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Abstract: As an emerging technique for detection, electromagnetic vector sensor multiple-input
multiple-output (EVS-MIMO) radar has attracted extensive interest recently. This paper focuses on the
coherent targets issue in EVS-MIMO radar, and a spatial smoothing estimator is developed to estimate
the multiple parameters. It first recovers the rank of the array data via forward spatial smoothing.
Then, it estimates the elevation angles via the rotational invariance technique. Combined with
the vector cross-product method, the azimuth angles are obtained. Thereafter, with the previously
achieved direction angles, the polarized parameters are acquired by using the least squares technique.
Unlike the existing polarization smoothing techniques, the proposed estimator is able to estimate
the two-dimensional direction parameter. Furthermore, it can provide a polarized parameter of the
target. In addition, the proposed estimator is computationally efficient, since it offers closed-form
and automatically paired solutions to all the parameters. Numerical experiments are carried out to
show its superiority and effectiveness.

Keywords: EVS-MIMO radar; direction estimation; polarization; coherent target

1. Introduction

Multiple-input multiple-output (MIMO) technique, benefitting from spatial diversity,
has gained huge success in wireless communications. In addition, MIMO technique has
pointed out a promising future for radar detection [1–5]. A MIMO radar refers to a radar
with multiple sensors for both the Tx (Tx) and receiving (Rx). Unlike a phased-array (PA)
radar [6], each sensor of a MIMIO radar emits an individual waveform (and orthogonal to
other Tx sensor). Owing to both spatial diversity and waveform diversity, a MIMO radar
occupies more degree-of-freedom (DOF) than a PA one, thus offering much better detection
accuracy than the latter.

As a critical task in a bistatic MIMO radar, to estimate the direction-of-departure
(DOD) and direction-of-arrival (DOA) has been frequently discussed. To achieve super-
resolution angle estimation, many efforts have been done and a lot of estimators have
been proposed. Generally, the estimation algorithms for a MIMO radar are extended from
sensor arrays, but the former are often more complex than the latter. Classical estimators
for MIMO radar include estimation of parameters with rotational invariance technique
(ESPRIT) [7,8], Capon, multiple signal classification (MUSIC) [9–11], propagator method
(PM) [12], maximum-likelihood (ML) [13], and tensor method [14,15]. Generally speak-
ing, the spectrum searching counterparts, e.g., MUSIC and ML, are inefficient. ESPRIT
is economical from the perspective of calculation efficiency, because it offers closed-form
solutions for parameter estimation. Benefitting from exploring the multi-dimension charac-
teristic of the array measurement, the tensor-based algorithm always offers more accurate
estimates than a matrix algorithm. The current algorithms mainly concentrate on the
one-dimensional (1D) estimation problem, i.e., to estimate the 1D-DOD and 1D-DOA. In
engineering applications, nevertheless, to estimate the two-dimensional (2D) direction is
much more appealing. In order to pursue 2D angle estimation, non-linear Tx and Rx array
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geometries (for instance, rectangular/circular array) must be utilized [16,17]. However,
nonlinear frameworks are often much more complicated than the uniform linear array
(ULA) architecture, and they may suffer from position errors.

Recently, electromagnetic vector sensor (EVS) has drawn extensive attention in target
detection [18,19]. Compared with the scalar-sensor based MIMO radar, a simple ULA con-
figured with EVS-MIMO is capable of providing 2D-DOD and 2D-DOA estimation. Besides,
additional polarization information (Tx polarization angle, TPA, and Rx polarization angle,
RPA) of the targets can be provided, which is important in identifying targets with the same
DOD/DOA. The EVS-MIMO radar concept was firstly proposed in Ref. [20], in which a
MIMO radar with Tx EVS array and a single Rx EVS is considered. The ULA-configured
EVS-MIMO radar was introduced in Ref. [21], in which both the transmitters and receivers
are EVS arrays with ULA geometries. Moreover, an ESPRIT-like approach was proposed to
estimate the multi-dimensional parameters. Therein, the elevation angles were estimated
via ESPRIT, while the azimuth angles were obtained via vector cross-product (VCP). To
make full use of the effective aperture, an improved ESPRIT estimator was derived in
Ref. [22]. Moreover, the PARAFAC estimator was presented in Ref. [23], which offers more
accurate performance than those in Refs. [21–23]. A coprime array-based EVS-MIMO archi-
tecture was given in Ref. [24], which occupies a larger aperture than the ULA configuration.
More recently, an arbitrary geometry-based EVS-MIMO architecture has been investigated
in Ref. [25], and an ESPRIT estimator combined with normalized VCP method was carried
out, which is insensitive to the Tx and Rx sensor’s’ localizations.

It should be emphasized that the algorithms in Refs. [20–25] are only suitable for
scenarios with uncorrelated targets. In practice, correlated targets commonly appear and
have been extensively discussed in MIMO radar. Up to now, however, only a few works
have paid attention to de-correlation of the coherent targets in EVS-MIMO radar. In Ref. [26],
the polarization smoothing (PS) method was proposed, which recovers the rank of the
array data by averaging the array data in the polarization domain. Another PS estimator
was presented in Ref. [27], in which a different smoothing idea is adopted to recover the
rank of the noiseless data. Nevertheless, the algorithms in both Refs. [26,27] would sacrifice
the polarization detection ability of an EVS-MIMO radar, and are hence unable to provide
polarization state estimation of the targets. In Ref. [28], the generalized spatial smoothing
(GSS) strategy was introduced, which is suitable for arbitrary array geometry. Nevertheless,
since the smoothing requires the participation of all the Tx and Rx EVS, it suffers from the
drawback of sacrificed visual aperture.

In this paper, a spatial smoothing algorithm is developed for a EVS-MIMO radar,
which is able to deal with the coherent targets. Explicitly, the contributions of this paper
are highlighted as follows:

(1) The EVS-MIMO radar is adopted to detect the coherent targets. Unlike the traditional
scalar ULA-based MIMO radar, a ULA-configured EVS-MIMO radar can not only
provide 2D-DOD and 2D-DOA estimation, but is also capable of offering 2D-TPA and
2D-RPA estimation. The former advantage enables an EVS-MIMO radar to provide
three-dimensional positioning of the coherent targets, while the latter advantage may
help the radar system to detect coherent targets with weak strength;

(2) A spatial smoothing approach is introduced to tackle the coherent targets in EVS-
MIMO radar. It solves the rank-deficiency problem by the smoothing of the array
measurements along the spatial direction. Unlike the GSS method in Ref. [28], only
parts of the Tx and Rx EVS are needed in the smoothing procedure, hence it has less
visual aperture loss. Consequently, the proposed algorithm should achieve more
accurate estimation results than the GSS approach in Ref. [28];

(3) An ESPRIT-like idea is carried out for multiple parameter estimations from the
smoothed array data. After performing eigendecomposition on the reduced co-
variance matrix, the ESPRIT idea is adopted to estimate the elevation angles. Then
the VCP method is adopted to obtain the Tx/Rx azimuth angles. After the 2D-DOD
and 2D-DOA estimation has been accomplished, the 2D-TPA and 2D-RPA can be
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easily obtained by using the least squares (LS) approach. The proposed algorithm
offers closed-form results for angle and polarization parameters estimation, so it is
computationally efficient;

(4) We provide theoretical analysis in terms of target identifiability and Cramér–Rao
bound (CRB). In addition, the theoretical advantages of the proposed algorithms are
verified via computer trials.

Throughout this paper, we use bold capital letters to denote matrix, and use bold
lowercase letter to denote vector; The M×M identity matrix is denoted by IM, while 0M×N
and 1M denote the M× N full zeros matrix and the M×M full ones matrix, respectively;
(X)T , (X)H , (X)−1, and (X)†, respectively, denote transpose, Hermitian transpose, inverse,
and Pseudoinverse; �,⊗ and ∗ denote the Khatri–Rao product, the Kronecker product, and
the VCP, respectively; ‖ · ‖ denotes the Frobenius norm; the symbol diag{·} accounts for
the diagonalization; angle(·) returns the phase; E{·} returns the mathematical expectation.

2. Problem Formulation
2.1. EVS Preliminaries

A full EVS is composed of six collocated components: mutual orthogonal magnetic
loops (three) and electric dipoles (three), which sense the polarization state and the elec-
tronic field information, respectively. For a signal s(t) impinging on an EVS, the response
can be approximated by [18,19]

r(t) = bs(t), (1)

where t is the snapshot index; b ∈ C6×1 denotes the polarization steering vector, which is
given by [18,19]

b =

[
e
p

]
= Dv

(2)

with

D =



cos φ cos θ − sin φ
sin φ cos θ cos φ
− sin θ 0
− sin φ − cos φ cos θ
cos φ − sin φ cos θ

0 sin θ

 (3)

and

v =

[
sin γejη

cos γ

]
, (4)

where e ∈ C3×1 and p ∈ C3×1 account for the electric-field component and the polarization
component, respectively; θ, φ, γ, and η stand for, respectively, elevation, azimuth, auxiliary
polarization, and polarized phase difference [18,19]. It should be emphasized that the
normalized VCP between e and p fulfills

e
|e| ∗

p∗

|p| =

sin θ cos φ
sin θ sin φ

cos θ

. (5)

For an M-element EVS array, the array response is given by

y(t) = [a⊗ b]s(t), (6)

where a ∈ CM×1 denotes the spatial steering vector, which is associated with the
array geometry.
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2.2. Data Model

Consider a ULA-configured EVS-MIMO radar. Suppose that the EVS-MIMO radar
is equipped with M Tx EVS and N Rx EVS, with both of the adjacent distances of them
being λ/2, λ denotes the wavelength of the carrier. If there are K targets in the far-field
of both of the Tx and Rx arrays, let the 2D-DOA, 2D-DOD, 2D-RPA, and 2D-TPA of the
k-th target be (θr,k, φr,k), (θt,k, φt,k), (γr,k, ηr,k) and (γt,k, ηt,k), where θt,k, θr,k, φt,k, and φr,k
are the direction angles, as illustrated in Figure 1; γt,k, γr,k, ηt,k, and ηr,k are the associated
polarized parameters. The matched outputs are given by

x(τ) =
K
∑

k=1
[at,k ⊗ bt,k ⊗ ar,k ⊗ br,k]sk(τ) + n(τ)

= [At � Bt �Ar � Br]s(τ) + n(τ)
(7)

where τ accounts for the pulse index, s(τ) = [s1(τ), s2(τ), · · · , sK(τ)]
T represents the

reflection coefficient vector of the targets; at,k = [1, e−jπ sin θt,k , · · · , e−j(M−1)π sin θt,k ]
T

de-

notes the k-th Tx spatial steering vector, ar,k = [1, e−jπ sin θr,k , · · · , e−j(N−1)π sin θr,k ]
T

de-
notes the k-th Rx steering vector; bt,k ∈ C6×K denotes the k-th Tx polarization vector,
and br,k ∈ C6×K denotes the k-th Rx polarization vector; At = [at,1, at,2, · · · , at,K] ∈ CM×K,
Ar = [ar,1, ar,2, · · · , ar,K] ∈ CN×K; Bt = [bt,1, bt,2, · · · , bt,K] ∈ C6×K,
Br = [br,1, br,2, · · · , br,K] ∈ C6×K; n(τ) accounts for the zero-mean Gaussian white noise
vector with a variance of σ2. Besides,

bt,k =

[
et,k
pt,k

]
= Dt,kvt,k

br,k =

[
er,k
pr,k

]
= Dr,kvr,k

, (8)

where Dt,k, Dr,k, vt,k, and vr,k are constructed according to (3) and (4), respectively. Define
C = At � Bt �Ar � Br, and the covariance of x(τ) in (7) is then formulated as

R = E
{

x(τ)xH(τ)
}

= CRsCH + σ2I36MN
(9)

where Rs = E
{

s(τ)sH(τ)
}

is the covariance matrix of the target reflection coefficients.
When the targets are uncorrelated, Rs is diagonal. Since the identity matrix would not affect
the orthogonal decomposition of a matrix, the signal subspace can maintain the relationship
between the multiple components of C. Thus, the eigendecomposition is firstly performed
on R to obtain the signal subspace. However, in the presence of correlated targets, Rs is
rank deficient. Therefore, the subspace method will fail to work.
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3. The Proposed Approach
3.1. Spatial Smoothing for EVS-MIMO Radar

In this subsection, we will show how the spatial smoothing is applied to the EVS-
MIMO radar. For the Tx array, suppose that a subarray consists of the first M1-element
EVS (1 < M1 < M), so the matched filtering results corresponding to the Tx subarray and
the first Rx EVS can be formulated as

xt1,r0(τ) =
K
∑

k=1
[at1,k ⊗ bt,k ⊗ br,k]sk(τ) + nt1,r0(τ)

= [At1 � Bt � Br]s(τ) + nt1,r0(τ)
(10)

where at1,k and At1 are the steering vector and direction matrix corresponding to the Tx
subarray. nt1,r0(τ) denotes the associated array noise. The covariance matrix of xt1,r0(τ) is

Rt1,r0 = E
{

xt1,r0(τ)xH
t1,r0(τ)

}
= Ct1,r0RsCH

t1,r0 + σ2I36M1

(11)

where Ct1,r0 = At1 � Bt � Br. By moving the Tx EVS array forward, we can construct
another M − M1 + 1 Tx subarray. Likewise, we can pick up the array measurement
corresponding to the m-th (m = 1, 2, · · · , M−M1 + 1) Tx EVS array and the first Rx EVS as

xtm,r0(τ) =
K
∑

k=1
[atm,k ⊗ bt,k ⊗ br,k]sk(τ) + nt1,r0(τ)

= [Atm � Bt � Br]s(τ) + nt1,r0(τ)
(12)

In fact, the relationship between Atm and At1 can be formulated as

Atm = At1Γ−m
t , (13)

where Γt = diag
{

ejπ sin θt,1 , ejπ sin θt,2 , · · · , ejπ sin θt,K
}

. Consequently, the covariance matrix of
xtm,r0(τ) is

Rtm,r0 = E
{

xtm,r0(τ)xH
tm,r0(τ)

}
= Ct1,r0Γ−m

t Rs
(
Γ−m

t
)HCH

t1,r0 + σ2I36M1

(14)

By averaging all the Rtm,r0, we can obtain

Rt,r0 = 1
M−M1+1

M−M1+1
∑

m=1
Rtm,r0

= Ct1,r0Rs,tCH
t1,r0 + σ2I36M1

(15)

where

Rs,t =
1

M−M1 + 1

M−M1+1

∑
m=1

Γ−m
t Rs

(
Γ−m

t
)H . (16)

It has been proven that if the angles are distinct, then Rs,t is full rank, which implies
that the rank of the noiseless Rt,r0 is K. However, it should be pointed out that for a rank-one
matrix Rs, after the above forward smoothing, the maximum rank of Rs,t is M−M1 + 1,
which implies that the above smoothing can resolve M−M1 + 1 coherent targets at most.
To enhance the ability for a coherent target, we can extend the forward smoothing by
considering both of the Tx and Rx arrays. We consider that a Rx subarray consists of the
first N1-element EVS. Likewise, we can construct N − N1 + 1 Rx subarray. Let xt1,r1(τ)
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account for the matched array data associated with the first Tx subarray and the first Rx
subarray, i.e.,

xt1,r1(τ) =
K
∑

k=1
[at1,k ⊗ bt,k ⊗ ar1,k ⊗ br,k]sk(τ) + nt1,r1(τ)

= [At1 � Bt �Ar1 � Br]s(τ) + nt1,r1(τ)
(17)

where ar1,k and Ar1 are the steering vector and direction matrix corresponding to the first
Rx subarray, and nt1,r1(τ) is the associated array noise. The covariance matrix of xt1,r1(τ) is
then given by

Rt1,r1 = E
{

xt1,r1(τ)xH
t1,r1(τ)

}
= Ct1,r1RsCH

t1,r1 + σ2I36M1 N1

(18)

where Ct1,r1 = At1 � Bt �Ar1 � Br. Similarly, the array data corresponding to the m-th Tx
EVS array and the n-th (n = 1, 2, · · · , N − N1 + 1) Rx EVS array is given by

xtm,rn(τ) =
K
∑

k=1
[atm,k ⊗ bt,k ⊗ arn,k ⊗ br,k]sk(τ) + ntm,rn(τ)

= [At1 � Bt �Ar1 � Br]Γ
−m
t Γ−n

r s(τ) + ntm,rn(τ)
(19)

where Γr = diag
{

ejπ sin θr,1 , ejπ sin θr,2 , · · · , ejπ sin θr,K
}

, arn,k is the associated steering vector,
and ntm,rn(τ) is the corresponding array noise. Consequently, the covariance of xtm,rn(τ) is
formulated as

Rtm,rn = E
{

xtm,rn(τ)xH
tm,rn(τ)

}
= Ct1,r1Γ−m

t Γ−n
r Rs

(
Γ−m

t Γ−n
r
)HCH

t1,r1 + σ2I36M1 N1

(20)

By averaging all the Rtm,rn, a covariance matrix Rt,r is constructed as

Rt,r = 1
M−M1+1

1
N−N1+1

M−M1+1
∑

m=1

N−N1+1
∑

n=1
Rtm,rn

= Ct1,r1
~
RsCH

t1,r0 + σ2I36M1 N1

(21)

where

~
Rs =

1
M−M1 + 1

1
N − N1 + 1

M−M1+1

∑
m=1

N−N1+1

∑
n=1

Γ−m
t Γ−n

r Rs
(
Γ−m

t Γ−n
r
)H . (22)

Similar to our previous conclusion, for a rank-one matrix Rs, the maximum rank of
~
Rs is (M−M1 + 1)(N − N1 + 1), which implies that the above smoothing approach can
identify (M−M1 + 1)(N − N1 + 1) complete coherent targets. In fact, the estimates of Rt,r
can be obtained from L samples as

^
Rt,r =

1
L

1
M−M1 + 1

1
N − N1 + 1

M−M1+1

∑
m=1

N−N1+1

∑
n=1

L

∑
t=1

xtm,rn(τ)xH
tm,rn(τ). (23)

From the eigendecomposition of
^
Rt,r we could obtain the so-called signal subspace Es,

which are picked up from the eigen-vectors associated with the K largest eigen-values. As
is well known to us, Es and Ct1,r1 span the same subspaces. As a result, there must be a
matrix T ∈ CK×K with full-rank, which fulfills

Es = Ct1,r1T. (24)
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3.2. 2D-DOD and 2D-DOA Estimation

Define J1 =
[
IM1−1, 0(M1−1)×1

]
∈ C(M1−1)×M1 , J2 =

[
0(M1−1)×1, IM1−1

]
∈

C(M1−1)×M1 , which select the first M1 − 1 row and the last M1 − 1 row of At1, respec-
tively. Similarly, define J3 =

[
IN1−1, 0(N1−1)×1

]
∈ C(N1−1)×N , J4 =

[
0(N1−1)×1, IN1−1

]
∈

C(N1−1)×N , which select the first N1 − 1 row and the last N1 − 1 row of Ar1, respectively. It
is easy to find that {

J1At1 = J2At1Γt
J3Ar1 = J4Ar1Γr

. (25)

Next, define Jt1 =
[
J1 ⊗ I36N1

]
∈ C36(M1−1)N1×36M1 N1 , Jt2 =

[
J2 ⊗ I36N1

]
∈

C36(M1−1)N1×36M1 N1 , Jr1 =
[
I6M1 ⊗ J3 ⊗ I6

]
∈ C36M1(N1−1)×36M1 N1 , Jr2 =

[
I6M1 ⊗ J4 ⊗ I6

]
∈

C36M1(N1−1)×36M1 N1 . The rotational invariant property in (25) can be extended to{
Jt1Ct1,r1 = Jt2Ct1,r1Γt
Jr1Ct1,r1 = Jr2Ct1,r1Γr

. (26)

Inserting (26) into (24) yields{
Jt1Es = Jt2EsT−1ΓtT
Jr1Es = Jr2EsT−1ΓrT

. (27)

Equivalently, {
(Jt2Es)

†Jt1Es = T−1ΓtT
T(Jr2Es)

†Jr1EsT−1 = Γr
. (28)

One can easily find that the eigendecomposition of (Jt2Es)
†Jt1Es yields the estimations

of T and Γt (denoted by
^
T and

^
Γt, respectively). After that, we can achieve the estimations

of Γr (denoted by
^
Γr ) by calculating the left side of the second item in (28). Denote the k-th

diagonal elements with respect to
^
Γt and

^
Γr by λ̂t and λ̂r, respectively. Then the estimates

of θt,k and θr,k are given by {
θ̂t,k = arcsin

{
angle

(
λ̂t,k
)
/π
}

θ̂r,k = arcsin
{

angle
(
λ̂r,k
)
/π
} . (29)

In what follows, we will concentrate on φt,k and φr,k. From the relation in (24), we can
estimate Ct1,r1 via

^
Ct1,r1 = Es

^
T
−1

. (30)

Since the azimuth angles are related to the polarization steering vectors bt,k and

br,k, we need to estimate them from
^
Ct1,r1. Define J5 =

[
iM1,p ⊗ I6 ⊗ i6N1,q

]
∈ C6×36M1 N1 ,

J6 =
[
i6M1 N1,p ⊗ I6

]
∈ C6×36M1 N1 , where p and q are arbitrary integers. Then we have{

J5Ct1,r1 = BtΘt
J6Ct1,r1 = BrΘr

, (31)

where Θt = Fp(At1)Fq(Ar1 ⊗ Br), Θr = Fp(At1 ⊗ Bt ⊗Ar1), Fp(Ar1) denotes a diagonal
matrix whose nonzero elements comes from the p-th row of Ar1, and is similar to others.
Then we can estimate Bt and Br via B̂t = J5

^
Ct1,r1

B̂r = J6
^
Ct1,r1

. (32)
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Obviously, B̂t and B̂r are the estimations of BtΘt and BrΘr, respectively. Let the k-th
column of B̂t and B̂r be b̂t,k and b̂r,k, and denote the first and last three entities of them by
êt,k, p̂t,k, êr,k and p̂r,k, respectively. According to (5), we have ut,k

vt,k
wt,k

 =

sin θ̂t,k cos φ̂t,k
sin θ̂t,k sin φ̂t,k

cos θ̂t,k


=

êt,k

|êt,k| ∗
p̂t,k

|p̂t,k|

(33)

and  ur,k
vr,k
wr,k

 =

sin θ̂r,k cos φ̂r,k
sin θ̂r,k sin φ̂r,k

cos θ̂r,k


=

êr,k

|êr,k| ∗
p̂∗r,k

|p̂r,k|

(34)

Consequently, we can obtain the azimuth angles via{
φ̂t,k = arctan(vt,k/ut,k)
φ̂r,k = arctan(vr,k/ur,k)

. (35)

Notably, as the non-singular matrix T has been compensated, θ̂t,k, θ̂r,k, φ̂t,k, and φ̂r,k are
automatically paired.

3.3. 2D-TPA and 2D-RPA Estimation

After we have obtained θ̂t,k, θ̂r,k, φ̂t,k, the matrices
^
Dt,k and

^
Dt,k can be constructed by

referencing to (3). Thereafter, we calculate
^
vt,k =

^
D

†

k
^
bk

^
vr,k =

^
D

†

k
^
bk

. (36)

From what we have pointed out previously,
^
vt,k and

^
vr,k are the estimates of zt,kvt,k and

zr,kvr,k, respectively, where zt,k and zr,k are non-zero constants. Consequently, the estimates
of γt,k, γr,k, ηt,k, and ηr,k, respectively, can be obtained via

γ̂t,k = arctan
(

^
vt,k(2)/

^
vt,k(1)

)
η̂t,k = angle

(
^
vt,k(2)/

^
vt,k(1)

)
γ̂r,k = arctan

(
^
vr,k(2)/

^
vr,k(1)

)
η̂r,k = angle

(
^
vr,k(2)/

^
vr,k(1)

)
. (37)

As explained previously, all the perturbations are synchronously completed, so the
estimated 2D-TPA and 2D-RPA are automatically paired with the 2D-DOD as well as
2D-DOA.

4. Algorithm Analyses
4.1. Identifiability

It has been stressed that our algorithm is able to deal with a coherent target, thus
the identifiability of the proposed algorithm should be analyzed from two aspects:
the identifiability of the coherent target and the identifiability of the non-coherent tar-
get. For the coherent target, the maximum identifiable number equals to the maxi-
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mum rank of
~
Rs for the rank-one Rs, which is (M−M1 + 1)(N − N1 + 1) (suppose that

(M−M1 + 1)(N − N1 + 1) ≤ K). On the other hand, the maximum detectable target num-
ber of the non-coherent target is constrained by the rank of Θt (or Θr), which is
min{36(M1 − 1)N1, 36M1(N1 − 1)}. In contrast, the PS algorithm in Ref. [26] can detect
at most MN non-coherent targets and 72 coherent targets, while the abilities with respect
to the algorithm in Refs. [26–28] are MN, 36, and 36, min{MN, 36}, respectively. Table 1
lists the identifiability comparison of the various approaches. Obviously, the proposed
algorithm has better identifiability than Refs. [26,27].

Table 1. Comparison of the identifiability.

Method
Identifiability

Non-Coherent Target Coherent Target

Algorithm in Ref. [26] MN 72
Algorithm in Ref. [27] MN 36
Algorithm in Ref. [28] 36 min{MN, 36}

Proposed min{36(M1 − 1)N1 ,
36M1(N1 − 1)}

(M−M1 + 1)(N − N1 + 1)

From the above comparison, one can see that our algorithm has much better identifia-
bility than that in Refs. [26,27], especially in the presence of massive MIMO configurations.
Besides, it should be emphasized that both Refs. [26,27] cannot offer 2D direction angle,
while the proposed algorithm can not only provide 2D elevation/azimuth angle estimation,
but also 2D polarized parameters estimation, which is more flexible than Refs. [26,27].

4.2. CRB

The CRB on 2D-DOD, 2D-DOA, 2D-TPA, and 2D-RPA estimation is

CRB =
σ2

2L

[
real

((
C̃

H
Π⊥C C̃

)
⊕
(

RT
s ⊗ 18×8

))]−1
, (38)

with C̃ =
[

∂c1
∂φt,1

, · · · , ∂cK
∂φt,K

, ∂c1
∂θt,1

, · · · , ∂cK
∂γr,K

]
, where ck is the k-th column of C, Π⊥C = I36MN −

C
(

CHC
)

CH , 18×8 denotes a 8× 8 full ones matrix.

5. Simulation Results

Herein, we use the Monte Carlo method to assess the estimation performance. We
consider that an EVS-MIMO radar is configured with M EVS transmitters N EVS re-
ceivers, and the Tx/Rx array is distributed in half-wavelength spaced ULA geometry. The
data model utilized to the simulation is given in (7). Unless otherwise specified, assume
there are K= 4 coherent targets, with parameter pairs, respectively, θt =

(
10
◦
, 36

◦
, 55

◦
, 78

◦)
,

φt =
(
15
◦
, 50

◦
, 30

◦
,−53

◦)
, γt =

(
10
◦
, 52

◦
, 22

◦
, 75

◦)
, ηt =

(
18
◦
,−31

◦
, 0
◦
, 67

◦)
,

θr =
(
5
◦
, 45

◦
, 20

◦
, 78

◦)
, φr =

(
15
◦
,−23

◦
,−67

◦
, 30

◦)
, γr =

(
32
◦
, 10

◦
, 51

◦
, 65

◦)
and

ηr =
(
16
◦
, 56

◦
, 38

◦
, 78

◦)
. We assume that the number of Tx EMVS and Rx EMVS of the two

subarrays are M1 and N1, respectively. Moreover, suppose that there are L samples. Each
figure relies on 200 independent experiments. The signal-to-noise ratio (SNR) and root
mean square error (RMSE) are defined as the same to that in Ref. [28].

Example 1 . We show the scattering results of our algorithm with M = 6, N = 8, M1 = 3, N1 = 4,
and L = 500. Figure 2 shows the result with SNR = 0 dB. Obviously, the proposed algorithm can
accurately estimate all the parameters and correctly pair them.
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Figure 2. Scatters of our approach with M = 6, N = 8, M1 = 3, N1 = 4 , L = 500, and SNR = 0 dB.

Example 2 . We repeat the scattering simulation with SNR = 20 dB, the other parameters are set
to the same to that in Example 1. Figure 3 indicates the results. Notably, the proposed algorithm
provides closed-form, automatically paired parameter estimates. Besides, it seems that higher SNR
will lead to more concentrated scatter results.

Example 3 . We evaluate the estimation accuracy of our algorithm with different SNR, where
M = 6, N = 8, M1 = 3, N1 = 4, and L = 500. For the purpose of comparison, the performances
with respect to the PARAFAC estimator in Ref. [23] (which has been proven to achieve the best
estimation accuracy in the presence of uncoherent targets), the GSS approach in Ref. [28], and the
CRB have been used. The average RMSE performances on 2D-DOD and 2D-DOA estimation are
shown in Figure 4. It is indicated that the estimation accuracy of GSS and the proposed algorithm
will be improved with the increasing SNR while RMSE of PARAFAC barely changes with SNR.
Besides, the accuracy of the proposed estimator is much better than the GSS approach at low SNR
regions, e.g., SNR is smaller than 10 dB, and the proposed algorithm is slightly better than GSS at
high SNR regions. The improvement benefits from the truth that the proposed algorithm has larger
visual aperture than the GSS approach, as we have previously stated.
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Figure 3. Scatters of our approach with M = 6, N = 8, M1 = 3, N1 = 4 , L = 500, and SNR = 20 dB.
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Example 4 . We give the RMSE comparison versus Rx EVS number N, where M = 6, M1 = 3,
N1 = 4, L = 500 and SNR = 15 dB. The result is shown in Figure 5. It is seen that the PARAFAC
estimator fails to work for a coherent target. The proposed algorithm offers lower RMSE than the
GSS approach when N is larger than 8, which implies that the proposed estimator is superior to GSS
for massive Rx configuration.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 15 
 

 

Figure 3. Scatters of our approach with M = 6, N = 8, 1 3M  , 1 4N  , L = 500, and SNR = 20 dB. 

Example 3. We evaluate the estimation accuracy of our algorithm with different SNR, where M = 

6, N = 8, 1 3M  , 1 4N  , and L = 500. For the purpose of comparison, the performances with 
respect to the PARAFAC estimator in Ref. [23] (which has been proven to achieve the best estima-
tion accuracy in the presence of uncoherent targets), the GSS approach in Ref. [28], and the CRB 
have been used. The average RMSE performances on 2D-DOD and 2D-DOA estimation are shown 
in Figure 4. It is indicated that the estimation accuracy of GSS and the proposed algorithm will be 
improved with the increasing SNR while RMSE of PARAFAC barely changes with SNR. Besides, 
the accuracy of the proposed estimator is much better than the GSS approach at low SNR regions, 
e.g., SNR is smaller than 10 dB, and the proposed algorithm is slightly better than GSS at high 
SNR regions. The improvement benefits from the truth that the proposed algorithm has larger vis-
ual aperture than the GSS approach, as we have previously stated. 

 
Figure 4. RMSE performance versus SNR. 

Example 4. We give the RMSE comparison versus Rx EVS number N, where M = 6, 1 3M  ,
1 4N  , L = 500 and SNR = 15 dB. The result is shown in Figure 5. It is seen that the PARAFAC 

estimator fails to work for a coherent target. The proposed algorithm offers lower RMSE than the 
GSS approach when N is larger than 8, which implies that the proposed estimator is superior to 
GSS for massive Rx configuration. 

 
Figure 5. RMSE performance versus N. 

Example 5. The average RMSE comparison versus snapshot number L is displayed in Figure 6, 

where M = 6, N = 8, 1 3M  , 1 4N   and SNR = 15 dB. We can see that larger L will improve the 
estimation accuracy, except for the PARAFAC estimator. Obviously, the proposed algorithm out-
performs the GSS approaches during the entire L regions, especially in the presence of small L 
values, e.g., when L is smaller than 80. 

0 5 10 15 20 25 30
SNR(dB)

10-2

100

102

R
M

S
E

(d
e

g)

PARAFAC
GSS
Proposed
CRB

R
M

S
E

(d
e

g)

Figure 5. RMSE performance versus N.

Example 5 . The average RMSE comparison versus snapshot number L is displayed in Figure 6,
where M = 6, N = 8, M1 = 3 , N1 = 4 and SNR = 15 dB. We can see that larger L will improve
the estimation accuracy, except for the PARAFAC estimator. Obviously, the proposed algorithm
outperforms the GSS approaches during the entire L regions, especially in the presence of small L
values, e.g., when L is smaller than 80.
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Example 6 . The average RMSE comparison versus coherent target number K is illustrated in
Figure 7, where M = 6, N = 8, M1 = 3, N1 = 4, L = 500, and SNR = 15 dB. Therein, K coherent
target parameters are randomly generated. One can observed that a larger target number leads to
less accurate estimation results. As expected, the proposed algorithm provides better estimation
accuracy than GSS when K is larger than 5, since the former occupies larger visual aperture.
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6. Conclusions

In this paper, we have focused on the issue of coherent target positioning for ULA-
configured EVS-MIMO radar. A spatial smoothing methodology has been presented,
which de-correlates the signals via forward smoothing the data from the matched filters.
Unlike the existing smoothing methods in the polarization domain, the proposed algorithm
can provide 2D direction angles as well as polarization state of the targets. Numerical
simulations show that the proposed algorithm can obtain automatically paired parameter
estimation, and its estimation accuracy is proportional to SNR and the snapshot number.
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