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Abstract: To improve the accuracy of the maximum correntropy Kalman filter (MCKF) in wireless
sensors networks (WSNs) positioning, a dynamic self-tuning maximum correntropy Kalman filter
(DSTMCKF) is proposed, where innovation and the sensors information of the WSNs are used to
adjust the noise covariance matrices, and the maximum correntropy criterion is the criterion for the
filter’s optimality. By dynamically adjusting the noise covariance matrices, the DSTMCKF ensures that
the correntropy distribution is accurate in the presence of non-Gaussian noise (NGN), thus improving
its ability to handle the NGN. In simulation and real environment positioning experiments, the
DSTMCKF is used to compare with the MCKF, variable kernel width–maximum correntropy Kalman
filter (VKW-MCKF) and robust minimum error entropy Kalman filter (R-MEEKF). Among the four
filters, the DSTMCKF has the highest accuracy, and the error of the DSTMCKF is reduced by 34.5,
42.9 and 40.0%, respectively, compared with the MCKF, VKW-MCKF and R-MEEKF in the real-
world environment positioning experiment. The application of the DSTMCKF in WSNs positioning
systems improves the stability of the control systems because of the rising positioning accuracy,
which makes WSNs positioning systems more widely used in scenarios requiring high stability, such
as automatic parking.

Keywords: wireless sensors networks; maximum correntropy Kalman filter; dynamic self-tuning
algorithm; range-based positioning

1. Introduction

With the development of sensors technology, wireless sensors networks (WSNs) po-
sitioning systems are widely used in factories, docks, warehouses and other places and
have broad development prospects [1–3]. In recent years, Gulo et al. [4] and Duan et al. [5]
have applied WSNs positioning technology to occasions other than industrial applications,
such as mobile phone positioning and vehicle positioning, further improving the prac-
ticability of WSNs positioning technology. Because of a low cost and high positioning
accuracy, the range-based positioning method has become the most shared WSNs position-
ing method. Authors such as Xiong et al. [6], Na et al. [7] and Nguyen et al. [8] have all
adopted range-based positioning methods to effectively improve the positioning accuracy.

However, the range-based positioning algorithm is seriously affected by non-Gaussian
noise (NGN) [9,10], which results in its inaccuracy in practical application. Huang et al. [11],
Fang et al. [12] and Navon et al. [13] all pointed out that WSNs positioning systems are
affected by various NGNs, which seriously reduce the positioning accuracy.

To suppress the influence of NGN, various robust Kalman filter methods are applied
to WSNs positioning systems [5,14]. The classical robust Kalman filter includes the H∞
filter [15,16] and the strong tracking Kalman filter [17,18]. However, these filters are not
effective in dealing with the noise in WSNs positioning problems, and the positioning
accuracy decreases seriously.

In recent years, the maximum correntropy Kalman filter (MCKF) was proposed by
Chen et al. [19], according to the information theoretic learning criterion. Compared with
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the traditional robust Kalman filter, the MCKF has a higher accuracy and has the ability
to deal with various NGNs [20]. Owing to its excellent performance, the MCKF is rapidly
applied to various systems [21,22]. However, in WSNs positioning systems, most of the
NGN comes from the electromagnetic radiation of electronic equipment and non-line-of-
sight signals due to occlusion and refraction. These noises are usually much larger than the
Gaussian white noise in the channel, and the size and duration are difficult to predict. With
the MCKF, it is hard to deal with these noises, so the filtering accuracy of the MCKF will be
reduced in the WSNs positioning systems [23,24].

To improve the performance of the MCKF in WSNs positioning systems, a dynamic
self-tuning maximum correntropy Kalman filter (DSTMCKF) is proposed. In order to deal
with the non-Gaussian noise, a dynamic self-tuning (DST) algorithm is proposed to combine
with the MCKF. The DST algorithm uses innovation and the information from sensors
to modify the noise covariance matrices, and the MCKF uses a maximum correntropy
criterion (MCC) for the filter’s optimality.

By using the DST algorithm to adjust the noise covariance matrices in real time,
the response speed and accuracy of the filter when encountering non-Gaussian noise are
improved. Compared with the minimum mean squared error (MMSE) criterion, the maxi-
mum correntropy criterion has stronger robustness to ensure the convergence of the filter
when encountering non-Gaussian noise. By combining the DST algorithm and the MCC,
the DSTMCKF ensures that the correntropy distribution is accurate in the presence of NGN,
thus improving its ability to handle NGN.

To verify the performance of the DSTMCKF, three filters, including the MCKF, variable
kernel width–maximum correntropy Kalman filter (VKW-MCKF) and robust minimum
error entropy Kalman filter (R-MEEKF), are used to compare with the DSTMCKF in the
simulation experiments and real-world dynamic positioning experiments. The simulation
experiments consider the different non-Gaussian noise in the motion state and observation,
and the real-world dynamic positioning experiment is selected in the real office scene.

The rest of the paper is organized as follows: In Section 1, the principle of the MCKF
is presented in detail, along with the limitations of the MCKF. In Section 2, a DSTMCKF is
proposed, and the principle of the DSTMCKF is described. In Section 3, the simulation and
real-world dynamic experiments results are presented, both comparing the DSTMCKF to
other filters and exploring some of its qualities.

2. Maximum Correntropy Kalman Filter
2.1. Principle of MCKF

To suppress the influence of NGN on positioning accuracy, the MCKF is used to deal
with NGN and has achieved promising results. Compared with the MMSE, the MCC has a
stronger robustness and lower risk when facing NGN [25]. Therefore, compared with the
classical Kalman filter, the MCKF is more suitable for dealing with NGN [19].

The MCC is an optimal estimation criterion, also known as the maximum informa-
tion criterion. For two variables X and Y whose joint distribution function is FXY(x, y),
the definition of correntropy V(X, Y) is

V(X, Y) = E[κ(X, Y)] =
∫

κ(X, Y)dFXY(x, y), (1)

where E is the expectation operator and κ(X, Y) represents the kernel function of correntropy.
Generally, κ(X, Y) is

κ(X, Y) = Gσ(e) = exp(− e2

2σ2 ), (2)

where Gσ is the Gaussian function, e is equal to X − Y and σ is the bandwidth of the
Gaussian kernel function.
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When applying MCC to KF, a linear system is considered first. The state equation and
observation equation of linear system are{

xk = Fkxk−1 + wk
yk = Hkxk + vk

, (3)

where xk ∈ <m is the system state at the k-th sampling, wk is the process noise, yk ∈ <n is
the observation at the k-th sampling and vk is the observation noise. State transition matrix
and observation matrix are Fk ∈ <m×m and Hk ∈ <m×n respectively.

Then, the process noise covariance matrix and observation noise covariance matrices
Qk and Rk are {

Qk = E
(
wkwT

k
)

Rk = E
(
vkvT

k
) . (4)

In order to apply the MCC to Kalman filter, it is necessary to establish the correntropy
model. The a priori estimate Dk and a posteriori estimate Wkx̂k|k in the Kalman filter are used
as correlation variables in the correntropy model. Then, construct matrices Dk and Wk are

Bk = chol
([

Pk|k−1 0
0 Rk

])
, (5)

Dk = B−1
k [ x̂k|k−1 yk ]T, (6)

Wk = B−1
k [ I Hk ]T, (7)

where Pk|k−1 is the a priori estimate of process noise covariance matrix. The prior estimation
of the process noise covariance matrix Pk|k−1 in this iteration can be calculated by using the
state transition matrix Fk and the posterior estimation of the process noise covariance matrix
Pk−1 obtained in the previous iteration. In addition, chol(x) is a Cholesky decomposition
operator, which means Cholesky decomposition of x .

In order to calculate the correntropy of Dk and Wkx̂k|k, Ek needs to be calculated as

Ek = Dk −Wkx̂k|k, (8)

where x̂k|k is the a priori estimate of the k-th sampling.
Then, the correntropy V(Dk, Wkx̂k|k) of Dk and Wkx̂k|k is

V(Dk, Wkx̂k|k) =
1

m + n

m+n

∑
i=1

Gσ(ẽk(i)), (9)

where ek(i) is the i-th element of vector Ek.
According to MCC, when V(Dk, Wkx̂k|k) is the maximum, x̂k|k is the optimal value. To

calculate the optimal value of x̂k|k, fixed-point iteration method is used to calculate x̂k|k.
The steps of MCKF are summarized as follows:

(a) Prediction: {
x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1FT
k + Qk−1

, (10)

where xk|k−1 is the prior estimate of the current iteration obtained by the state transition
matrix Fk and the state posterior estimation xk−1|k−1 of the previous iteration.

(b) Update required parameters of MCKF:{
Bp = chol(Pk|k−1)

Br = chol(Rk)
. (11)



Remote Sens. 2022, 14, 4345 4 of 23

(c) Fixed-point iteration:{
C̃x = diag(Gσ(ẽk(1)), · · · , Gσ(ẽk(n)))

C̃y = diag(Gσ(ẽk(n + 1)), · · · , Gσ(ẽk(n + m)))
, (12)

{
R̃k = BrC̃−1

y BT
r

P̃k|k−1 = BpC̃−1
x BT

p
, (13)

K̃k = P̃k|k−1HT
k[Hk P̃k|k−1HT

k + R̃k]
−1, (14)

x̂k|k(t) = x̂k|k−1 + K̃k[yk −Hkx̂k|k−1], (15)

where K̃k is the Kalman filter gain, and t represents the number of iteration rounds of
fixed-point iteration.

(d) The judgement criterion for iteration stop is∥∥∥x̂k|k(t)− x̂k|k(t− 1)
∥∥∥∥∥∥x̂k|k(t)

∥∥∥ ≤ ε, (16)

where ε is the error threshold. It can be seen from document [19], to ensure the accuracy and
numerical stability of the algorithm, the value of ε is 10−4 in this paper. When Equation (16)
holds, the fixed-point iteration is stopped; otherwise, continue with step (c).

(e) Update the filtering results and prepare for the next iteration:

x̂k|k = x̂k|k(t), (17)

Pk = [I − K̃kHk]Pk|k−1[I − K̃kHk]
T. (18)

Through the above steps, the state with maximum correntropy is estimated. MCKF
replaces MMSE criteria with MCC, which has higher robustness when the noise size cannot
be determined. However, MCKF has limitations in practical application, which result in
underdeveloped filtering effect and even divergence of filtering results.

2.2. Limitations of MCKF

In practical application, when the noise type or target motion state is multiple, the fil-
tering accuracy of the MCKF will decrease to a certain extent. In order to explain this
phenomenon, a situation is considered when the MCKF is working properly [26].

Considering that the a priori estimate and observation measurement are only one
dimension. Supposing the state prior estimate xk|k−1 is 40, the state observation value yk is
60, process noise covariance matrix Pk|k−1 is 6, observation noise covariance matrix Rk is
1 and the value of Gaussian kernel σ is 5. Where Pk|k−1 and xk|k−1 are the prior estimators of
the current iteration obtained by the state transition matrix Fk and the posterior estimators
of the previous iteration, and the values are not affected by the observation noise of the
current iteration.

If the values of the estimated noise covariance matrices Pk|k−1 and Rk are not much
different from the values of the noise covariance in reality, the distribution of correntropy is
shown in Figure 1a. The correntropy has only one maximum value; hence, the fixed-point
iteration ensures convergence to the point with maximum correntropy. In this case, MCKF
has strong robustness and has a better ability to deal with NGN.

On the contrary, when the MCKF is interfered by noise of an unpredictable size,
the actual observed noise covariance is inconsistent with Rk. At this time, the observation
yk will also change due to the influence of observation noise. If the noise further increases,
the difference between state a priori estimation and state observation will further increase.
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Assuming that the state view measurement is 80 and other variables remain unchanged,
the distribution of correntropy is shown in Figure 1b.

(a) (b)

Figure 1. Distribution of correntropy in different scenes. (a) Distribution of correntropy when
parameters are accurate; (b) distribution of correntropy when NGN increases.

There are three extreme points in the solution space of the fixed-point iteration algo-
rithm under these conditions, which do not satisfy the iteration convergence condition and
provoke a large error in the calculation results. Thus, when the observation noise or the
system motion state is multiple, the performance of the MCKF is underdeveloped.

One reason behind this phenomenon is that the MCKF is sensitive to the values of
Pk|k−1 and Rk, but the values cannot be dynamically corrected. When the values of Pk|k−1
and Rk are inconsistent with the reality, there will be errors in the distribution of correntropy,
resulting in the degradation of the MCKF performance.

Another reason is that the fixed-point iteration is difficult to converge to the maximum
correntropy point when the observation noise or the system motion state is multiple.
Under these conditions, there are multiple extreme points in the solution space, which do
not meet the convergence condition of the fixed-point iteration. The fixed-point iteration
method may converge to the extreme point far away from the maximum correntropy point,
resulting in a large error.

To solve this problem, it is necessary to modify Pk|k−1 and Rk in each iteration [11,27].
The adaptive algorithms realize the dynamic correction of parameters to a certain extent,
and yet when dealing with NGN in WSNs positioning systems, the adaptive algorithm has
a slow response speed and insufficient robustness. Therefore, several algorithms have been
proposed to improve the filtering accuracy of the MCKF in recent years.

2.3. Improved Algorithm of MCKF

With the aim of improving the performance of the MCKF, several algorithms have
been proposed in recent years. There are two common ways to improve the accuracy: one
is to adjust the Gaussian kernel bandwidth and the other is to optimize the maximum
correntropy criterion.

Much of the research has examined how to improve the filtering precision of the MCKF
by using a modified Gaussian kernel bandwidth, and the variable kernel width–maximum
correntropy Kalman filter (VKW-MCKF) proposed by Huang et al. [24] has achieved
positive results. The adaptive algorithm is used to adjust the Gaussian kernel bandwidth
in the VKW-MCKF, so that the Gaussian kernel bandwidth can be adjusted adaptively with
the size of the noise, which effectively improves the accuracy and robustness of the MCKF.
However, the VKW-MCKF does not have the ability to adjust the noise covariance matrix,
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so there is still an inaccurate distribution of the correntropy when the noise does not match
the estimation.

In recent years, a series of studies have expected to improve the filtering accuracy of
the MCKF by optimizing the maximum correntropy criterion, which the robust minimum
error entropy Kalman filter (R-MEEKF) proposed by Chen et al. [23] performed favorably.
The R-MEEKF optimizes the maximum correntropy principle to the minimum entropy
principle, which further improves the ability of the filter to process non-Gaussian noise.
Nonetheless, the R-MEEKF algorithm requires a trade-off between the convergence speed
and steady-state error, and it is often difficult to guarantee that both performances meet
the requirements.

In summary, although several algorithms have improved the filtering accuracy of the
MCKF in recent years, none of the above improved algorithms can solve the problem that
the MCKF is difficult to handle the variable process and observation noise. The above
improved algorithms are difficult to apply in positioning systems with complex and variable
noise; hence, a dynamic self-tuning algorithm is proposed to adjust the values of the noise
covariance matrix Pk|k−1 and Rk.

3. Dynamic Self-Tuning Maximum Correntropy Kalman Filter
3.1. Determination of Noise Type for WSNs Positioning

In order to dynamically adjust Pk|k−1 or Rk, it is necessary to judge whether NGN
appears in the observation. A WSNs positioning quality index is proposed, which is
calculated according to the distance information between the tag and anchors.

The quality index is obtained by trilateral positioning method, and the principle is
shown in Figure 2. In Figure 2a, (X1, Y1), (X2, Y2) and (X3, Y3) are the coordinates of the
three anchors. d1, d2 and d3 are the distances to tag measured by the three anchors [28,29].
Then, the coordinate (XT, YT) of tag is[

XT
YT

]
= 1

2

[
XB − XA YB −YA
XC − XA YC − XA

]−1

·
[

d2
A − d2

B + X2
B − X2

A + Y2
B −Y2

A
d2

A − d2
C + X2

C − X2
A + Y2

C −Y2
A

] . (19)

As shown in Figure 2b, when there is an error in the measured distance, the three
circles in the triangulation positioning method cannot intersect at the same point. At this
time, the distance d̂i from the positioning result (XT, YT) to the Anchor i is not equal to
the measured distance di. Utilizing the difference between d̂i and di, a WSNs positioning
quality evaluation index is proposed.

(a) (b)

Figure 2. Different quality positioning result. (a) High-quality positioning result; (b) low-quality
positioning result.
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The positioning quality index L is

L =
∑N

i=1

∣∣∣di − d̂i

∣∣∣
N

, (20)

where N is the number of anchor used for positioning.
The L obtained by the k-th sampling is denoted as Lk. When the Lk is large, it indicates

that the difference between d̂i and di is large in this sampling. In addition, the greater the
difference between d̂i and di, the less reliable the positioning result. At this time, NGN
appears in the observation, and Rk needs to be adjusted.

From another perspective, if (XT, YT) is taken as the unbiased estimation of the posi-
tioning result, Lk is the mean ranging error of each positioning result. To test whether the
ranging error satisfies the hypothesis, the hypothesis testing method is used to determine
whether Lk is within the rejection domain. When Lk is not in the rejection domain, it means
that the ranging error conforms to the hypothesis; otherwise, it means that the ranging
error does not conform to the hypothesis. The critical point of the rejection domain is the
threshold Lthr, so when Lk is greater than Lthr, it is considered that the ranging error does
not conform to the hypothesis, and there is NGN in the observation.

3.2. Dynamic Self-Tuning Algorithm

After determining whether the NGN exists in the observation, the next step is to
correct the noise covariance matrices. A dynamic self-tuning (DST) algorithm is presented,
which uses innovation to adjust the value of Pk|k−1 or Rk. Record innovation zk as:

zk = yk −Hkxk|k−1. (21)

When the estimation of the model is accurate and the noise meets the Gaussian
distribution, the expectation Ck of innovation covariance is shown in Equation (22):

Ck
∆
= HkPk|k−1HT

k + Rk. (22)

In the actual filtering process, the covariance C̃k is calculated in Equation (23). In
addition, according to [30], after weighing the robustness of the algorithm and the response
speed to NGN, the forgetting factor λ is taken as 0.95.

C̃k =


zkzT

k , k = 1

λC̃k−1+zkzT
k

1+λ , k > 1
. (23)

When the estimation of the model is accurate and the noise meets the Gaussian
distribution, the value of C̃k is similar to Ck. On the contrary, when the motion state
changes or there is NGN in the observation, the difference between C̃k and Ck will increase
significantly. At this time, Pk|k−1 or Rk needs to be tuned to force C̃k equal to Ck.

If the Lk or Lk−1 in Section 3.1 has an increased value than that of the threshold Lthr,
there is NGN in the observation, so it is necessary to adjust Rk to R̂k, forcing Equation (24)
to hold.

C̃k = HkPk|k−1HT
k + R̂k. (24)

Note that the intermediate variable Nk is:

Nk = C̃k −HkPk|k−1HT
k . (25)

Equation (24) holds when R̂k is equal to Nk. In order to ensure that R̂k is positive
definite, the diagonal element of Rk is set by the expansion coefficient βi|k, and then
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the value of non-diagonal element is corrected by using the correlation coefficient, as
shown below:

βi|k = max[1,
nii
rii

], (26)

R̂k =


β1|kr11

√
β1|kβ2|kr12 · · ·

√
β1|kβn|kr1n√

β1|kβ2|kr21 β2|kr22 · · ·
√

β2|kβn|kr2n

...
...

. . .
...√

β1|kβn|krn1

√
β2|kβn|krn2 · · · βn|krnn

. (27)

where nij and rij are the elements of row i and column j of matrices Nk and Rk, respectively.
When the Lk or Lk−1 in Section 3.1 is smaller than the threshold Lthr, the possibility of

NGN appearing in the observation is little or nothing. If the difference between xk|k−1 and
yk is still large under these condition, the motion state has changed, and Pk|k−1 needs to be
corrected to P̂k|k−1.

Theoretically, P̂k|k−1 needs to make Equation (28) valid. However, because Hk is not nec-
essarily reversible, the value of P̂k|k−1 cannot be directly calculated by Equation (28). Therefore,
the expansion coefficient αk is introduced to adjust P̂k|k−1, as shown in Equations (29) and (30):

C̃k = HkP̂k|k−1HT
k + Rk, (28)

αk = max[1,
tr(C̃k −Rk)

tr(HkPk|k−1HT
k )

], (29)

P̂k|k−1 = αkPk|k−1. (30)

Based on the above steps, a DST algorithm is proposed, as shown in Figure 3. Because
there is a possibility of misjudgment when only Lk is used, both Lk and Lk−1 are required
to be smaller than Lthr to ensure the robustness of the algorithm.

The DST algorithm uses sensors information as a priori information to effectively
adjust the noise covariance matrices. When the noise is non-stationary, the DST algorithm
can correct the noise covariance matrix to be closer to the current noise in real time. This
means that the DST algorithm can still ensure the accurate estimation of the noise covariance
matrix in the presence of NGN. Combined with the DST algorithm, the robustness and
accuracy of the MCKF will be improved significantly.

3.3. Dynamic Self-Tuning Maximum Correntropy Kalman Filter

The DST algorithm is combined with the MCKF, and then the dynamic self-tuning
maximum correntropy Kalman filter (DSTMCKF) is proposed. The DST algorithm is used
for correcting the values of Pk|k−1 or Rk firstly. Then, the modified noise covariance matrices
are used for the Kalman filter, and the filter result x̂k|k(0) is used as the starting point of the
fixed-point iteration.

When the estimates of Pk|k−1 and Rk are close to the true value, the value of x̂k|k(0)
is very close to the maximum correntropy point. Taking x̂k|k(0) as the starting point of
the fixed-point iteration ensures that there is only one maximum value in the solution
space of the fixed-point iteration. Finally, the state quantity with the maximum correntropy
is calculated by using the fixed-point iterative algorithm, which is the filtering result of
DSTMCKF. The above process is expressed as Equations (31) to (48):

(a) Prediction: {
x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1FT
k + Qk−1

. (31)
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Figure 3. DST Algorithm.

(b) Adjust noise covariance matrix by DST algorithm:

zk = yk −Hkxk|k−1, (32)

C̃k =

{
zkzT

k , k = 1
λC̃k−1+zkzT

k
1+λ , k > 1

. (33)
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IF Lk ≥ Lthr|Lk−1 ≥ Lthr:
Nk = C̃k −HkPk|k−1HT

k , (34)

βi|k = max[1,
nii
rii

], (35)

P̂k|k−1 = Pk|k−1, (36)

R̂k =


β1|kr11

√
β1|kβ2|kr12 · · ·

√
β1|kβn|kr1n√

β1|kβ2|kr21 β2|kr22 · · ·
√

β2|kβn|kr2n

...
...

. . .
...√

β1|kβn|krn1

√
β2|kβn|krn2 · · · βn|krnn

. (37)

If Lk < Lthr & Lk−1 < Lthr:

αk = max[1,
tr(C̃k −Rk)

tr(HkPk|k−1HT
k )

], (38)

P̂k|k−1 = αkPk|k−1, (39)

R̂k = Rk. (40)

(c) Calculation of fixed-point iteration starting point by KF:

Kk = P̂k|k−1HT
k [HkP̂k|k−1HT

k + R̂k]
−1, (41)

x̂k|k(0) = x̂k|k−1 + Kk[yk −Hkx̂k|k−1]. (42)

(d) Parameters required to calculate MCKF:

Bp = chol(P̂k|k−1), (43)

Br = chol(R̂k), (44)

Bk =

[
Bp 0
0 Br

]
, (45)

Dk = B−1
k [ x̂k|k−1 yk ]T, (46)

Wk = B−1
k [ I Hk ]T, (47)

Ek = Dk −Wkx̂k|k. (48)

(e) Fixed-point iteration:{
C̃x = diag(Gσ(ẽk(1)), · · · , Gσ(ẽk(n)))

C̃y = diag(Gσ(ẽk(n + 1)), · · · , Gσ(ẽk(n + m)))
, (49)

{
R̃k = BrC̃−1

y BT
r

P̃k|k−1 = BpC̃−1
x BT

p
, (50)

K̃k = P̃k|k−1HT
k [HkP̃k|k−1HT

k + R̃k]
−1, (51)

x̂k|k(t) = x̂k|k−1 + K̃k[yk −Hkx̂k|k−1]. (52)
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(f) When Equation (53) holds, the fixed-point iteration is stopped; otherwise, continue
with step (e): ∥∥∥x̂k|k(t)− x̂k|k(t− 1)

∥∥∥∥∥∥x̂k|k(t)
∥∥∥ ≤ ε. (53)

According to the above steps, the filtering result of DSTMCKF is obtained. The process
of DSTMCKF is also summarized as shown in Figure 4, and DST algorithm is in Figure 3.

Figure 4. Flowchart of DSTMCKF algorithm.

When combined with the DST algorithm, the ability of the MCKF to process NGN is
theoretically improved. The noise covariance matrices, which can be dynamically corrected
with the noise size, enable the DSTMCKF to have higher accuracy and robustness than the
MCKF. Compared with the VKW-MCKF, the DSTMCKF still works well when the noise
covariance matrices estimation is inaccurate. The VKW-MCKF, which can only adjust the
size of the Gaussian kernel bandwidth, is theoretically less efficient than the DSTMCKF
when estimating the noise covariance matrices inaccurately. In addition, compared with
the R-MEEKF, the DSTMCKF does not need to balance accuracy with the response speed
and has stronger robustness in theory.
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4. Simulation and Application in Office Indoor Environment
4.1. Simulation of Indoor Positioning Scene and Analysis of Filtering Results

In order to verify the performance of the DSTMCKF in WSNs positioning systems,
the shared situations in the WSNs positioning systems are considered for simulation firstly.
Two motion states and three kinds of noise between the anchors and tag are considered.

The simulation sampling frequency is set to 100 Hz. The two motion states are the
uniform linear motion process and the acceleration–deceleration process. During the uni-
form linear motion process, the speed of the tag in the x-direction is 1 m/s, the speed in the
y-direction is 0 m/s and the process noise on the speed in each sampling is ωk ∼ N(0, 0.01).
During the acceleration–deceleration process, the acceleration of the tag in the x-direction
is zero, the acceleration in the y-direction is −5 m/s2 in the first 0.5 s and 5 m/s2 in the last
0.5 s. The process noise on the speed in each sampling is ωk ∼ N(0, 0.025).

The simulation environment is shown in Figure 5. The simulation uses three anchors
with coordinates of (0,0), (20,0) and (10,17.32) to form an equilateral triangle with a side
length of 20 m. There are three kinds of shared noises between the anchors and tag. Note
that the three kinds of noise are S1, S2 and S3, and the distribution of the noise is shown in
Table 1, where Ai represents the channel between the i-th anchor and the tag.

Figure 5. Simulated environment.

Table 1. Three kinds of noise between the tag and the anchors.

Noise Distribution (m) Channel with Noise

S1 Sk ∼ N(0, 0.02) A1, A2, A3
S2 lnSk ∼ N(0, 0.05) A1, A2, A3
S3 Sk ∼ U(0, 0.3) + |N(0, 0.2)| A3

Under the above simulation conditions, the MCKF, VKW-MCKF, R-MEEKF and DSTM-
CKF are used for the comparative experiments. Assuming that there is only noise S1,
the significance level of the hypothesis testing is taken as 0.05, and then the threshold
value Lthr is calculated as 0.13 . The state transition matrix Fk is obtained according to the
kinematic characteristics of the simulation object, as shown in Equation (54). Because the
WSNs can only measure the position of the simulation object, the observation matrix Hk is
shown in Equation (55).

Fk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, (54)
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Hk =

[
1 0 0 0
0 0 1 0

]
. (55)

Four cases are discussed in the simulation experiment, as shown below:
Case (1): In Case (1), there is an acceleration–deceleration phase and noise S1 in Table 1.

The Gaussian kernel σ of the MCKF, R-MEEKF and DSTMCKF is 1.2, and because the
VKW-MCKF will diverge when the Gaussian kernel σ is 1.2, the Gaussian kernel σ of the
VKW-MCKF in the figure is 5.0. The simulation sampling results and experimental results
are shown in Figure 6, where Figure 6e is the cumulative distribution function (CDF) of
each filter.

(a) (b)

(c) (d)

(e)

Figure 6. Simulation Results in Case (1). (a) Positioning result of X-label when σ = 1.2; (b) error of
X-label when σ = 1.2; (c) positioning result of Y-label when σ = 1.2; (d) error of Y-label when σ = 1.2;
(e) CDF of each filter when σ = 1.2.
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The experimental results indicate that when the motion states are multiple, the DSTM-
CKF has the highest accuracy, while the filtering accuracy of the MCKF has decreased to
a certain extent. In order to discuss the influence of bandwidth σ on the filtering results,
the value of σ is modified, and the results are shown in Table 2.

When the value of σ is small, the dynamic tracking ability of the MCKF is underdevel-
oped. In addition, the error is large or even divergent when the motion state is multiple.
With the increase of σ, the MCKF gradually converges to KF, and the dynamic performance
is improved.

The response speed of the VKW-MCKF and R-MEEKF is improved to some extent
compared with the MCKF, so the positioning accuracy is higher in the presence of multiple
motion states. However, because neither of the two algorithms have the ability to adjust
the noise covariance values adaptively, the accuracy decreases when the observed noise
does not match the estimation.

For the DSTMCKF, a small σ also leads to a decrease in the dynamic performance,
and an increase of σ will invalidate the MCC. Thus, the DSTMCKF will perform best only
when σ is moderate. Nonetheless, the dynamic tuning of parameters reduces the sensitivity
of the DSTMCKF to σ, and the RMSE of the DSTMCKF changes little when σ changes.

Table 2. RMSE (m) with different σ (Case 1).

σ DSTMCKF MCKF VKW-MCKF R-MEEKF

0.4 0.021 0.055 Divergence 0.029
0.8 0.019 0.028 Divergence 0.023
1.2 0.018 0.027 Divergence 0.023
2.0 0.016 0.026 Divergence 0.023
5.0 0.015 0.026 0.033 0.023

10.0 0.015 0.026 0.032 0.024
20.0 0.015 0.026 0.032 0.025

Case (2): In Case (2), the noise S1 in Table 1 occurs in the whole process and the noise
S2 in Table 1 occurs during iterations 500 to 600 s. The Gaussian kernel σ of the MCKF,
R-MEEKF and DSTMCKF is 1.2. In addition, because the VKW-MCKF will diverge when
the Gaussian kernel σ is 1.2, the Gaussian kernel σ of the VKW-MCKF in the figure is 5.0.
The simulation sampling results and experimental results are shown in Figure 7.

The DSTMCKF performs better than the MCKF when σ is 1.2. However, because the
motion state is single at this time, σ takes a smaller value to improve the performance of
the MCKF. The experimental results are shown in Table 3. When σ is small enough, the
accuracy of the MCKF is improved to a certain extent. Nonetheless, to ensure the dynamic
performance of the filter, it is difficult for σ to obtain such a small value.

Table 3. RMSE (m) with different σ (Case 2).

σ DSTMCKF MCKF VKW-MCKF R-MEEKF

0.4 0.007 0.019 Divergence 0.032
0.8 0.007 0.041 Divergence 0.035
1.2 0.007 0.043 Divergence 0.042
2.0 0.008 0.044 Divergence 0.046
5.0 0.009 0.045 0.013 0.047

10.0 0.009 0.045 0.019 0.047
20.0 0.010 0.045 0.030 0.047

Due to the variable bandwidth of the Gaussian kernel, the VKW-MCKF has a better
ability to deal with NGN in observation, and the positioning accuracy is almost the same
as that of the DST-MCKF. The steady-state error of the R-MEEKF is lower than that of the
MCKF, but the corresponding convergence speed is slower, and the anti-jamming ability
is underdeveloped; therefore, the positioning accuracy of the R-MEEKF is not better than
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the MCKF. The DSTMCKF has the ability to adjust the noise covariance matrices during
operation; hence, it has a better ability to handle the NGN in the observations and has the
highest accuracy.

(a) (b)

(c) (d)

(e)

Figure 7. Simulation Results in Case (2). (a) Positioning result of X-label when σ = 1.2; (b) error of
X-label when σ = 1.2; (c) positioning result of Y-label when σ = 1.2; (d) error of Y-label when σ = 1.2;
(e) CDF of each filter when σ = 1.2.

Case (3): In Case (3), the noise S1 in Table 1 occurs in the whole process and the noise
S3 in Table 1 occurs during iterations 700 to 800. The Gaussian kernel σ of the MCKF,
R-MEEKF and DSTMCKF is 1.2. However, because the VKW-MCKF will diverge when the
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Gaussian kernel σ is 1.2, the Gaussian kernel σ of the VKW-MCKF in the figure is 5.0. The
simulation sampling results and experimental results are shown in Figure 8.

(a) (b)

(c) (d)

(e)

Figure 8. Simulation Results in Case (3). (a) Positioning result of X-label when σ = 1.2; (b) error of
X-label when σ = 1.2; (c) positioning result of Y-label when σ = 1.2; (d) error of Y-label when σ = 1.2;
(e) CDF of each filter when σ = 1.2.

It can be seen from the figure that in case (3), the accuracy of the MCKF is also lower
than that of the DSTMCKF. And not similar to case (2), the performance of the MCKF is not
improved by reducing the value of σ, as shown in Table 4.
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Table 4. RMSE (m) with different σ (Case 3).

σ DSTMCKF MCKF VKW-MCKF R-MEEKF

0.4 0.008 0.073 Divergence 0.072
0.8 0.023 0.073 Divergence 0.072
1.2 0.027 0.074 Divergence 0.073
2.0 0.032 0.074 Divergence 0.074
5.0 0.034 0.074 0.063 0.074

10.0 0.034 0.074 0.069 0.074
20.0 0.034 0.074 0.072 0.074

In Table 4, even if σ is small enough, the MCKF will be severely affected by the noise.
Conversely, the DSTMCKF still ensures a high accuracy no matter how the value of σ
changes. This means that the DSTMCKF will still converge when the motion state changes
and has higher robustness and numerical stability than the MCKF. This means that the
DSTMCKF has a stronger performance in processing NGN with offset.

The VKW-MCKF has a high accuracy when the Gauss kernel bandwidth σ is small, yet
the numerical stability of the VKW-MCKF is underdeveloped. In practice, the Gauss kernel
bandwidth σ is usually larger. The R-MEEKF is relatively insensitive to the change of the
Gaussian kernel σ and has strong numerical stability, but the accuracy of the R-MEEKF is
the lowest.

Case (4): In Case (4), there is an acceleration–deceleration phase in the motion state.
The noise S1 in Table 1 occurs in the whole process, the noise S2 in Table 1 occurs dur-
ing iterations 500 to 600 and the noise S3 in Table 1 occurs during iterations 700 to 800.
The Gaussian kernel σ of the MCKF, R-MEEKF and DSTMCKF is 1.2. In addition, because
the VKW-MCKF will diverge when the Gaussian kernel σ is 1.2, the Gaussian kernel σ of
the VKW-MCKF in the figure is 5.0. The simulation sampling results and experimental
results are shown in Figure 9.

When the motion state and noise type are multiple, it is difficult for σ to obtain an
appropriate value to make the MCKF have better accuracy. In order to discuss the influence
of bandwidth σ on the filtering results, the value of σ is modified, and the results are shown
in Table 5.

Table 5. RMSE (m) with different σ (Case 4).

σ DSTMCKF MCKF VKW-MCKF R-MEEKF

0.4 0.042 0.104 Divergence 0.094
0.8 0.044 0.102 Divergence 0.100
1.2 0.046 0.102 Divergence 0.105
2.0 0.048 0.101 Divergence 0.103
5.0 0.048 0.103 0.079 0.104

10.0 0.048 0.103 0.086 0.105
20.0 0.051 0.104 0.101 0.105

When the value of σ is small, the dynamic tracking ability of the MCKF is underde-
veloped. On the contrary, when the value of σ increases, the ability of the MCKF to deal
with NGN decreases. Therefore, when σ is equal to 2.0, the MCKF has the best accuracy.
Nevertheless, the DSTMCKF has the ability to self-tune parameters, and it has the highest
accuracy no matter how σ changes. The DSTMCKF also performs better in a simulation
than the VKW-MCKF and R-MEEKF.

In addition, in each iteration, the averaged simulation time for the DSTMCK, MCKF
and Kalman filter is 0.144, 0.096 and 0.025 ms, respectively. For the control systems,
in order to meet the control requirements, it is required that the frequency of the uploading
positioning results can reach more than 100 Hz [31]. Although the DSTMCKF is more
computationally burdensome, it is still within the acceptable range.
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(a) (b)

(c) (d)

(e)

Figure 9. Simulation Results in Case (4). (a) Positioning result of X-label when σ = 1.2; (b) error of
X-label when σ = 1.2; (c) positioning result of Y-label when σ = 1.2; (d) error of Y-label when σ = 1.2;
(e) CDF of each filter when σ = 1.2.

In summary, the DSTMCKF outperforms the MCKF and its improvement method in
all four cases and effectively handles situations where there is no single motion state or
noise type. Meanwhile, the influence of σ on the DSTMCKF is limited, which indicates
that the DSTMCKF has better numerical stability and robustness than the MCKF. The
simulation results show that the DSTMCKF is more suitable for WSNs positioning systems
than the MCKF and its improvement method.
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4.2. Application in Office Indoor Environment

In order to prove that the DSTMCKF is applied to the actual WSNs positioning
systems, experiments are carried out with an ultra-wideband (UWB) positioning network
in the real environment, and the experimental environment in the real world is shown in
Figure 10. The indoor positioning environment selected in this experiment is a common
office environment, with an area of about 10× 7.5 m2. In the experiment, three UWB
anchors and one UWB tag are selected to form a UWB positioning network. The positions
of the three anchors are shown in Figure 11a, respectively, (0, 0), (8.9, 0) and (4.45, 7.4).
The tag is placed on the robot and travels around the indoor aisle. There are several mark
points in the room, and the robot counts the time when passing through the mark points.
The recorded time and the coordinates of the mark points are used as features for Gaussian
smoothing to obtain an ideal path. The ideal path is shown by the orange line in the figure,
and the sampled data are shown by the blue line in the figure.

Figure 10. Experimental environment in real world.

The positioning result of the UWB is affected by various NGNs. Most of these NGNs
come from the electromagnetic radiation of electronic equipment and non-line-of-sight
signals due to occlusion and refraction. To deal with these NGNs, the VKW-MCKF, R-
MEEKF, MCKF and DSTMCKF are used in the experiment, and the results are shown in
Figure 11b–d.

It is seen from the figure that when NGN does not exist, the performance of the three
filters is almost the same. When NGN exists, the accuracy and robustness of the DSTMCKF
are better than the MCKF, VKW-MCKF and R-MEEKF. The RMSE and maximum error (ME)
of the three filtering results are shown in the Table 6. The experiment results indicate that
the DSTMCKF also has better performance than the MCKF and its improvement method,
and the error is reduced by 34.5% compared to the MCKF.

Table 6. RMSE and maximum error of three filters.

RMSE (m) ME (m)

DSTMCKF 0.036 0.17
MCKF 0.055 0.18

VKW-MCKF 0.063 0.33
R-MEEKF 0.060 0.35

To sum up, the DSTMCKF solves the problem of the underdeveloped performance of
the MCKF in the noise type or motion state to a certain extent. It has a higher accuracy and
robustness and significantly improves the positioning accuracy of the systems in the actual
WSNs positioning systems.



Remote Sens. 2022, 14, 4345 20 of 23

(a) (b)

(c) (d)

Figure 11. Results in real world. (a) Sampling results in real world; (b) filtering results in real world;
(c) filtering error in real world; (d) CDF of each filter.

5. Discussion

The range-based positioning method is the most shared positioning method in WSNs
positioning systems, and the positioning results are affected by NGN [32–36]. To improve
the accuracy of WSNs positioning systems, a DSTMCKF is proposed. Four simulation
scenarios are considered to test the performance of the DSTMCKF, and the DSTMCKF has
a significantly improved performance in various scenarios compared to other common
filtering algorithms. To further prove the reliability of the DSTMCKF, the algorithm is used
in real-world indoor scenes. The results show that the DSTMCKF has a higher accuracy
than other filtering algorithms, can adapt to a complex noise environment in real scenes
and effectively improves the accuracy of a WSNs positioning system.

The main idea of this paper is to improve the accuracy of a WSNs positioning system
with a DSTMCKF. We mainly discuss the effects of the non-Gaussian process and obser-
vation noise on the positioning results and use the DSTMCKF to mitigate these effects.
Because the NGN in the real-world scene is not as extreme as the NGN in the simulation
scene, the advantages of the DSTMCKF are not as obvious as those in the simulation
experiments. If the positioning experiments can be conducted in more complex indoor
scenes, the advantages of the DSTMCKF will be further highlighted. In future work, we
plan to investigate the improvements and extensions of the method for determining the
type of noise. This helps reduce the risk of filter divergence due to misidentified noise
types, improves filter accuracy in complex environments and enhances the robustness of
the filter.
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6. Conclusions

A dynamic self-tuning maximum correntropy Kalman filter is proposed to improve
the performance of an MCKF. The DSTMCKF realizes the dynamic self-tuning of noise
covariance matrices on the basis of innovation and a priori information from sensors.
Applying the adjusted noise covariance matrices to the MCC effectively improves the
performance of the MCKF when there is NGN or a motion state that does not conform
to the estimate. In this way, the DSTMCKF solves the problem that the MCKF performs
underdeveloped when there is NGN or a motion state that does not conform to the estimate.
The simulation and experiments in the real-world environment indicate that the DSTMCKF
also has a better performance than the MCKF, and the error of the DSTMCKF is reduced by
34.5, 42.9 and 40.0%, respectively, compared with the MCKF, VKW-MCKF and R-MEEKF
in the real-world environment.

The experimental results prove that the DSTMCKF improved the response speed to
NGN and the accuracy by using the DST algorithm to adjust the noise covariance matrices
in real time. It also proves that the DSTMCKF improved the ability to process non-Gaussian
noise by combining the DST algorithm with the MCKF.

The proposed DSTMCKF improves the filter precision in a WSNs positioning system,
which improves the positioning accuracy of the WSNs positioning system. A higher
positioning accuracy brings more scenarios for WSNs positioning systems. This means that
WSNs positioning systems using a DSTMCKF are qualified for use in scenarios with higher
accuracy requirements, such as automatic parking.
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The following abbreviations are used in this manuscript:
WSNs Wireless Sensors Networks
MCKF Maximum Correntropy Kalman Filter
DSTMCKF Dynamic Self-Tuning Maximum Correntropy Kalman Filter
VKW-MCKF Variable Kernel Width–Maximum Correntropy Kalman Filter
R-MEEKF Robust Minimum Error Entropy Kalman Filter
DST Dynamic Self Tuning
NGN Non-Gaussian noise
MMSE Minimum Mean Squared Error
CDF Cumulative Distribution Function
MCC Maximum Correntropy Criterion
RMSE Root Mean Squared Error
ME Maximum Error
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