].

Among the automated landslide mapping procedures proposed so far, the selection of
the data and the algorithmic architecture one may use imply some limitations [9–12]. For
instance, the choice of optical images brings a clear and interpretable overview of an area
unless affected by cloud and/or dense vegetation covers [13–16]. Conversely, radar images
are less sensitive to these issues, although the signal they record is a function of surface
deformation data [17,18]. Therefore, these images may not be suitable to map historical
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landslides. In this context, Light Detection and Ranging (LiDAR) may prove to be crucial in
bringing a third and complementary type of information compared to the two data sources
mentioned above. LiDAR technology has gradually gained the spotlight in recent years
to identify any sort of geological hazards in mountainous areas [19–24]. In fact, compared
with conventional optical image, the use of LiDAR carries several advantages. It provides
high resolution topographic data, enabling detailed analysis of geomorphic features and
surface deformation. It also allows one to remove the influence of vegetation [20,25,26].
However, the use of LiDAR for landslide identification has yet to become prominent
compared to the optic and radar counterparts. Specifically, most of its uses are still based on
manual interpretation on morphometric properties derived from the LiDAR survey [27,28].
However, methodologically, the geoscientific community has reached a level of maturity
where artificial intelligence may replace manual efforts, with the only confusion brought
by the numerous alternatives available to take on this task. Several examples exist in fact
where researchers have used different machine learning algorithms such as Artificial Neural
Network, Random Forest, and Support vector machine to draw landslide maps [29–35].
However, these tools generally suffered from inaccuracies, resulting in large numbers of
false positives [36,37]. Even more recently, the above-mentioned routines have mostly been
superseded by deep learning approaches specifically because of their enhanced precision,
with examples of striking accuracies associated with relatively low FPs [35]. Specifically,
Convolutional Neural Network (CNN), Channel Attention CNN, GAN-based Siamese
framework, and Region Convolutional Neural Network have made remarkable progress
in landslides recognition based on optical image [17,36,38–44]. In this broad context, deep
learning routines coupled with LiDAR data are yet to be fully explored, especially for
mapping historical landslides.

This paper attempts to fill this gap, by proposing a new automatic landslides iden-
tification method based on LiDAR data, whose information is passed to a series of deep
learning routines to retrieve historical landslide signatures in a test site located within the
Jiuzhaigou region of Sichuan Province (China).

2. Study Area and Data
2.1. Study Area

The study site we selected is located within the Jiuzhaigou, Aba Tibetan Autonomous
Prefecture of Sichuan Province, and it covers an area of approximately 356.73 km2 (Figure 1).

The study area is almost completely contained within the Jiuzhaigou National Forest
Park, characterized by a subtropical monsoon climate responsible for an average annual
rainfall of about 500–600 mm [45]. The altitude ranges from 1892 to 4359 above mean sea
level, and the underlying lithology mostly consists of bioclastic limestone and calcareous
dolomite, at times featuring deep canyon landform [46].

Historically, a number of geological disasters have taken place within the area. The
Jiuzhaigou earthquake on 8 August 2017 is certainly the most recent one [47]. However,
several other earthquakes have been reported in the literature through the years. However,
a comprehensive historical landslide inventory has not been compiled so far, and the public
information on past slope failures has mainly been achieved through simulations [48]. One
of the reasons behind this is due to the vegetation, which covers approximately 79.4% of
the study area [49].
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Figure 1. Geographical location of the study area ((a). Optical image of UAV in study area. (b). The
geographical location of Jiuzhaigou County in China. (c). The location of the study area in
Jiuzhaigou County).

2.2. Data Preparation

The airborne LiDAR data was initially used to obtain the point cloud (provided
by Sichuan Bureau of Surveying and Mapping (SBSM), and the point cloud density is
30 pints/m2) from Wuhuahai to Rizegou, and these locations were hit by the earthquake
in 2017. Because the obtained point cloud data removed vegetation and buildings, we
generated DEM of this region by © ArcGIS Pro. Firstly, the LAS dataset was created by
using data management tools. Subsequently, the LAS dataset was converted to a 1 m
resolution DEM. In the conversion process, the interpolation type was selected by natural
neighbor method, and the sampling value was set as 1. At the same time, we also obtained
the same range of UAV optical images (0.2 m × 0.2 m) from SBSM (Figure 1a). It can help
researchers understand the geological environment from optical point of this area.

2.3. Historical Landslides Data

As part of any data-driven model, a dataset is required to build a suitable classifier.
Therefore, we had to interpret LiDAR-based terrain imaged and map historical landslides
to be later used to train and validate our deep learning model. Notably, when mapping
landslides through LiDAR data, shallow and small landslides may not be easily captured
due to shadow effects [50]. To deal with this issue, we adopted the two-dimensional visual-
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ization method based on 3D data proposed by Chiba, Red Stereoscopic Map (RRIM) [51,52].
Specifically, we initially used the Topographic Openness tool offered in SAGA GIS to further
extract Positive and Negative Openness layers from the DEM [28]. From these layers we
then computed the valley ridge index I as follows [28]:

I =
OP − ON

2
(1)

where Op is Positive openness index of terrain, and ON is Negative openness index of
terrain. By combining slope steepness and the ridge index, we produced the RRIM layer [28].
This sequence is graphically summarized in Figure 2. RRIM is particularly efficient to
represent ambient lighting and better support accurate interpretation. Figure 3 shows
a visual comparison of the historical landslides we mapped through Lidar source data,
hillshade, optical image, and RRIM.
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According to the mapping based on the LiDAR DEM, it can be observed that the
landslides exhibited distinct morphological feature in the RRIM (e.g., semicircular niches,
pressure ridges, depressions, and the Hummocky relief in deposits). The landslides can
clearly be recognized from these distinct features in Figure 4. Visually inspecting the RRIM
layer, we interpreted a total of 1949 historical landslides within the study site, covering
a total area of 20.24 km2. Among them, the smallest landslide is 502 m2, and the largest is
0.67 km2. We stress that most of them are covered by vegetation and thus could hardly be
recognized by optical images alone. This is where the RRIM brings added value in mapping
historical landslides. Our research question is then to test whether this added value can
be further brought into a deep learning architecture, automatizing in turn the mapping
procedure. We recall here that any artificial intelligence requires two sets of data for it to
work. One is used for calibration or the procedure of estimating the functional relations
responsible for landslide mapping, and the other one for validation or the procedure
of testing the model performance and its capacity to generalize the classification over
unknown data. In order to avoid mutual interference between training set and test set and
ensure the diversity of information of the two sample sets, we screened 1949 historical
landslides. Finally, 1364 landslide samples were used as training data, then these data were
enhanced by rotation and mirroring, and 585 landslide samples were used as validation
data to our deep learning model. These two sets of historical landslides are geographically
shown in Figure 4. During the course of creating image data, authors have obtained images
with a size of 512 × 512 size by cutting the geometric center. It ensures the integrity of the
landslide accumulation area, as well as avoiding the mutual interference between training
samples and test samples.
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3. Detection Approach

Deep learning is a technique which is gaining momentum within the geoscientific
community [53,54]. Different from other artificial intelligence, deep learning interprets
images in a similar manner as a human would do. The available information is exploited
to build a binary classifier based on a gridded structure where terrain and spectral data
are projected to. In addition to this, though, a deep learning routine allows to solve for
complex problems by including the neighboring information to any specific grid under
examination [55,56]. Several deep learning routines are currently available and under
continuous development. In this paper, we opted for the FCN, which is currently one of
the most widely used deep learning models in image processing.

In this study, we designed a Fully Convolutional Network (FCN) to analyze LiDAR
derived information and ultimately identified historical landslides. The overall approach
can be summarized into three steps: (1) DEM extraction from LiDAR data; (2) manual la-
beling of historical landslides on LiDAR topography; (3) deep learning-based classification.
The detailed flow chart of this method is shown in Figure 5.
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3.1. U-Net

Image recognition can be divided into three stages: image classification, target detec-
tion, and target segmentation. Image classification determines whether a given object is
contained in an image. Target detection is then used to locate the position of the target and
object segmentation separates the object boundary, which is the ultimate goal of the image
recognition process. Among the target segmentation tools, U-Net series is undoubtedly the
most popular for FCN [57]. It consists of an end-to-end image segmentation method, which
further allows the network to make pixel-level prediction and directly obtain the label
map. This method is widely applied to medical image segmentation tasks [58], and has the
advantages of a relatively simple architecture, fast training speed, over-fitting reduction
protocols, and it is ultimately suitable even for small data sets. Similar to the medical
data set, the historical landslides data set also has some problems, such as difficult data
acquisition, small data samples, and various shape and size changes. Therefore, in this
work we use a U-Net architecture to achieve this task, specifically for classifying, detecting,
and segmenting the landslide polygons described in Section 3.2.
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3.2. Attention Gate

Attention Gate is an approach proposed by Ozan Oktay in 2018 [59]. As the deep
learning process deepens into the data, two levels of information are extracted. The shal-
lower level has a better insight of the broader spatial characteristics of an image associated
with lower feature information (or the landslide specifics). As for the deeper level, the
opposite situation arises. The deeper the level, the more the learning process on the object
of interest. Therefore, deep levels carry richer feature-specific information but lower spatial
one. The additive attention coefficient formula [59] used in this paper is as follows:

ql
att= ϕT

(
σ1

(
WT

Xxl
i+WT

Ggi+bg

))
+bϕ (2)

αl
i= σ2

(
ql

att

(
xl

i, gi; θatt

))
(3)

where ql
att and αl

i are both of attention coefficients, σ1 is Relu function, σ2 is Sigmoid
function, bg and bϕ are both of the convolution bias terms, xi is a pixel vector, gi is
a gating vector, and WT

X , WT
G, and ϕT are all part of the convolution kernel. The role of an

Attention Gate is to balance these two levels of information and combine the highly detailed
information on the landslide characteristics in such a way that can be suitably generalized.
This is achieved by iterating a process where the learning mechanism is based on de-
emphasizing the background information while emphasizing the foreground information
in a given image. The concept of emphasis or attention translates into assigning weights to
specific areas of an image (where we mapped landslides) and reducing the activation value
of the background to optimize the segmentation. This is the reason why this approach
has gained more and more attention within the geoscientific community. In fact, landslide
inventories are extremely sparse by nature. In other words, areas covered by landslides
are much smaller in number and extent compared to areas where landslides have not
manifested yet [60].

3.3. Lightweight Attention U-Net

We design a Lightweight Attention U-Net (LAU-Net) for historical landslides identifi-
cation based on a combined U-Net and Attention Gate architecture. The network structure
of LAU-Net is shown in Figure 6. This FCN model is mainly composed by encoder, bottle-
neck, decoder, and skip connection. During the encoding phase, input images are initially
converted into an internal coding, then they are projected to 32 dimensions through the
convolution and pooling layers. After this multi-stage decoding, the spatial information
carried by a given image is progressively decomposed and compressed into a smaller
dimensional object, whose minimum size is commonly referred to as bottleneck. After the
essential information has been brought to the bottleneck, similar to the traditional U-Net,
we designed a symmetrical decoder, meant to bring back the image dimensionality to its
original state. The two processes describe above are then ultimately combined through
a skip connection step, where the multi-scale structure of the information is brought back
into the network. Below we will describe each block for clarity.

Encoder: Firstly, the binary channel images with a size of 512 × 512 pixels are trans-
formed into a special code through the input layer, and their feature dimension and
resolution remain unchanged [61]. Convolution layer (Conv) contains several feature
planes, and neurons in the same feature plane share weights. We set the convolution kernel
to be 3 × 3, used Relu as the activation function, and added Batch Normalization (BN) to
the convolution layer. Every two convolution layers are followed by a 2 × 2 maximum sub-
sampling (max pooling) for image down sampling. This design can reduce the connections
between different layers of the network, simplify the complexity of the model, and reduce
the risk of overfitting.
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Bottleneck: In the bottleneck, two successive convolution layers are used to learn high
dimensional features, and the characteristic dimension (256) and resolution (64 × 64) of the
data remain unchanged.

Decoder: As a symmetric decoder corresponding to the encoder based on the convo-
lution module, we also used a convolution layer with a scale of 3 × 3 for deconvolution,
and every two convolution layers are followed by a 2 × 2 Upsampling layer. Each Up-
sampling layer reduces the feature dimension of data to half of the original and improves
the resolution of the feature map at the same time. After several decoding stages, the
last 1 × 1 convolution layer converts the feature vectors of 32 channels into the required
classification results.

Skip connection: Unlike U-Net uses copy connections to simply connect shallow fea-
tures with deep ones. Attention U-Net integrates the multi-scale features extracted from
the encoder and the upsampling feature through the Attention Gate, then inputs this infor-
mation into decoder. Attention Gate can adjust the feature importance of landslide area,
optimize the segmentation effect of landslide, and accelerate the decoding efficiency of
the model.

3.4. Optimization

Even after the implementation of the LAU-Net network described above, the model
could still suffer from issues related to the number and extent of landslides in an image.
Specifically, this type of deep learning classifiers is usually implemented in a context where
the objects of interest occupy a significant portion of a given image. For instance, in the
first paper published by Oktay et al. 2018, a large portion of the body scan hosted the
pancreas, or the target to be mapped. However, in the context of landslide automated
mapping, the proportion of a given image occupied by landslides is usually a mere fraction
of the total. In other words, the background information is several orders of magnitude
larger than the foreground one would like to identify. As a result, the overall classification
may still produce undesired True Positive Rates (the proportion of correctly identified
landslides over the total number of landslides). To address this issue, we adopted the
optimization step introduced by [62], where a generalized loss function named Tversky
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loss is computed as the LAU-Net evolves through the epochs. The Tversky loss function is
expressed as follows:

T(α,β) =
∑N

i=1 p0ig0i

∑N
i=1 p0ig0i + α∑N

i=1 p0ig1i + β∑N
i=1 p1ig0i

(4)

where p0i is the probability of pixel i being a landslide, and p1i is the probability of pixel i
being a non-landslide. Additionally, g0i is 1 for a landslide pixel and 0 for a non-landslide
pixel, and vice versa for the g1i. Finally, the minimization of the loss function described
above is performed by using the Adam optimization proposed by [63].

3.5. Experiment

The source code for all of the algorithms mentioned above has been implemented using
the open library TensorFlow. TensorFlow offers a wide range of deep learning routines.
Therefore, to test our LAU-Net architecture, we benchmarked its landslide identification
performance with respect to other famous image segmentation methods. These correspond
to ResU-Net, R2U-Net, DeepLabv3, SwinU-Net, and U-Net++ [64–68], and these models
adopt the same parameter index design as LAU-Net. All these binary classifiers, including
our LAU-Net, have been run on a machine with the following characteristics:

- 3.7 GHz intel Xeon W2255 with 64 GB of RAM;
- graphic processing unit (GPU), NVIDIA GeForce GTX 3090 card with 24 GB of RAM

and reproducibility under NVIDIA Toolkit 11.0.2.

For repeatability and reproducibility, we also list the hyperparameter we opted for:
(1) the learning rate is 1 × 10−5, if the model falls into the local optimal solution, it will
decay by a factor of 0.7; (2) the batch size is 16; (3) the maximum number of epochs is 150.

4. Results
4.1. Model Validation and Comparison

All the models mentioned above are trained and compared using data sets generated
by the RRIM method. In this experiment, authors apply accuracy, F1_score (%), and MIOU
as the precision evaluation indexes, which is widely used as comprehensive evaluation
system for image segmentation problems. According to the loss function index, we stored
the testing results corresponding to the minima of each model, as well as the MIOU and
the required computational time. An overview is presented in Table 1:

Table 1. Results of different deep learning models.

Methods Loss (%) Accuracy (%) F1 (%) MIOU (%) Computational Time (s/Epochs)

ResU-Net 5.53 93.86 84.11 79.15 789 ± 9
LU-Net 4.76 93.91 86.50 81.45 335 ± 15

DeepLabv3 4.61 94.27 86.67 81.57 470 ± 12
U-Net++ 4.54 94.43 86.90 81.76 670 ± 10
R2U-Net 4.50 94.61 87.15 81.85 808 ± 7

SwinU-Net 4.45 95.08 87.37 82.25 1207 ± 20
LAU-Net 4.46 95.17 87.45 82.29 313 ± 10

As shown in Table 1, the addition of the Attention Gate channel to the Lightweight
U-Net (LU-Net) network produces the lowest loss rate (loss decreased by 0.30%), and
higher generalization performance in the verification set (Accuracy improved by 0.76%,
MIOU improved by 0.84%, F1 improved by 0.95%). At the same time, the Attention Gate
channel also improves the decoding ability of the model in the deconvolution stage. This is
recorded in the computational time reports. The LAU-Net consumes less time than the LU-
Net, with a time reduction of by 22 ms in each epoch. In comparison with other methods,
although several other FCN models use deeper network structure and larger parameters,
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LAU-Net is not inferior, and it achieves the best generalization ability with a much smaller
computational burden. These summary metrics support the use of LAU-Net as the most
suitable FCN model for historical landslides identification, among the most common deep
learning routines.

Aside from the specific metrics, in the process of model prediction, an automated
procedure may still misclassify some small geomorphic units as landslides. The smallest
geomorphic unit area that the method can detect is 190 m2, but these smaller units are
not caused by erosion factors such as landslides (e.g., Mountain flood residues, human
engineering activities, etc.). The smallest landslide size in our manually mapped inventory
is 544 m2. Therefore, we imposed the mapping procedure to convert the landslide labels
into polygons, and in the process filtered geomorphic units with an area of less than 500 m2.
Figure 7 shows the resulting segmentation process of our LAU-Net. The blue label marks
the training data set of historical landslides, the yellow label marks the same but used
for validation and the red polygons indicate the landslides boundary generated by our
LAU-Net. The figure highlights a convincing segmentation effect on both the training set
and the verification set, and it can accurately identify all landslides in the remote sensing
images. We stress here that a LiDAR survey generates extremely finely resolved images.
Thus, mosaicking them in a single image would result in a prohibitive object to be loaded
in most computers. Therefore, we kept each image separate from the others. In turn, this
implies that historical landslides at the edge of the original remote sensing image will
inevitably be divided into several patches, in which case the landslides features should be
inevitably lost. However, the model can still effectively identify them.
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4.2. Identification Effect Analysis of Different Data Types

To corroborate the use of our modeling protocol, we opted to add another element of
comparison. The literature reports a number of applications where landslide identification
is performed by using other sources of information such as optical images, the raw DEM
itself and shaded relief. Therefore, once we have proven the performance of our LAU-Net,
the remaining element to be evaluated was the type of image we used. In addition to using
the RRIM image (two channel), we then tested an optical image captured during a UAV
survey (three channel), the raw Lidar DEM (two channel) and its hillshade derivative types
(one channel). The resulting process is graphically shown in Figure 8, and numerically
summarized in Table 2.
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Table 2. Optimal verification results for different data types.

Date Type Loss (%) Accuracy (%) F1 (%) MIOU (%)

UAV 11.28 80.56 70.28 65.2
DEM 10.37 84.41 73.37 69.56

Hillshade 8.21 87.12 79.92 76.17
RRIM 4.46 95.17 87.45 82.29

Out of all the data sources, the RRIM did produce the best results, being roughly
7% more accurate than the model using the shaded relief, 13% more than the DEM, and
about 17% more than the model using the UAV optical information. From Figure 9, we
can clearly observe that, expect for the RRIM data having good identification results, there
are some problems in the identification results of other data sources. For the hillshade
data, landslide ranges are not only obviously smaller, but also have the problem of cavity
identification. For the DEM data, it is easy to miss small landslides during detection. Finally,
for the UAV data, it loses a lot of targets and performs worst in several categories.
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white pixels represent no landslides and landslides. (c) Recognition results by RRIM. (d) Recognition
results by hillshade. (e) Recognition results by DEM. (f) Recognition results by UAV).

5. Discussion
5.1. Scale Parameter Analysis of Attention U-Net

In this paper, authors designed a LAU-Net for the specific image recognition task
of historical landslides. Compared to traditional Attention U-Net (TAU-Net) with nearly
8 million parameters, this LAU-Net produces satisfactory results with one fourth of the
parameters and one third of the computational burden. Figure 10 shows the training
process of the LAU-Net compared to the TAU-Net, and Table 3 shows the verification result
for LAU-Net and TAU-Net. As can be seen from the result, with the same optimizer and
loss function, although traditional Attention U-Net performs slightly better than LAU-Net
in the training set, they have markedly little differences in their generalization ability. We
stress here that when solving image recognition tasks, the ability of a model to generalize
its prediction is often more important than the model fitting itself. These considerations are
an additional point of discussion when promoting the use of similar complex classifiers for
landslide detection.
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Table 3. Optimal verification results for LAU-Net and TAU-Net.

LAU-Net TAU-Net

Loss (%) 4.45 4.46
Accuracy (%) 95.20 95.17

F1 (%) 87.48 87.45
MIOU (%) 82.31 82.29

Computational Time (s/epochs) 710 ± 10 313 ± 10
Model Parameters 7.98 × 106 1.98 × 106
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5.2. Considerations on Multiple Sources

When comparing the multiple data sources within the framework of the deep learning
routine we presented, the RRIM data type achieves the best recognition effect. According
to our analysis, this is due to the most detailed depiction of terrain and landform by RRIM.
As shown in Figure 3, humans can clearly judge the difference between the landslide and
the background through RRIM data and distinguish the source area and accumulation area
of the landslide. This visual reflection can also improve the computer recognition effect.
The hillshade comes relatively close to the performance provided by the RRIM counterpart.
This is likely due to the capacity of the hillshade to clearly reflect geomorphic features.
Thus, even historical landslides would be detectable, even more clear than when using
elevation and optical alternatives. However, the shadow effect is due to peaks overlooking
lowlands in the sunlight direction. The resulting darkness at these specific incidence angles
may have limited the ability of our LAU-Net compared to the richer information provided
by the RRIM. Interesting considerations arise in relation to the use of the DEM. In fact, this
data type requires the least preprocessing to be fed to the deep learning model. However,
when checking the classification results based on the DEM, many small historical landslides
were misclassified. The boundary of large historical landslides appeared extremely noisy.
This may be due to the limited capacity to normalize the DEM information into the deep
learning process. As for the use of optical images, these produced by far the worst results.
This is likely due to the dense vegetation, which inevitably masks the geomorphic signature
of historical landslides. In summary, we consider RRIM data to be the most suitable data
type in the context of AI-aided historical landslides identification.

5.3. Historical Landslides in Jiuzhaigou

Due to the abundant rainfall in the subtropical monsoon climate zone, and coupled
with the unique mountain canyon landform, Jiuzhaigou often suffered geological disasters
such as landslides and debris flows in the past. According to the records, a ravine debris
flow destroyed a village which occurred at the Zaru Tample 100 years ago. Additionally,
a collapse landslide occurred at Guodu in 1952 [69]. As the environment changed, the
valleys and slopes where historical landslides occurred were recovered with vegetation,
but it does not mean that the surface environment in the area is stable. On 7 July 2017,
Jiuzhaigou earthquake induced 1988 coseismic landslides in the study area (Figure 11).
It can be seen from this figure that in the regions with large scale development of histor-
ical landslides, such as regions A and B, the density of coseismic landslides induced by
earthquakes is relatively high. In contrast, coseismic landslides are rarely observed in the
region C, where the distribution of historical landslides is less. Therefore, the effective
identification of historical landslides can not only provide support for risk assessment of
geological disasters, but also deepen the spatiotemporal pattern of geological disasters
before and after an earthquake in mountainous regions.
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Figure 11. Distribution diagram of coseismic landslides and historical landslides ((A). Schematic
diagram of landslides distribution in Jiuzhai paradise area. (B). Schematic diagram of landslides
distribution in Panda sea area. (C) The region where observed little coseismic landslides and
historical landslides).

6. Conclusions

In this study, a novel approach based on LiDAR data and LAU-Net is proposed to
identify historical landslides in densely vegetated mountainous areas. Authors generate
RRIM through high precision data to interpret historical landslides in Jiuzhaigou. This
expert-based procedure led to a total of 1949 historical landslides. A LAU-Net has then been
compared to a number of competitors when it comes to AI-aided detection yet proving to
produce the highest classification performance. Having confirmed this, we also compared
the effects of different data types highlighting the rich information compressed into RRIM
data. All these considerations indicate the use of the LAU-Net built on a RRIM foundation
to be the optimal combination for historical landslides’ mapping. We believe this to be the
case because the framework we proposed is capable of going deep to extract diagnostic
feature information while bridging it back to the original spatial context. Despite this
task being particularly complex due to the masked geomorphic signature of historical
landslides—mostly by vegetation cover—the RRIM still proved to be the best candidate
to reflect the body of the failed mass. We recommend a combination of appropriate data
preprocessing methods and a concise network architecture to solve problems such as
identifying specific geological hazards, which often yield more surprising results.
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