
Citation: Gao, T.; Gao, Z.; Sun, B.;

Qin, P.; Li, Y.; Yan, Z. An Integrated

Method for Estimating

Forest-Canopy Closure Based on

UAV LiDAR Data. Remote Sens. 2022,

14, 4317. https://doi.org/10.3390/

rs14174317

Academic Editors: Jia Sun, Ximing

Ren and Chunbo Huang

Received: 2 August 2022

Accepted: 26 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Integrated Method for Estimating Forest-Canopy Closure
Based on UAV LiDAR Data
Ting Gao 1,2, Zhihai Gao 1,2, Bin Sun 1,2,* , Pengyao Qin 1,2, Yifu Li 1,2 and Ziyu Yan 1,2

1 Research Institute of Forest Resource Information Techniques (IFRIT), Chinese Academy of Forestry (CAF),
No. 2 Dongxiaofu, Haidian District, Beijing 100091, China

2 Key Laboratory of Forestry Remote Sensing and Information System, NFGA, No. 2 Dongxiaofu,
Haidian District, Beijing 100091, China

* Correspondence: sunbin@ifrit.ac.cn

Abstract: Forest-canopy closure (FCC) reflects the coverage of the forest tree canopy, which is one of
the most important indicators of forest structure and a core parameter in forest resources investiga-
tion. In recent years, the rapid development of UAV LiDAR and photogrammetry technology has
provided effective support for FCC estimation. However, affected by factors such as different tree
species and different stand densities, it is difficult to estimate FCC accurately based on the single-tree
canopy-contour method in complex forest regions. Thus, this study proposes a method for estimating
FCC accurately using algorithm integration with an optimal window size for treetop detection and an
optimal algorithm for crown-boundary extraction using UAV LiDAR data in various scenes. The re-
search results show that: (1) The FCC estimation accuracy was improved using the method proposed
in this study. The accuracy of FCC in a camphor pine forest (Pinus sylvestris var. mongolica Litv.) was
89.11%, with an improvement of 6.77–11.25% compared to the results obtained from other combined
conditions. The FCC accuracy for white birch (White birch platyphylla Suk) was about 87.53%, with an
increase of 3.25–8.42%. (2) The size of the window used for treetop detection is closely related to tree
species and stand density. With the same forest-stand density, the treetop-detection window size of
camphor pine was larger than that of white birch. The optimal window size of camphor pine was between
5 × 5~11 × 11 (corresponding 2.5~5.5 m), while that of white birch was between 3 × 3~7 × 7 (corre-
sponding 1.5~3.5 m). (3) There are significant differences in the optimal-canopy-outline extraction
algorithms for different scenarios. With a medium forest-stand density, the marker-controlled water-
shed (MCW) algorithm has the best tree-crown extraction effect. The region-growing (RG) method
has better extraction results in the sparse areas of camphor pine and the dense areas of white birch.
The Voronoi tessellation (VT) algorithm is more suitable for the dense areas of camphor pine and
the sparse regions of white birch. The method proposed in this study provides a reference for
FCC estimation using high-resolution remote-sensing images in complex forest areas containing
various scenes.

Keywords: treetop detection; optimal window size; tree-crown contour; CHM; UAV LiDAR data

1. Introduction

Forest-canopy closure (FCC) is defined as the proportion of the vertical projection area
of the tree crown [1], which is an important parameter for the monitoring of forest resources
often used to assess forest disturbance [2,3], forest structure characteristics and growth
state [4,5], wildlife habitat and wildfire risk [6,7], and species richness [8]. The traditional
method of FCC estimation relies on field measurement, which involves considerable labor,
time, and energy [9,10]. Remote-sensing data can monitor land surfaces globally and
promptly. These data have also become a priority for forest-resource monitoring. Therefore,
it is necessary to explore more accurate and efficient FCC-estimation methods based on
remote-sensing data to improve the accuracy of forest-resource monitoring.
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At present, the common FCC-estimated algorithms based on remote-sensing data in-
clude building statistical models or physical models. The application of building statistical
models is more common. These models estimate FCC by constructing linear nonlinear
or parametric nonparametric models between the feature factors extracted from remote-
sensing data and the measured FCCs of plots [11]. The method of constructing statistical
models is simple in principle, as well as reliable, and has achieved good results in many
studies [12–16]. However, the parameters used in this method lack physical meaning, and
the universality of this model is low. Physical models used for FCC estimation include
the Li–Strahler geometrical–optical model and the PROSAIL model. Zeng et al. (2008)
evaluated the FCC in the Three Gorges area with the Li–Strahler model based on MODIS
and TM data and obtained a high level of accuracy (90%) [17]. Gu et al. (2016) estimated
the FCC of a Moso bamboo forest based on Landsat 5 using physical models [18]. Although
this kind of model is more interpretable, some factors limit the use of this model such as
the difficulty of obtaining required parameters and disturbance by other factors [19–22].

The very-high-resolution (VHR) remote-sensing images can better present the details
of ground objects [23], making it possible to extract the canopy directly using this approach.
The object-oriented FCC estimation method usually makes full use of the homogeneity of
the same ground objects and the information of different ground objects such as shape,
size, or spectral value. This method takes the object as the basic unit of feature extraction
and analysis and can delineate the tree-crown-boundary more accurately [24]. This method
requires high image resolution, so it is rarely used in existing research. The wide application
of UAV in modern forest resource-monitoring makes the available remote-sensing data
more diversified and abundant [25–27]. The emergence of airborne LiDAR data and ultra-
high-resolution RGB images made it possible to monitor a forest at the individual tree
scale [28,29]. In this context, it is highly possible to directly extract the crown border from
UAV data and then obtain the FCC information by the statistical analysis of the crown
proportion within the unit area. Thus, this study made full use of the advantages of UAV
data to explore a more accurate method for estimating FCC.

LiDAR can penetrate the canopy cover down to the ground surface, so it is often used
in forest inventories or ecological assessments [30,31]. This data contains 3D information
that describes tree morphology more correctly. The canopy-height model (CHM) obtained
from the LiDAR data can express the tree-crown shape effectively. These data are generated
by the digital surface model (DSM) minus the digital terrain model (DTM). The pixel
values of the CHM denote height, which is helpful to presenting tree-crown contours
clearly. Much research has explored individual tree recognition and crown delineation
based on this product [32–34]. In the implementation of the method proposed in this study,
crown-contour extraction is the most critical step. Although many studies have developed
many algorithms, such as individual treetop detection and tree-crown extraction based on
UAV images or LiDAR point clouds [35–38], most studies used the above results to obtain
tree-measurement parameters such as tree height, crown area, and biomass [24,39,40]. Few
studies have applied these results to FCC estimation. Tree-crown delineation includes
two key steps: treetop detection and tree-crown delineation. The classical local maximum
(LM) method is usually used to detect the treetops by searching for the highest pixel
value location within a specified window size. This approach, with its advantage of
simplicity, has been widely used for estimating forest structural parameters such as crown
diameter, tree height, and canopy-based height [41,42]. However, different window sizes
may generate different results of treetop detection especially in complex forest regions. Thus,
it is necessary to explore suitable window sizes for certain forest species and stand densities.
Tree-crown delineation based on CHM data commonly uses treetop locations as seed points
and involves several methods such as the maker-controlled watershed algorithm (MCW)
algorithm, the region-growing method (RG), and the voronoi tessellation (VT) algorithm. It is
worth noting that different tree-crown-extraction methods have different principles [43–45].
For example, the MCW method is a classical algorithm for image segmentation even in
tree-crown delineation, which was developed from mathematical morphology [46]. When
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conducting tree-crown segmentation, the CHM data are considered as the “topography”
or highs and lows of the area and the treetop location as seed points. The algorithm
delineates a polygon around each seed point containing higher pixel values than those
seeds. The region-growing algorithm aggregates groups of elements into larger regions,
which merges adjacent regions with similar features based on each seed point [47]. The
Voronoi tessellation method is an algorithm of partitioning space, which applies a buffer
around the seed points obtained from the treetop location to generate the initial region
of the tree crown then adopts Voronoi polygons to divide the overlapping areas of tree
crowns. The application of above tree-crown delineation methods varies with different tree
species or stand densities. Therefore, it is difficult to delineate the tree-crown-boundary
accurately using only a single algorithm. This study area is in a hilly region which contains
conifers, broadleaf trees, and various stand densities. Based on the above considerations,
this study proposed a process-optimization method integrating treetop detection and
crown-boundary extraction to estimate FCC.

The aims of this study were to develop an optimized FCC estimation method, which
differs from traditional statistical model and physical model using UAV LiDAR data; to
explore the optimal window size in different scenarios when using the local maximum
model to detect treetops; to analyze and compare the extraction potential of three methods at
different scenarios in complex forest areas; and to evaluate the applicability of this algorithm
in FCC estimation and attempt to provide a reference for subsequent related studies.

2. Materials and Methods

This study proposed a method of FCC estimated accurately using algorithm integra-
tion containing the optimal window size for treetop detection and the optimal algorithm
for crown-boundary extraction using UAV LiDAR data in various scenes. First, the optimal
treetop points were obtained by screening the optimal window sizes of treetop detection
with different tree species and different density states. Then, the optimal crown-boundary
extraction algorithms in different scenes were compared and analyzed based on the treetop
results. By combining the optimal crown-boundary extraction results in different scenes, the
optimized FCC estimation value was generated. The workflow of this study is presented
in Figure 1.

2.1. Study Area and Data

The study area is located in the Honghuaerji Town (48◦02′~48◦36′ N, 119◦58′~120◦32′ E;
Figure 2), Ewenke Banner (d and e), and Hulunbuir City (c), Inner Mongolia, China, and
belongs to the transitional zone from the west slope of the middle section of Daxing’anling
Mountains to the Inner Mongolia Plateau, with an altitude of 767~1100 m. It has a cold,
temperate, continental monsoon climate. The annual average temperature is 1.5 ◦C, and
the average annual precipitation is 344–375 mm. The distribution of forests in this area is
concentrated. Forest types in this study include camphor pine coniferous forest and white
birch broad-leaved forest, which have different stand densities. The camphor pine and
white birch are native forests. The terrain in the area gradually rises from northwest to
southeast, with ridge-shaped and undulating sandy landform types, and there are low
mountains and hills with gentle slopes.
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Figure 1. Methodological workflow of FCC estimated. This contains five steps: data preprocess
treetop detection, tree-crown delineation, FCC estimation, and accuracy evaluation. This study
focuses on six cases involving two tree species, namely camphor and white birch, and three degrees
of stands densities, namely sparse area, medium area, and dense area.

2.2. UAV Data and Preprocessing

UAV datasets containing LiDAR point data and RGB image data, which were con-
sistent with field measurements work and covered about 20 km2, were acquired on
30 August 2020. UAV-borne LiDAR data were captured using a LiAir D1350 laser scanner
system (GreenValley International Company, Beijing, China). We flew over the study area
at an altitude of 300 m above the ground with 80% overlap and 85% side-lap. The flight
speed was about 70–80 km/h. The point cloud density was about 24/m2. The LiDAR
points of the study area were classified as ground points and forests points. The DTM
was generated with the triangulated irregular networks algorithm from the ground points.
The DSM was generated by a method of inverse-distance weighting. The resolution of
both DTM and DSM were 0.5 m. We generated a CHM which denotes the relative height
of trees within the study area at an average resolution of 0.5 m by subtracting the DTM
values from DSM. RGB image data were acquired by DJI phantom4 on the same day with
UAV-borne LiDAR data. All surveys were restricted to days with low wind speeds and
no rain to ensure weather conditions did not interfere with data collection and processing.
Figure 3 takes camphor pine as an example to show the status of the above products in
different scenarios.
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Figure 2. Location of the study area. (a–e) show the location of the study area in China. Our research
mainly focuses on the region that UAV_LiDAR covered (b); (c) denotes the location relationship
of the study area (marked by yellow polygon) and Hulunbuir City. (d,e) present the location
relationship of study area and Ewenke Banner. The LiDAR point data and their products such as
CHM (canopy height model), DSM (digital surface model) and DEM (digital elevation model) are
also presented below.
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2.3. Field Data Acquisition and Preprocessing

There were 68 field plots of 30 × 30 m including 38 plots of camphor pine (11 sparse
plots (SPs), 14 medium density plots (MDs), and 13 dense plots (DDs)) and 30 plots of
white birch (10 SPs, 10 MDs, and 10 DDs). The fisheye photos (resolution 3264 × 2448)
were taken with a Nikon E8400 camera equipped with a lens with an extremely short focal
length and an angle of view close to or equal to 180◦. The principle of calculating FCC
using fisheye photos was that the percentage of canopy pixels in the effective total pixels
refers to FCC. Firstly, “Photoshop” software was used to cut the photo into a circle with the
center of the photo as the center and a radius of 10 cm to obtain the effective calculated area
and convert the color photo to gray mode. Secondly, a binary classification was performed
on the processed photos. The pixel number of the canopy occlusion was calculated, and
then the FCC was generated. For each plot, three fisheye photos were obtained randomly,
which were used to acquire the true FCC value of field (Figures 4 and 5). All field FCC
data were calculated using Photoshop and arcgis10.6 based on the fisheye photos. Each
field FCC was the mean of three FCC calculations from the fisheye photos. The statistical
information of the field FCC is presented in Table 1. This study estimated the FCC at the
30 × 30 m scale the same with the field observations.
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Table 1. Statistical information of field plots including the number of field plots, stands density of
field plots, and FCC of camphor pine and white birch. FCC refers to the mean forest-canopy closure
of field plots. SPs is the abbreviation of sparse plots; MDs is the abbreviation of medium density
plots; DDs refers to dense plots.

Camphor Pine White Birch

SPs MDs DDs SPs MDs DDs

Number of field plots (N) 11 14 13 10 10 10
Density (N/ha) 202 383 520 436 678 966

FCC 0.45 0.76 0.86 0.54 0.85 0.94

2.4. Treetop Detection

In this study, tree-crown delineation relied on the treetop results as the input data.
Thus, it is necessary to explore the method of treetop detection. The classic local maximum
algorithm was used in this study to detect the treetop location; its effectiveness has been
demonstrated extensively [48–50]. The window size has an influence on the accuracy of
treetop detection [51,52]. This study explored the differences of various circular window
diameters (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, and 15 × 15) in treetop detection and
then analyzed the window sizes suitable for different scenes to optimize the result of the
treetop detection (Figure 6). This operation was realized using the “lmf() function” in the
“lidR’ package of R language [53], which needs three parameters. The first was window
size; this study compared seven window sizes for various scenes involving six cases. The
second parameter was set to 2 m, which represents the minimum height of the tree to be
detected. The setting of this value was guided by several reference studies and the analysis
results of field measurement data [49,54]. The third parameter was the window shape,
which was set to a circle in this study.
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2.5. Tree-Crown-Boundary Extraction

In this study, the tree-crown-boundary was extracted using the treetop position de-
tected using the local maximum method as seed points. The applicability of the region-
growing method, Voronoi tessellation algorithm, and Marker-controlled watershed method
in different scenes was compared and analyzed.

The region-growing method was used to extract the four-pixel values adjacent to
the seed point firstly and then judge whether the difference in value between the pixel
value and the height value corresponding to the seed point was less than the specified
threshold value, step by step. If the difference in value was less, the pixels were added to
the region where the seed point was located, and the process was repeated for all the pixels
in the region until no new pixels entered the region. In this process, the “dalponte2016
()” function in the “lidR” package [53,55] of the R language was used, and the relevant
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parameters were adjusted according to the situation of plots. Pixels with CHM pixel values
of less than 2 m were not considered part of the tree crown.

The Voronoi tessellation algorithm first uses a variable radius to establish a buffer for
the tree vertices to determine the initial contour line of the trees, then uses the centroidal
Voronoi tessellation method to determine the dividing line of the overlapping areas to
separate the individual tree crowns while removing the pixels with values lower than 30% of
the treetop. The final boundary that belongs to each tree is the tree-crown outline [44]. This
crown-boundary-extraction method was implemented using the “Silva2016 ()” function in
the R language “lidR” package [44,53]. This function involves five parameters. In this study,
the parameters were modified according to the actual situation. The “max_cr_factor”, that
is, the ratio between the maximum crown diameter and the tree height, was set to 0.5. The
second parameter (whether the pixel is considered as the threshold of the crown) was set to
0.1, because the average tree height in this study’s area was about 20 m, and the area below
2 m is not considered to be the crown.

The marker-controlled watershed method is a mathematical morphological segmenta-
tion method based on topological theory. It adds markers that can guide the segmentation
process based on the traditional watershed algorithm to prevent the occurrence of over-
segmentation. The process of this algorithm is similar to the process of water immersion.
The marker guides the water flow to the low-elevation water basin until a dam is con-
structed where the two water basins meet, which forms a dividing line [56]. In this study,
the algorithm was completed using the “mcws () function” in ForestTools [57] in the
R language. To be consistent with the other two algorithms, the “minHeight” which refers
to the minimum height of trees, was set to 2.

To choose the best method of identifying crown-boundary extraction algorithms in
different scenes, this study compared and analyzed the differences of three methods in
different cases. The manually delineated tree crowns were taken as a reference. All manual
samples delineated various cases of field plots. The number of white birch manual samples
totaled 1871 (392 SPs; 610 MDs; 869 SPs). The number of camphor pine manual samples
totaled 1387 (296 SPs; 483 MDs; 608 SPs). It was considered as matched when the overlapping
area between the segmented crown and the reference crown exceeded 50% [58,59]. According
to the above principle, this study firstly matched the delineated tree crown with a reference
crown and then compared the applicability of three tree-crown delineation methods based
on the ratio obtained by dividing the delineated crown-contour area by the reference crown
area. A ratio value around 1 indicates that the algorithm can effectively depict the actual
crown contour; >1 indicates that the crown extracted by the algorithm is larger than the
actual crown contour; >n indicates that n crowns are merged and not divided; <1 indicates
that the crown extracted by the algorithm is smaller than the actual crown contour; and 0
indicates that the tree crown exists but was missed by the algorithm.

2.6. FCC Estimation

In this study, the FCC refers to the proportion of a given area covered by the vertical
projection of the tree crowns present. Based on this definition and the canopy-cover results,
generated by integrating the optimal window of treetop recognition and the optimal
algorithm of crown contour extraction, the canopy coverage ratio in each 30 × 30 m field
plot was analyzed statistically. The FCC estimation results of each forest type were obtained
by averaging the FCC of each plot. In this study, we assume that the crown gaps can be
shielded from each other, and there is no gap inside the individual tree crown.

2.7. Accuracy Evaluation

The reference data of treetop detection accuracy evaluation include two parts: field
measured data and recognition results of VHR images. If the distance between the detected
treetop position and the reference treetop position was less than 2 m, it was considered to
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be matched. The recall rate (Rc), the correct rate (Pc), and the overall accuracy F-score (Fs)
were used for evaluating indices [60] as follows:

Rc =
NTP

NTP + NFN

Pc =
NTP

NTP + NFP

Fs =
2Rc × Pc

Rc + Pc
,

where NTP is the number of corrected treetops, NFN is the number of trees that were not
detected, NFP is the number of extra trees that do not exist in the field (commission error),
Rc is the tree detection rate or recall, Pc is the correctness of the detected trees or precision,
and Fs is the harmonic mean of Rc and Pc, which represent the overall accuracy. Rc, Pc, and
Fs range from 0 to 1, and the higher the Fs value, the higher the treetop detection accuracy.

The FCC of the measured plots were used as reference data; the Root Mean Square
Error (RMSE), Relative RMSE (rRMSE), and EA between the estimated value and the
measured value were calculated to comprehensively evaluate the estimation accuracy of
FCC. Further analyses were conducted to compare the accuracy of the optimal algorithm
with results generated by other methods at each forest type.

RMSE =

√√√√∑n
i=1

(
yi − ypred_i

)2

n

rRMSE = RMSE/mean(y)

EA = 1− rRMSE,

where yi refers to the FCC of measured data, and ypred_i is the predicted FCC.
Among the above indices, EA was used as the final index to evaluate the FCC-

estimation accuracy. The higher the value of EA, the better the accuracy of the FCC
estimated. RMSE refers to the root mean square error between the estimated FCC value
and the field-measured FCC value, and rRMSE denotes the relative root mean square error,
which is a dimensionless quantity. RMSE and rRMSE also were used to assess the accuracy
of the FCC estimation. The lower the value of the above two indices, the higher the FCC
estimated accuracy.

3. Results
3.1. Window Size Selection and Treetop Detection

The results show that the optimum circular window sizes of camphor pine forest
under the sparse, medium, and dense conditions were 11 × 11, 7 × 7, and 5 × 5. The
corresponding total accuracy F-scores were 0.918, 0.892, and 0.839 (Figure 7). The window
required in the sparse area was larger than the other two cases, which may be due to two
reasons: the smaller gap between individual trees in medium density area or dense area and
the mutual occlusion between tree crowns. Thus, the window sizes required in medium or
dense areas were smaller than those of sparse areas. A detection rate close to 1 in various
cases required different window sizes. For example, when detecting a treetop location with
a window size of 7 × 7 at the medium density area of camphor pine, the detection rate
was closest to 1. In the sparse area of camphor pine, the window sizes with the detection
rate closest to 1 were 9 × 9 and 11 × 11. When adopting a 5 × 5 window to detect treetops
in dense areas, the detection rate was closest to 1. These results demonstrated that the
indicator of detection rate could also reflect the optimal required window size of treetops
detected at various cases to some extent. The optimum circular window sizes of white
birch forest were 7 × 7, 5 × 5, and 3 × 3 with corresponding F-scores (overall accuracy) of
0.871, 0.844, and 0.823 in different density areas. The window size required by white birch
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was smaller than that of camphor pine. The reason for this was that camphor pines in this
study were mostly at a mature state with large crowns, while camphor pine (a pioneer tree
species) ordinarily grows in clusters with small and scattered crowns. In addition, similar
to camphor pine, white birch needs larger windows in sparse areas than in medium density
or dense areas, which is caused by the mutual occlusion between crowns with the increase
in density.
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window sizes; y axes refer to F-scores or DR, where F-scores refer to the overall accuracy of treetop
detection based on the local maximum method. The higher the value of F-scores, the higher the
accuracy of treetops detected. DR denotes the detection rate, values of which close to 1 indicted a
superior the treetops detected effect.

In short, the treetop-detection accuracy of camphor pine using the LM algorithm was
higher than that of white birch, which may because the crown shape of camphor pine
(coniferous species) was closer to a circle than the broad-leaved species. The crown outline of
camphor pine was more regular and easier to identify. To sum up, in the process of treetop-
position detection, choosing the appropriate window size according to the different species
and density is a crucial step that helps to improve the accuracy of tree-crown delineation.

3.2. Optimal Tree-Crown Extraction

By analyzing the results of three kinds of tree-crown-boundary extraction algorithms,
we concluded that different algorithms were suitable for different scenarios. It can be
seen from Figure 8 and Table 2 that the region-growing algorithm was suitable for two
scenes: the sparse area of camphor pine and the dense area of white birch. Compared
with other algorithms, the crown extracted by this algorithm has a higher matching rate
with the reference crown, and the ratio of these two crown boundaries was distributed
around 1, which indicates that most crown contours can be well depicted. The MCW
algorithm has the best effect in the medium-density area of camphor pine and white birch
forest. The matching rate between the crown-boundary extracted by this algorithm and
the reference crown was higher. The ratio between them was close to 1, which showed
that this algorithm could better depict the actual crown boundary in the above two scenes.
The VT algorithm was suitable for the dense areas of camphor pine and the sparse areas of
white birch. Although the ratios of the crown area generated by the three algorithms to the
reference crown area were all distributed around 1, the distribution range of this method
was more concentrated, and the peak value was higher. These indices demonstrate that
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the difference between the delineated crown and the reference crown was small, and most
crowns were effectively extracted.
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Figure 8. Frequency-distribution map of the ratio value of the delineated crown and the reference crown
in various scenarios. Camphor pine_SP, Camphor pine_MD, and Camphor pine _DD refer to the sparse
area, medium area, and dense area of camphor pine, respectively; White birch_SP, White birch_MD and
White birch_DD refer to the sparse, medium, and dense areas of white birch. Orange, green, and purple
lines refer to the tree-crown delineation using the methods of VT, RG, and MCW, respectively.

Table 2. The matched conditions of tree-crown results obtained by different crown-contour algorithms
with reference-crown results among various scenarios.

Matched
Camphor Pine White Birch

SPs MDs DDs SPs MDs DDs

RG 0.91 0.87 0.82 0.81 0.82 0.84
MCW 0.81 0.89 0.78 0.79 0.86 0.67

VT 0.82 0.86 0.85 0.87 0.83 0.74

The reasons for the above differences came from the differences of crown shape and the
principles of each algorithm. The crown boundary of camphor pine was close to circular,
and the crown shape was regular. Compared with camphor pine, the crown of white
birch was smaller in this study area, so there are differences in crown-boundary-extraction
algorithms required by the two species with different stand densities. It is worth noting that
the MCW algorithm was suitable for medium-density areas of white birch and camphor
pine. This scenario with medium density and a certain degree of mutual occlusion between
crowns make it suited to the principles of the MCW algorithm, leading to effective crown-
boundary extraction. Different algorithms were applicable in different scenarios, so it was
critical to choose the best crown-boundary-extraction algorithm to improve the accuracy of
FCC estimation.
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3.3. Integrated Estimation of FCC in Various Forest Scenes

The accuracy of the FCC-estimation method proposed in this study was analyzed
based on the measured data of plots (Table 1). As shown in Figure 9 and Tables 3 and 4, the
results show that the overall FCC-estimation accuracy of camphor pine using the integrated
method proposed by this study was about 89.11%, which was 6.77–11.25% higher than
that generated under other combination conditions. Other combination conditions refer
to treetop detection using any window size and tree-crown delineation using any contour
extraction algorithm regardless of forest species and density. The accuracy of the optimal
FCC estimated in sparse areas was generated by the combination of treetop detection using
a 11 × 11 window size and the tree-crown contour extracted using the RG method. This
combination method improved the accuracy of FCC by 8.33–25.39% compared to other
combinations. The medium-density region increased by 2.93–13.54%, and the dense areas
improved by 2.06–9.14%. The overall FCC accuracy of white birch was about 87.53%,
which was 3.25–8.42% higher than that obtained under other combined conditions. The
definition of other combined conditions is the same as that of camphor pine. The optimal
combination method of FCC estimation in sparse areas was the treetop-detection method
with a 7 × 7 circular window, and the crown-contour-extraction algorithm with the MCW
algorithm led to an accuracy of about 89.2%. This result was 7.35–18.39% higher than other
combination methods. The estimation accuracy of FCC in medium-dense areas was about
88.1%, which improved the accuracy by 1.13–9.45%, and the estimation accuracy of FCC in
dense areas increased by 1.56–11.15% after using the optimization method.
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Figure 9. The accuracy comparison of FCC at various scenes using the method of integrating different
window sizes to detect treetops and different algorithms to extract tree-crown boundaries. The three
images above represent the case of camphor pine, while the three images below denote the case of
white birch.
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Table 3. FCC-estimation accuracy of white birch forest. Win3_VT refers to adopting 3 × 3 window
size to detect treetops and using the Voronoi tessellation algorithm to delineate tree-crown area. Our
method refers to the FCC estimation of this study used, which combines the optimal results of treetop
detection and tree-crown delineation.

win3_VT win3_MCW win3_RG win5_VT win5_MCW win5_RG win7_VT win7_MCW win7_RG Our Method

RMSE 0.16 0.15 0.14 0.15 0.12 0.14 0.14 0.16 0.17 0.10
rRMSE 0.20 0.19 0.17 0.19 0.16 0.17 0.17 0.21 0.21 0.12

EA 79.92 80.71 82.85 81.00 84.28 82.71 82.57 79.18 79.11 87.53

Table 4. The FCC-estimation accuracy of camphor pine forest.

win5_VT win5_RG win5_MCW win7_RG win7_MCW win7_VT win11_RG win11_VT win11_MCW Our Method

RMSE 0.16 0.16 0.17 0.13 0.13 0.13 0.13 0.14 0.13 0.08
rRMSE 0.22 0.22 0.23 0.18 0.18 0.18 0.18 0.20 0.18 0.11

EA 77.85 78.38 77.02 81.95 82.28 82.34 81.99 80.31 81.52 89.11

To sum up, the optimization method proposed in this study improved the estimation
accuracy of FCC to a certain extent, especially in sparse areas. Trees in sparse areas grow at
a scattered distribution state, which causes the results of treetop detection to have a strong
influence on judging the presence of crowns in FCC estimation. Therefore, adopting the
optimal treetop-detection-window size and crown-boundary-extraction algorithm ensured
the crown-range-extraction accuracy and improved the accuracy of the FCC estimation. In
addition, the accuracy of the camphor pine FCC estimation was higher than that for white
birch, which was caused by the crown characteristics and growth statuses of these two
species. The camphor pine forests were mostly mature forests with more regular crowns,
while the crowns of the white birch forests were mostly scattered.

4. Discussion
4.1. Treetop-Detection-Window Size and Influence Factors

One critical problem in treetop detection is choosing the optimal window size in
different scenes, which has a significant relationship with the shape and size of the actual
tree crown. Camphor-pine-top-detection accuracy was higher than that of white birch,
which is mainly because camphor pines have obvious top and crown shapes, making them
easier to detect. As Figure 10 shows, the window size corresponding to the high-value
region of F-scores was concentrated below 7 × 7 in most scenarios. The local maximum
method was not effective with the larger window, which was related to the tree species
and their growth status in this area. Excessive window size may cause some treetops to
be missed, influencing the accuracy of treetop detection. Notably, when the window size
was 3 × 3 the effect of the local maximum method in sparse areas was weaker than that
in medium areas or dense areas. By analyzing the crown size of sparse areas in this study
area, it can be seen that the crown diameter was greater than 1.5 m (about 3 pixels), so
errors occurred when using a 3 × 3 window to detect treetops. The window size required
for the sparse region was larger than the medium or dense region regardless of camphor
pine or white birch, which demonstrated that the density of forests is also an important
factor influencing the parameter set and accuracy of treetop detection. Further research
should consider this issue when adopting the LM method in identifying individual trees.
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Square windows are also widely used for treetop detection. To compare the difference
between these two types of window shape at treetop detection, this study conducted tree
detection with circle and square windows in various cases. The results show that the value
of the F-scores obtained from the square windows was lower than circle windows in most
scenarios. The accuracy of treetop detection varied with different window sizes. These
above results demonstrate that the performance of the circular window is preferred to
that of the square window in most scenarios regardless of camphor pine or white birch.
The optimal window sizes of circular or square windows in each case were similar, which
indicated that the shape of the window influences the accuracy of the treetop detection of
each scenario. Therefore, in treetop detection, the circular window has better performance
and fits the tree-crown shape better. This result is consistent with previous studies [51,52].

4.2. Factors Influencing Tree-Crown Extraction

Tree-crown extraction was a critical step for estimating the FCC in this study. The
optimal method of tree-crown extraction varied according to species and forest density.
These results indicated that it is necessary to explore crown extraction algorithms suitable
for different scenarios and then apply the results to estimate FCC to improve accuracy.
Some other researchers have investigated three tree-crown methods used in this study
under different conditions such as for oil palm trees, managed pine forests, deciduous and
isolated forests, plantation forests, and complex and dense forest [61–64]. The tree-crown-
extraction accuracy varied in these studies, though the method of accuracy evaluation may
show some difference. These results support the view presented in this study that screening
suitable algorithms for different tree species and different forest densities in the extraction
of the canopy contour is necessary. Current and forthcoming very-high-resolution satellites
such as QuickBird, IKONOS, and GEOEYE1 also have the potential to extract tree crowns.
They are equipped with more spectral features that relate to tree-crown states, though these
data do not contain height information. Further research will attempt to combine LiDAR
data with multispectral passive optical data to conduct tree-crown delineation.

This study focuses on whether the tree crowns of given area can be extracted, and
some tree-crown extraction errors have little impact on FCC estimation. For example, two
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or more tree crowns merged and were not divided, and their intersect boundaries were
not well delineated, but the outer contours were well extracted, missing some very small
and low trees and so on. Thus, the crown-extraction algorithm used for FCC estimation
does not necessarily need to accurately delineate the individual tree crowns. The results
of the treetop detection impact the accuracy of tree-crown delineation, because of the
treetop detection used as seed points in this study. Selecting the appropriate size of the
treetop-detection window according to different tree species and density conditions can
generate more accurate treetop location results to a certain extent, thereby improving the
accuracy of tree-crown-contour extraction.

4.3. Factors Influencing FCC Estimation

The FCC-estimation accuracy varied in different cases including tree species and stand
densities. This study combined the optimal methods of treetop detection and tree crowns
delineated for different tree species, which achieved higher accuracy than other combined
conditions. For example, the optimal FCC estimation at the sparse region of camphor pine
was achieved using the 11 × 11 circle window to detect treetops and applying the region-
growth algorithm to delineate tree crowns. The optimal combinations in the medium
or dense region of camphor pine were different. These results show that the applicable
top-detection window size and crown-delineation algorithm varied from tree species to
stand density. This indicates that it is necessary to distinguish scenes when estimating
FCC by extracting the tree-crown-cover ratio of the unit area based on high-resolution
images. The FCC accuracy of camphor pine is higher than white birch, which is mainly
because camphor pine is equipped with a more regular tree-crown shape and is more easily
correctly delineated than white birch. The above results demonstrated that one of the
important factors influencing FCC estimation was the difference between various cases,
which paves the way for further studies to improve the FCC accuracy adopted in this
method by distinguishing more detailed cases based on the conditions of the study area.

In this study, the results of the treetop detection were used as the input data of the
canopy-boundary extraction, which then were used as the basic data of the FCC estimation.
These two steps may accumulate errors, even increasing the error of FCC estimation. In
view of this situation, this study generated the optimal results of the first step by screening
the best window sizes of different scenes. We then optimized the second step’s results
by delineating tree crowns using the most suitable algorithms in various cases. Thus, the
FCC estimation errors achieved were reduced to some extent; however the accuracy of the
method proposed in this study was affected by the window size in treetop recognition and
different algorithms in tree-crown-boundary extraction. In most scenarios, the influence of
the treetop-detection-window size on the final FCC-estimation accuracy was more obvious
than the difference of the crown-contour-extraction algorithm. The main reason for the
above phenomenon was that the accurate identification of the treetop position was directly
related to whether a tree could be detected. All crown-contour-extraction algorithms take
the treetop positions as seed points, which further deepen the dependence on the first step.
This conclusion not only reflects the necessity of dividing scenes but also provides a new
idea for subsequent FCC estimation.

4.4. Limitations and Future Research

This study used LiDAR data and high-resolution aerial RGB images to estimate the
FCC by directly extracting the vertical projection area of the canopy at the field plot
efficiently and accurately. However, the FCC was defined as the proportion of the canopy
area commonly observed from the top-down, while the field-measured FCC data were
always obtained from the bottom-up view. In response to this problem, this study used
the CHM product generated from LiDAR point cloud data as the data for tree-canopy
extraction. These data were obtained by DSM minus DEM. The pixel value represents
the height of the tree canopy. There were differences between the different positions of
individual trees and the heights of different trees. Therefore, the shape of the tree crown
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using this data can be closer to the actual crown size of the tree. This data can be, to a
certain extent, to avoid the bias introduced by this definition. In treetop identification
and tree-crown delineation, some small trees are inevitably blocked by large trees, and
this may cause omission errors. Although the occurrence of this situation was one of
the error sources in FCC estimation, this issue has a limited impact on the accuracy of
FCC compared with the limitations of the algorithm itself. This was because the FCC per
unit area contributed by the large canopy and low and small trees with small canopies
has a higher probability overlap with the large canopy. In addition, the difference of
the local maximum algorithm and crown-delineated algorithm used in treetop-position
detection and tree-crown delineated in various cases was one of the main factors affecting
the accuracy of FCC estimation, which also demonstrated the necessity of distinguishing
the different scenes. The follow-up study will focus on considering the differences of other
factors, such as terrain and climate, and then divide more detailed scenes to generate more
accurate FCC-estimation results.

5. Conclusions

Tree-crown shape and size vary in different forest species and densities. Therefore, it
is necessary to distinguish different scenarios in FCC estimation. The conclusions of this
study are as follows. (1) There were differences in the size of the treetop-detection windows
in different scenarios. The top detection window of camphor pine was larger than that of
white birch with the same stand density, which was between 5 × 5~11 × 11 (corresponding
to 2.5~5.5 m) for camphor pine and 3× 3~7× 7 (corresponding to 1.5~3.5 m) for white birch.
(2) Forest-crown-extraction algorithms performed differently in different scenes. With a
medium stand density, the MCW algorithm had the best extraction effect. The RG algorithm
had a better extraction effect in sparse areas of camphor pine and dense areas of white birch.
The VT algorithm was more suitable for dense areas of camphor pine and sparse areas
of white birch. (3) The method used for FCC estimation based on the idea of integration
proposed in this study had a good effect, and its overall estimation accuracy was obviously
improved. The accuracy of FCC in the camphor pine forest was 89.11%, representing
an improvement of 6.77–11.25%, compared to the results obtained from other combined
conditions. The accuracy of the optimal FCC estimated in sparse areas was improved by
8.33–25.39%, medium density areas increased by 2.93–13.54%, and dense areas improved
by 2.06–9.14%. The overall FCC accuracy for white birch was about 87.53%, which was
3.25–8.42% higher than that of other combined conditions. The FCC accuracy for the
sparse area was about 89.2%, which was 7.35–18.39% higher than the other combination
methods. The estimated accuracy of white birch FCC in medium-dense areas was im-
proved about 1.13–9.45%. The estimated accuracy of FCC in dense areas was increased by
1.56–11.15%. The above results show that. with the increasing spatial resolution of remote-
sensing images, the method of directly extracting canopy coverage per unit area and then
calculating FCC is expected to be widely used. This study provides a new method for the
accurate estimation of forest-canopy density with very-high-resolution images.
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