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Abstract: Evapotranspiration (ET) is an important part of the surface energy balance and water
balance. Due to imperfect model parameterizations and forcing data, there are still great uncertainties
concerning ET products. The validation of land surface ET products has a certain research significance.
In this study, two direct validation methods, including the latent heat flux (LE) from the flux towers
validation method and the water balance validation method, and one indirect validation method, the
three-corned hat (TCH) uncertainty analysis, were used to validate and compare seven types of ET
products in the Haihe River Basin in China. The products evaluated included six ET products based on
remotely-sensed observations (surface energy balance based global land evapotranspiration [EB-ET],
Moderate Resolution Imaging Spectroradiometer [MODIS] global terrestrial evapotranspiration
product [MOD16], Penman–Monteith–Leuning Evapotranspiration version 2 [PML_V2], Global
Land Surface Satellite [GLASS], global land evaporation Amsterdam model [GLEAM], and Zhangke
evapotranspiration [ZK-ET]) and one ET product from atmospheric re-analysis data (Japanese 55-year
re-analysis, JRA-55). The goals of this study were to provide a reference for research on ET in the
Haihe River Basin. The results indicate the following: (1) The results of the six ET products have
a higher accuracy when the flux towers validation method is used. Except for MOD16_ET and
EB_ET, the Pearson correlation coefficients (R) were all greater than 0.6. The root mean square
deviation (RMSD) values were all less than 40 W/m2. The GLASS_ET data have the smallest average
deviation (BIAS) value. Overall, the GLEAM_ET data have a higher accuracy. (2) When the validation
of the water balance approach was used, the low values of the MOD16_ET were overestimated and
the high values were underestimated. The values of the EB_ET, GLEAM_ET, JRA_ET, PML_ET, and
ZK_ET were overestimated. According to the seasonal variations statistics, most of the ET products
have higher R values in spring and lower R values in summer, and the RMSD values of most of the
products were the highest in summer. (3) According to the results of the uncertainty quantification
based on the TCH method, the average value of the relative uncertainties of the GLEAM_ET data
were the lowest. The relative uncertainties of the JRA_ET and ZK_ET were higher in mountainous
areas than in non-mountainous area, and the relative uncertainties of the PML_ET were lower in
mountainous areas. The performances of the EB_ET, GLEAM_ET, and MOD16_ET in mountainous
and non-mountainous areas were relatively equal. The relative uncertainties of the ET products were
significantly higher in summer than in other periods, and they also varied in the different sub-basins.

Keywords: Haihe River Basin; land surface ET products; water balance approach; three-cornered
hat method

1. Introduction

Terrestrial evapotranspiration (ET) consists of evaporation from soil and canopy inter-
ception, as well as transpiration from vegetation [1]. It has importance for surface energy
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and water balance, and has profound implications for climate change [2,3]. The types of ET
products include physical process models [4–6], energy balance models [7,8], atmospheric
re-analysis [9], and machine learning or integration models [10]. The rapid development
of remote sensing satellite-based models in the past few decades has made it possible
to capture the spatial and temporal variability of ET from regional to continental and
even global scales. However, these remote sensing satellite-based models usually present
different degrees of uncertainties depending on their theories, structural assumptions,
and input parameterization, and those limitations are mainly governed by changes in
landscape, climatological, and hydrological conditions [11]. RS-ET products are susceptible
to spatial heterogeneity and meteorological complexity, so they have different applicability
in different regions. Due to the quality and quantity of atmospheric data, atmospheric
re-analysis products also have uncertainties. The uncertainties of the models and input
data of the ET products affect the accuracy and application scope of the products. Therefore,
the accuracies of ET products need to be evaluated.

Reliable information on ET is very important for various bio-geophysical applica-
tions, including those of the forestry, hydrological, agricultural, and meteorological dis-
ciplines [12]. The accurate quantification of ET is challenging because its variations are
controlled by complex interactions among soil moisture availability, atmospheric feedback,
and heterogeneous vegetation conditions [13]. The current land surface ET product accu-
rate evaluation methods usually consist of direct validation and indirect validation [14].
Direct validation is based on the use of in situ measurements to obtain the ground truth
values. This method can be used as the primary and reliable method of validating ET
data and is usually employed at the pixel-scale and regional-scales [15,16]. In situ mea-
surements, including the Bowen ratio, lysimeters, laser isotopes, and eddy co-variance,
can be used as the relative true values in pixel-scale evaluations to evaluate ET products.
Regional evaluations are based on the water balance method [17–21] and the multi-site
scale expansion method [22]. In the absence of ground truth ET data, indirect validation be-
comes feasible, which includes the cross-checking method, multi-scale evaluation method
based on high-resolution remote sensing data, and spatiotemporal change trend analysis
method. Many ET products have good test results at specific observation stations, but
since observation stations cannot cover all surface types, it is not clear whether they can
be applied to other surface types [23]. The cross-validation method focuses on evaluating
the relative accuracy of different surface evapotranspiration products and the consistency
of temporal and spatial change trends. In particular, the cross-validation of multiple ET
products has been further improved after the introduction of quantified methods, such
as triple collocation (TC) [24] and three-cornered hat (TCH) [25–30]. TC and TCH are
innovative and reliable approaches for estimating the error variance of various time-series
products. The generalized TCH method allows for a relative comparison of at least three
datasets based on their respective uncertainties without the need of a priori knowledge of
their uncertainties [31].

The above methods have been applied in various basins. Previous studies have usu-
ally focused on the accuracy validation of only one ET model or product. For example,
Zhou et al. [32] used the evapotranspiration data calculated using the Penman–Monteith
(PM) formula to verify the SEBAL model in the Xilin River Basin, proving that the estima-
tion results have a good accuracy. Liu et al. [33] used eddy correlation observations to verify
the SEBAL model in the growing season in the Liaohe Delta region of China, and their
validation results indicate that the SEBAL model is suitable for wetland evapotranspiration
research. Studies have also been conducted on the applicability and comparison of several
ET products. For example, Velpuri et al. [15] evaluated the accuracy of the MOD16 and
operational simplified surface energy balance (SSEBop) products in the continental United
States, and their results indicate that both products are suitable for most land cover types
and that both ET products are reliable at the basin scale. Chao et al. [34] comprehensively
evaluated the accuracy of five ET products (GLEAM, Penman–Monteith–Leuning (PML),
MODIS, process-based land surface evapotranspiration/heat fluxes algorithm (P-LSH), and
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multi-tree ensemble (MTE)) based on ground-based and Gravity Recovery and Climate Exper-
iment (GRACE) satellite observations over the continental United States. Their results showed
that the P-LSH and GLEAM products were consistent with the recon data in the middle-value
range. The MODIS and MTE had larger average deviation (BIAS) and root mean square
deviation (RMSD) values on the yearly scale, and the MODIS and MTE datasets tended
to underestimate and overestimate the ET values over the entire value range, respectively.
Wartenburger et al. [35] evaluated the abilities of a range of monthly-scale ET products
at the global scale and applied cluster analysis to identify the spatiotemporal differences
between all of the datasets using factors such as the model choice, the meteorological forc-
ing used to drive the assessed models, the data category, the ET scheme, and the number
of soil layers in the model. Their results indicate that the model selection is mostly the
dominant factor. Xie et al. [36] evaluated the applicability of three ET products using the
water balance method in the Northwest Inland River of China, and their results revealed
that the GLEAM data have the best fit in most of the alpine basins, and overestimation
generally occurred in the ERA data in summer and autumn and in the MODIS data from
October to January.

ET is affected by land use, soil moisture availability, and climate conditions [37], which
makes it highly variable across heterogeneous landscapes [38]. All ET products have uncer-
tainties [39,40], and it was suggested that combining artificial intelligence algorithms or
data-driven algorithms and physical process algorithms will further improve the accuracy
of ET estimation algorithms and the quality of ET datasets, as well as enhancing their
capacity to be applied in different climate regions [34].

Although there is research that evaluated the ET products across China, the conclusion
was that all the global ET products were unable to reasonably reproduce the ET time-
series in most basins at the basin scale [41]. The Haihe River Basin is one of China’s
main river basins, however, comprehensive comparative studies of multiple ET products
are lacking. In this study, we mainly selected remotely-sensed ET (RS-ET) products for
evaluation in this study. The principle of re-analysis data is different from that of remote
sensing data, which combine ground station observations, satellite remote sensing data,
and numerical simulation data to best reflect the atmospheric conditions. Therefore, a
re-analysis data product was selected for comparison with the remote sensing products in
this study. Direct and indirect evaluation methods were used to evaluate the applicability
of ET products in the Haihe River Basin. The purposes of this study were: (i) to assess the
performances of seven ET products in the Haihe River Basin using EC observation and the
water balance method, and (ii) to systematically compare the relative uncertainties of the
seven ET products.

2. Materials and Methods
2.1. Study Area

The Haihe River Basin is one of China’s main river basins. It is located in a semi-humid
and semi-arid zone in the northern part of China (35–43◦N, 112–120◦E) (Figure 1). The Beijing–
Tianjin–Hebei Economic Circle, which is one of China’s three major economic circles, is located
in this basin. Geographically, the Haihe River Basin is bordered by Bohai Bay to the east,
the Taihang Mountain to the west, the Yellow River to the south, and the Mongolian Plateau
to the north. The total area of the basin is about 320,600 km2. The Haihe River Basin has a
temperate monsoon climate, with an annual average temperature of 8–12 ◦C and an annual
average precipitation of 539 mm [42].

Using digital elevation model data (DEM) as the input data, the geospatial hydrologic
modeling extension (HEC-GeoHMS) hydrological model was adopted to extract the sub-
basins [43]. The Haihe River Basin was divided into 2605 small basins, and then, according
to the data obtained from the Hydrological Yearbook of the People’s Republic of China, the
small basins were merged into seven sub-basins: the Luan River Basin (R1), Chaobai River
and Jiyun River Basin (R2), Inland River Basin (R3), Daqing River Basin (R4), Ziya River
Basin (R5), South Canal Basin (R6), and Tuhai River and Majia River Basin (R7).
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The land cover in the study area can be classified into eight classes, including Culti-
vated Land, Forest, Grassland, Artificial Surfaces, Water Bodies, Wetland, Shrubland, and
Bare Land (Figure 2), and the area percentage of the above land-cover types accounted for
53.6%, 18.67%, 18.16%, 7.68%, 1.37%, 0.25%, 0.21%, and 0.06%, respectively.
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Figure 1. Study area: locations of the seven sub-basins and five EC observation sites. The DEM
was derived from the Shuttle Radar Topography Mission (SRTM) elevation model. The lakes and
rivers are shown in the figure. The green dots show the locations of the eddy co-variance (EC) flux
towers, which were used for the ET validation. The red triangles show the location of the hydrological
observation stations, which were used for the LORA validation.
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2.2. Datasets

The data used in this study included ET product data, eddy correlation (EC) obser-
vation data from flux towers, DEM data, terrestrial water storage data, runoff data, and
precipitation data.

2.2.1. The Evaluated ET Products

Seven ET product datasets were comprehensively evaluated in this study: the sur-
face energy balance based global land evapotranspiration (EB-ET in this paper) [2,44],
GLEAM (GLEAM_ET in this paper) [4,45], MOD16 (MOD16_ET in this paper) [5], Penman–
Monteith–Leuning Evapotranspiration version 2 (PML_V2) global evapotranspiration and
gross primary production (PML_ET in this paper) [6], land evapotranspiration of Global
Land Surface Satellite products (GLASS_ET in this paper) [46], a continuous satellite-
derived global record of land surface evapotranspiration product created by Zhang Ke
(ZK_ET in the paper) [47], and land evapotranspiration of the JRA_55 (JRA_ET in this
paper) [9]. The ET products included a single-source model ET product (EB_ET), ET prod-
ucts based on the Penman–Monteith formula (MOD16_ET, PML_ET, and ZK_ET), an ET
product based on the Priestley–Taylor (PT) formula (GLEAM_ET, ZK_ET), an integrated
model product (GLASS_ET), and a re-analysis product (JRA_ET). A summary of these ET
products used in the study are presented in Table 1.

Table 1. Information about ET product datasets evaluated in this study.

Product Name Approach Temporal Resolution Spatial Resolution Units

EB_ET SEBS, Re-analysis Data Daily, monthly 0.05◦ × 0.05◦ mm
GLEAM_ET Modified Priestley–Taylor, soil stress factor Daily, monthly 0.25◦ × 0.25◦ mm

JRA_ET Re-analysis 6 h, Monthly 0.5612◦ × 0.56162◦ W/m2

MOD16_ET Modified Penman–Monteith-Leuning,
surface conductance model 8 day, monthly 1 km × 1 km mm

PML_ET Modified Penman–Monteith-Leuning 8 day 500 m × 500 m mm

ZK_ET Modified Penman–Monteith for canopy and
soil, Priestley-Taylor for water Monthly 0.1◦ × 0.1◦ mm

GLASS_ET Integrated Daily every 8 days 1 km × 1 km W/m2

2.2.2. Other Datasets

The EC observation data from the flux towers (green dots in Figure 1) used for the ET
product validation at the pixel-scale were obtained from the Observations Network of the
Qinghai–Tibet Plateau Science Data Center (https://data.tpdc.ac.cn/zh-hans/, accessed on
17 January 2020) and the China Flux Observations Data Alliance Network (http://www.
chinaflux.org/, accessed on 17 January 2020). The flux data included 30-min scale and
daily-scale data. Table 2 presents the information about the five flux towers. The main
land-cover type at the sites of the five flux towers was agricultural land. The latent heat
flux of the EC data from the five flux towers were used for the direct validation of the
ET products.

Table 2. Information about the flux towers used in this study.

EC Site Name Land Cover Region Period Longitude (◦E) Latitude (◦N)

Yucheng Wheat/corn Shandong 2003–2010 116.57 36.82
Huailai Corn Hebei 2013–2017 115.79 40.35

Guantao Wheat/corn,
cotton Hebei 2008–2010 115.13 36.52

Miyun Orchard Beijing 2008–2010 117.32 40.63

Daxing Wheat/corn,
orchard Beijing 2008–2010 116.43 39.62

https://data.tpdc.ac.cn/zh-hans/
http://www.chinaflux.org/
http://www.chinaflux.org/
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The SRTM DEM data from the United States Geological Survey (https://lpdaac.usgs.gov/,
accessed on 22 February 2018) was used to divide the study area into mountainous and non-
mountainous areas based on an elevation threshold of 200 m. The spatial resolution of the DEM
data was 90 m × 90 m. The terrestrial water storage data, runoff data, and precipitation data
were used in the ET product validation using the water balance method. The monthly-scale
data from 2003 to 2012 were used in this study.

The Gravity Recovery and Climate Experiment (GRACE) was adopted to represent the
terrestrial water storage change (TWSC) [48]. The values in each pixel represent the equivalent
water height, which is an anomaly based on the mean value from January 2004 to December 2009.
The RL06M version of the monthly-scale data was used (http://www2.csr.utexas.edu/grace/,
accessed on 9 May 2021). The spatial resolution of the data was 0.5◦ × 0.5◦.

The runoff data (https://geonetwork.nci.org.au, accessed on 27 May 2021) used in this
study were a global gridded runoff product (Linear Optimal Runoff Aggregate, LORA) [49],
with a spatial resolution of 0.5◦ × 0.5◦ at monthly timescales for the period of 1980–2012, and
includes time-variant uncertainty. This product merges runoff estimates from hydrological
models constrained with observational streamflow records. The product broadly agrees
with published runoff estimates at many river basins and represents the seasonal runoff
cycle for most of the globe. The LORA data were validated using the monthly observed
discharge of five hydrological stations in the Haihe River basin in 2003 [50]. We needed to
convert the observed discharge data into runoff depth data, which were consistent with
the LORA data, according to the upstream drainage area of the hydrological station. The
locations of the five hydrological stations were showed in Figure 1, including Shixiali
station (SXL, with drainage area of 2.39 × 104 km2) in Sanggan River, Xiangshuibao
station (XSB, with drainage area of 1.45 × 104 km2) in Yang River, Yanchi station (YC,
with drainage area of 4.37 × 104 km2) in Yongding River, Zhangjiafen station (ZJF, with
drainage area of 0.85 × 104 km2) in Bai River, and Xiahui station (XH, with drainage area of
0.53 × 104 km2) in Chao River. The precipitation and temperature data used in this study
were obtained from the Monthly Data of Surface Precipitation and Temperature in China
dataset (http://data.cma.cn/, accessed on 16 January 2018), which was developed by the
basic ground meteorological data construction project. The data have been updated since
1961, and this meteorological dataset is commonly used in many studies. Spatial kriging
interpolation was performed on the data with missing pixels to ensure the integrity of the
data. The spatial resolution was 1 km × 1 km.

The surface net radiation data used for the analysis of ET influencing factors is the
GLASS-NR product (http://www.glass.umd.edu/NR/, accessed on 27 March 2021), with
a spatial resolution of 0.05◦ × 0.05◦ and a temporal resolution of 1 day.

The land-cover type data used in this study was GlobeLand30 (http://www.globallandcover.
com/, accessed on 8 August 2021) from 2010, which is the first global geo-information public
product provided by China to the United Nations, with the spatial resolution of 0.5◦ × 0.5◦.

2.3. Methods

Direct evaluation methods, including EC observation and the water balance method,
were used to evaluate the applicability of the ET products in the Haihe River Basin. The ap-
plicability evaluation index adopts the BIAS, RMSD, Pearson correlation coefficient (R), and
Taylor plots. Then, the TCH uncertainty quantification method, as an indirect evaluation
method, was used to assess the performances of the ET products. In order to explore the
influencing factor of ET, the spatial distribution of ET under different land-cover types and
the cosine similarity between the temporal variation of ET products and meteorological
data were adopted.

2.3.1. ET Product Validation Using Flux Tower EC Observations

Taking the multi-year observation data from five flux stations in the Haihe River Basin
from 2003 to 2010 as the true values, the 30-min scale flux tower EC observation data
with no more than 30% of the data missing were selected for the screening and daily-scale

https://lpdaac.usgs.gov/
http://www2.csr.utexas.edu/grace/
https://geonetwork.nci.org.au
http://data.cma.cn/
http://www.glass.umd.edu/NR/
http://www.globallandcover.com/
http://www.globallandcover.com/
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synthesis [51]. The ZK_ET product does not include daily-scale data, so it was not evaluated
in this section. The MOD16_ET product provides the total evapotranspiration over a period
of 8 days (5 or 6 days at the end of the year) in units of 0.1 mm/8 days, 0.1 mm/6 days, or
0.1 mm/5 days. In order to ensure the comparability of the data, the units were uniformly
converted into the standard latent heat flux units, W/m2. Through comparison of the
pixel values of the EC products and the values of the EC observations, the six types of
ET products (EB-ET, GLEAM_ET, JRA_ET, MOD16_ET, PML_ET, and GLASS-ET,) were
verified. The applicability evaluation index adopts the BIAS, RMSD, Pearson correlation
coefficient (R), and normalized central root mean square deviation (RMSD’) for the Taylor
plots. Taylor plots are used to present an accuracy assessment, using metrics such as
the Pearson correlation coefficient (R), standard deviation (STD), and RMSD’. The above
evaluation indexes are calculated as follows:

BIAS =
1
N ∑N

i=1(Xi −Yi), (1)

RMSD =

(
1
N ∑N

i=1(Xi −Yi)
2
) 1

2
, (2)

R =
∑N

i=1(Xi − Xave)(Yi −Yave)√
∑N

i=1(Xi − Xave)
2 ∑N

i=1(Yi −Yave)
2

, (3)

RMSD′ =
√

RMSD2 − BIAS2, (4)

STD =

(
1
N ∑N

i=1(Xi − Xave)
2
) 1

2
, (5)

where N is the number of sample groups, Xi and Yi are the evapotranspiration value to be
verified and the true value of the relative evapotranspiration in group i, respectively, and
Xave and Yave are the mean values of Xi and Yi in the N groups of data, respectively.

2.3.2. ET Product Validation Using Water Balance Method

The water balance principle is a method of calculating the actual evapotranspiration
in a closed watershed [52]. The calculation formula is:

WB_ET(i) = P(i)− R(i) − TWSC(i), (6)

where P(i) is the average precipitation in the basin (mm/month), R(i) is the average runoff
depth in the basin (mm/month), and TWSC(i) is the monthly water storage change of the
underlying surface of the basin (mm/month). The TWSC(i) data were calculated from the
GRACE data using the following equation:

TWSC(i) ≈ TWSA(i + 1)− TWSA(i− 1)
2∆i

, (7)

where TWSA(i) is the anomalous value of the water storage in a certain month, i denotes
the month, and the ∆i is the monthly unit. This formula is helpful in reducing the noise.

Since the GLASS_ET is composed of single-day evapotranspiration data on an 8-day
scale, there are large errors in the monthly-scale synthesis. In this study, the other six ET
products were compared and analyzed on the monthly scale using the water balance method.

The period of the data used was 2003–2012. Among them, the monthly scale standard
products of the GLEAM_ET, JRA_ET, MOD16_ET, and ZK_ET were directly used. The
daily-scale data of the EB_ET and PML_ET were synthesized into monthly-scale data. In
this study, the water balance method was used to analyze the product accuracies of these
six ET products on the annual scale and in different seasons.
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2.3.3. ET Product Comparison Using TCH Uncertainty Quantification Method

The three-cornered hat method (TCH) is a method for evaluating multiple sets of data
sequences, which was developed in the last century. Its methodology was proposed and
further developed by Premoli and Tavella [26,27]. Assuming that there are N groups of
different observation sequences {xi} (i = 1, . . . , N), each group of xi is the result of adding the
true value and the measurement error, that is, xi = xtrue + ei. The traditional three-cornered
hat method is limited to the case of N = 3 [25], while the generalized three-cornered hat
method can be used for the case of N > 3.

First, any observation sequence is selected as the reference values, and then the
difference sequence yi between the remaining observation sequences and the reference
values is obtained:

yi = xi − xr = ei − er (i = 1, . . . , N − 1). (8)

An interpolation sequence matrix Y and difference sequence co-variance matrix S
are constructed:

Y =
[
y1 y2 · · · y(N−1)

]
. (9)

S = cov (Y). (10)

An N × N noise co-variance symmetric matrix R and auxiliary matrix J are introduced:

JN−1,N =


1 0

... −1
0 1 · · · −1
...

...
. . .

...
0 0 · · · −1

. (11)

R =


r11 r12

... r1N
r12 r22 · · · r2N
...

...
. . .

...
r1N r2N · · · rNN

. (12)

S = J·R·JT . (13)

By combining these matrices, a set of equations rij = sij − rNN + riN + rjN (i, j < N)
can be obtained. At this time, the number of equations is less than the number of unknowns,
so the equations cannot be solved [26]. In order to ensure the positive definiteness of the
co-variance matrix, constraint condition H is used as the constraint condition [26]:

H2(r1N , . . . , rNN) = −
H1(r1N , . . . , rNN)

K
< 0, (14)

K = N−1
√
|S|, (15)

H1(r1N , . . . , rNN) =
|R|
|S|= rnn −

[
r1n − rnn, . . . r(n−1)n − rnn

]
S−1

[
r1n − rnn, . . . r(n−1)n − rnn

]T
. (16)

Introducing the squared and mean squared values of the off-diagonal elements of the

noise matrix
√

1
n ∑n−1

i<j rij
2 ensures that the global correlation of all of the datasets satisfies

|R| > 0 under the smallest premise. Thus, the following equation can be obtained:

F(r1N , . . . , rNN) =
1

K2 ·
N

∑
i<j

rij
2. (17)
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In order to ensure that the initial value is within the constraint conditions, the initial
value of the above equation iteration is as follows:

r0
n = 0 f or i < N, (18)

r0
nn =

1
2s∗

, s ∗ = [1, . . . , 1] S−1[1, . . . , 1]T , (19)

Equation (17) is minimized under the constraints in order to obtain the optimal
solution. The mean squared value of the diagonal elements corresponding to the symmetric
matrix R is the uncertainty of the corresponding input dataset.

In this paper, the TCH method is used to calculate the relative uncertainties of the monthly-
scale ET products, and the period is 2003–2012. The relative uncertainties of six products, including
EB_ET, GLEAM_ET, JRA_ET, MOD16_ET, PML_ET, and ZK_ET, are calculated.

2.3.4. Cosine Similarity

Cosine similarity [53] is a measure of similarity between two datasets. The cosine of
two sets can be derived by the Euclidean dot product formula:

cos(A, B) =
∑n

i=1 Ai × Bi√
∑n

i=1(Ai)
2 ×

√
∑n

i=1(Bi)
2

(20)

where n is the number of observations, Σ is the summation symbol, Ai is the A value for
observation i, and Bi is the B value for observation i. In this paper, cosine similarity is used
to study the similarity between the temporal variation of evapotranspiration products and
meteorological data.

3. Results and Analysis
3.1. Results of ET Product Validation Using Flux Tower EC Observations

The pixel scale ET product validation depends on the Latent Heat Flux (LE) data
observed by EC of the flux station. Taking Yucheng flux station as an example, Figure 3
shows the scatter diagram of the daily scale LE data from 2003 to 2010. The data shows
a relatively regular temporal change trend. In a year, the LE gradually increased from
January to June, then decreased since June and began to rise around the beginning of July,
and reached a peak in August, then decreased gradually from August to December. The
farmland where Yucheng station was located adopts the Winter Wheat–Summer Maize
Rotation System. The data information of “key points for the integrated management
of winter wheat and summer corn rotation” issued by the Ministry of agriculture and
rural affairs of the People’s Republic of China shows that the winter wheat sown in the
previous year will be harvested in mid-June, and the summer maize will be sown in late
June. Therefore, the emergence of the sudden drop of LE was caused by crop harvesting.

The ET product pixel value at the location of the flux tower was extracted and com-
pared with the latent heat flux observations. According to the results of the flux tower
validation (Figure 4), the ET products generally overestimated the low value and under-
estimated the high values. There is a variation of 0.48–0.77 in R. Except for MOD16_ET
and EB_ET, the R values were all greater than 0.6. According to the calculated BIAS values,
with a variation 2.93–14.27mm, the GLASS data were less biased. The RMSD ranged from
29.8mm to 39.3mm, with the lowest value coming from PML_ET.

The evaluation results of the ET validation conducted using the EC observations are
presented as a Taylor diagram (Figure 5). The red origin represents the actual observation
data. The horizontal and vertical axes represent the STD. The blue radial line represents
the R value. The green dashed line represents the RMSD’ values. The results indicate that
GLEAM_ET had the highest R value and the lowest RMSD’.
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Figure 4. Analytical plots of the ET product data versus the EC observations.

Due to the uneven distribution of the observation sites in China, the data were very
limited; and because the observation footprint of the flux site itself was affected by the
meteorological environment, the observation range was irregular, and the uncertainty
caused by it cannot be overcome. Therefore, there are still errors in the evaluation results,
which need to be combined with other validation methods.
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3.2. Results of ET Product Validation Using Water Balance Method

The LORA verification result was shown in Figure 6. The Nash–Sutcliffe Efficiency (NSE),
BIAS, and R value are 0.35, 0.35, and 0.76 respectively, which indicate that the accuracy of the
LORA runoff dataset in the Haihe River Basin is not very good, while the BIAS and R value
were acceptable.
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In order to show the changes in the water-balance-derived ET (WB_ET in this paper)
and the six types of ET products in the different months, the multi-year average monthly
evapotranspiration of the data was calculated. The statistical results are shown in Figure 7.
The results indicate that the six ET products had an obvious seasonal pattern. The evapo-
transpiration values were slightly lower in winter and autumn and were relatively high in
spring and summer. During most parts of the study period, all six ET products captured the
seasonal ET estimations and corresponded well with the WB_ET. The evapotranspiration
values of the JRA_ET, PML_ET, and ZK_ET were significantly higher than those of the
WB_ET. The highest value of the WB_ET occurred in July, while the highest values of the
ZK_ET and MOD16_ET occurred in August. The EB_ET and GLEAM_ET were in good
agreement with the WB_ET.
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The monthly runoff depth data were usually less than 6 mm, and this part of the runoff
in LORA has been overestimated, which may lead to the low ET value that was estimated
by the water balance method.

Figure 8 presents the validation scatter plots for the comparison of the six ET products
with the WB_ET, and Figure 9 presents the results as a Taylor diagram. The results show
that the six ET products were strongly correlated with the WB_ET. The low values of the
EB_ET and MOD16_ET were overestimated, while the high values were underestimated in
the Haihe River Basin. The validation points were divided by season. The results indicate
that the six ET products exhibited obvious seasonal variation characteristics. As is shown
in Figure 6, the JRA_ET and GLEAM_ET had higher R and lower RMSD’ values.

As is shown in Table 3, most of the ET products had higher R values in fall and lower
R values in summer. As for the RMSD and BIAS values, the difference between the two
was quite large for the different products. Except for the EB_ET, most of the products had
the highest RMSD values in summer. According to the BIAS value results, most of the BIAS
values were positive, and the negative BIAS values between the EB_ET and MOD16_ET
mainly occurred in autumn, indicating that the product values were generally higher than
the WB_ET values.
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Table 3. Accuracy evaluation index values for the ET products.

Index Season EB_ET GLEAM_ET JRA_ET MOD16_ET PML_ET ZK_ET

R

Spr. 0.77 0.8 0.84 0.82 0.81 0.79
Sum. 0.47 0.46 0.6 0.31 0.23 0.3
Fall 0.76 0.88 0.91 0.89 0.89 0.87
Win. 0.48 0.52 0.46 0.81 0.56 0.33

Yearly 0.85 0.91 0.92 0.82 0.90 0.88

RMSD (mm)

Spr. 19.83 16.36 19.68 9.82 27.3 13.11
Sum. 14.53 22.72 27.73 25.8 53.28 30.22
Fall 15.76 12.02 12.36 13.89 12.47 14.77
Win. 3.85 7.74 12.81 16.43 7.19 5.68

Yearly 16.88 14.3 17.56 16.01 28.21 17.08

BIAS (mm)

Spr. 17.32 13.29 17.15 −0.73 22.84 8.42
Sum. 9.68 13.44 20.36 8.83 47.12 20.82
Fall −8.56 2.36 4.16 −3.49 5.07 8.87
Win. 1.09 0.8 0.84 0.82 0.81 0.79

Yearly 7.06 9.14 13.72 4.39 20.02 11.16

RMSD’ (mm)

Spr. 9.66 9.54 9.65 9.79 14.95 10.05
Sum. 10.84 18.32 18.83 24.24 24.87 21.90
Fall 13.23 11.79 11.64 13.44 11.39 11.81
Win. 3.69 7.70 12.78 16.41 7.14 5.62

Yearly 15.33 11.00 10.96 15.40 19.87 12.93

3.3. Results of ET Product Comparison Using TCH Uncertainty Quantification

The relative uncertainties of the six products were calculated using the TCH method.
The relative uncertainty is the ratio of the uncertainty to the mean ET value, and it can
describe the model skill by neglecting the ET magnitude. The average values of the relative
uncertainties of the EB_ET, GLEAM_ET, JRA_ET, MOD16_ET, PML_ET, and ZK_ET were
12.50%, 6.04%, 10.40%, 17.20%, 16.30%, and 13.50%, respectively. It can be seen that the
relative uncertainties of the GLEAM data were significantly lower than those of the other
products. According to the results presented in Figure 10, the higher relative uncertainty
values of the different products occurred at different locations. For example, the higher
values of the PML_ET data were mainly located in the southeast. The JRA_ET had a low
spatial resolution, and its higher values were concentrated in the northwest. According
to the division index of the basic landform morphology [54], the Haihe River Basin was
divided into mountainous and non-mountainous areas. The results are presented in
Table 4. According to the distribution of the relative uncertainties, the uncertainties of
the EB_ET, GLEAM_ET, and MOD16_ET were relatively consistent in the mountainous
and non-mountainous areas. The JRA_ET and ZK_ET had higher relative uncertainties
in the mountainous areas; while the PML_ET had higher relative uncertainties in the
non-mountainous areas.

The relative uncertainties in each sub-basin in the different months are shown in Figure 11.
The ET products had slightly higher relative uncertainties in summer. The climate influencing
factors of evapotranspiration vary greatly in summer, as well as with high temperature and
precipitation simultaneously, which lead to a large range of evapotranspiration in summer,
thereby resulting in the increased uncertainty of ET.

In terms of the sub-basins, there was not much difference between the different sub-
basins. Except for the JRA_ET data, the highest or second-highest values of the other products
all occurred in the Tuhai River and Majia River Basin (R7).
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Table 4. Relative uncertainties (%) of the six products in mountainous and non-mountainous areas.

EB_ET GLEAM_ET JRA55_ET MOD16_ET PML_ET ZK_ET

Non-mountainous area 12.39 6.69 9.51 17.48 19.15 12.04
Mountainous area 12.81 5.58 11.18 17.12 14.03 14.89
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Figure 11. TCH comparison results for each sub-basin in the different months. Blue represents
low uncertainty, red represents high uncertainty. The color from blue to red represents the value
of uncertainty from low to high. R1—Luan River Basin; R2—Chaobai River and Jiyun River Basin;
R3—Inland River Basin; R4—Daqing River Basin; R5—Ziya River Basin; R6—South Canal Basin;
R7—Tuhai River and Majia River Basin.

4. Discussion
4.1. Spatial Distribution of ET under Different Land-Cover Types

The spatial distributions of the mean annual ET from 2003 to 2012 are shown in
Figure 12. The ranges of different ET products vary greatly. Generally, the coarser the
spatial resolution of the ET products, the smaller the range of the ET values. According to
the spatial distribution of ET, the evapotranspiration in the northwest of the Haihe River
Basin is lower than that in the southeast.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 12. Spatial distribution of mean annual ET from 2003 to 2012. 

The areas of wetland, shrubland, and bare land were relatively less in the study area, 
so the mean annual ET of the other five land-cover types from 2003 to 2012 were calculated 
in Figure 13. Generally, the ET value is the highest in water bodies and the lowest in arti-
ficial surfaces. The ET values of forest and grassland are higher than those of bare land 
and artificial surfaces. Forestlands have greater abilities at retaining incoming precipita-
tion due to a deeper root zone and thus higher soil moisture storage, resulting in greater 
occurrences of ET compared to other land uses [55]. The ET value in cultivated land is 
affected by the growth of crops, which also leads to fluctuations in evapotranspiration 
throughout the year. Most of these features were reflected by GLEAM_ET, EB_ET, and 
JRA_ET, while the ET of all types of land cover were relatively high in PML_ET and low 
in MOD16_ET. 

 
Figure 13. Annual mean ET of different land-cover types in 2003-2012. 

4.2. Analysis of the Influence of Climatic Factors on ET 
A time-series of evapotranspiration data, precipitation data (P), air temperature data 

(T), and surface net radiation data (RN) at a monthly scale from 2003 to 2012 are displayed 
in Figure 14. It can be seen that the fluctuation of ET is similar to those of P, T, and RN, 
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The areas of wetland, shrubland, and bare land were relatively less in the study area, so
the mean annual ET of the other five land-cover types from 2003 to 2012 were calculated in
Figure 13. Generally, the ET value is the highest in water bodies and the lowest in artificial
surfaces. The ET values of forest and grassland are higher than those of bare land and
artificial surfaces. Forestlands have greater abilities at retaining incoming precipitation due
to a deeper root zone and thus higher soil moisture storage, resulting in greater occurrences
of ET compared to other land uses [55]. The ET value in cultivated land is affected by the
growth of crops, which also leads to fluctuations in evapotranspiration throughout the year.
Most of these features were reflected by GLEAM_ET, EB_ET, and JRA_ET, while the ET of
all types of land cover were relatively high in PML_ET and low in MOD16_ET.
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4.2. Analysis of the Influence of Climatic Factors on ET

A time-series of evapotranspiration data, precipitation data (P), air temperature data
(T), and surface net radiation data (RN) at a monthly scale from 2003 to 2012 are displayed
in Figure 14. It can be seen that the fluctuation of ET is similar to those of P, T, and RN, and
the cosine similarity between climatic factors and ET products shows a very high similarity
(Table 5), which showed that all of the ET products were closely related to the above three
climatic factors. All the cosine similarity values were above 0.930, except for those between
MOD16_ET and temperature/net radiation. Under the temperate monsoon climate of the
study area, the abundant precipitation in summer increases the soil water storage in the
region and the higher temperatures increase the soil water evaporation capacity. Therefore,
the phenomenon of high summer evapotranspiration is consistent with this theory.
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Table 5. Cosine similarity between climatic factors and ET products.

EB_ET GLEAM_ET JRA_ET MOD16_ET PML_ET ZK_ET

T 0.946 0.940 0.928 0.852 0.952 0.942
RN 0.976 0.971 0.975 0.889 0.963 0.937
P 0.932 0.944 0.938 0.935 0.950 0.948

4.3. Sampling Resolution and the Mechanism of the ET Products

Currently, various remote sensing ET products are constantly being developed, greatly
facilitating academic research, and the evaluation of these products is helpful in ensuring
the appropriate application of these products. An applicability evaluation is an important
method used to evaluate the errors of ET products. In the applicability evaluation of ET
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products, the flux tower validation method and the water balance validation method are
the most commonly used methods. However, in terms of applicability evaluation, the
flux tower validation’s errors cannot be ignored. This is due to the fact that: (1) Since the
spatial scale of the EC observation data is one hundred meters and the observation range is
irregular due to factors such as the wind speed, a more accurate method of calculating the
flux footprint needs to be applied in future studies. (2) The spatial resolutions of the ET
products evaluated in this paper range from 500 m to 50 km approximately, this mismatch
increases the error in the flux tower validation method and weakens the comparability of the
evaluations. (3) There are not many flux site data for the study area. The representativeness
of the flux site data has also become a major problem in the flux tower validation method.
At present, five agricultural surface-type flux tower EC observation datasets are available
in the Haihe River Basin, but it is difficult for these five datasets to represent the entire river
basin. It is difficult to use observational data to characterize the overall accuracy of the
ET products.

As for the water balance method, the applicability of auxiliary data, such as water
storage, runoff, and precipitation data, will affect the accuracy of the entire water balance
formula. The spatial resolution of each product is different, and it is inevitable that some
information will be lost during resampling. In addition, the different evaluation methods
also have their own limitations. The EB_ET adopts the improved SEBS algorithm [44,56],
which was found to have the smallest deviation in the water balance method evaluation
conducted in this study, but it differs from the measured EC data. The results of the
overestimation and underestimation of MOD16_ET were similar to previous research
results for the Hanjiang River Basin [57] and the Northwest Inland River in China [36]. The
GLEAM_ET, JRA_ET, PML_ET, and ZK_ET produced overestimation. The overestimations
of the PML_ET, ZK_ET and JRA55 have also been confirmed in the Hanjiang River Basin in
China [58].

The MOD16_ET, PML_ET, and ZK_ET are calculated based on the modified PM
formula. The PM formula has a solid theory and high accuracy. It is a commonly used ET
estimation method. According to relevant research conclusions [59], the PM formula has a
high correlation with climate data. Therefore, the accuracy of the climate data determines
the accuracy of the PM formula.

The PT formula is a revised version of the PM formula, and it omits the aerodynamic
processes. Compared with the PM formula, the accuracy of the PT formula is somewhat
lower; however, the results of this study demonstrate that the applicability of the PT model
product (GLEAM_ET) in the Haihe River Basin is much higher than that of the PM data
products, and the good applicability of GLEAM_ET in the Haihe River Basin has also been
confirmed in other studies [60].

The JRA-55 is re-analysis data, and it was created using a complete observation system
from 1958 to the present. However, the data from the observation system are not uniformly
distributed geographically, so some of the characteristics of the Haihe River Basin cannot
be observed.

The GLASS_ET is a Bayesian method integrated product, which integrates five tra-
ditional latent heat flux algorithms: the MODIS algorithm, improved PM model and the
Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), modified satellite-based Priestley–
Taylor (MS-PT), and semi-empirical Penman algorithms. In this study, only the flux tower
validation of the GLASS_ET was carried out, and due to the lack of monthly-scale data, the
water balance method and TCH uncertainty validations were not applied to the GLASS_ET.
The results indicate that this product has large errors in the high ET value seasons, especially
in summer.

5. Conclusions

Seven ET products, including the EB_ET, GLEAM_ET, JRA_ET, MOD16_ET, PML_ET,
GLASS_ET, and ZK_ET, were evaluated in this study using three methods: pixel-scale flux
tower validation, regional-scale water balance method validation, and TCH uncertainty
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analysis. The applicability of the above data products in the Haihe River Basin was
evaluated. The results of this study provide data support for the promotion of ET products
and water resource evaluation in the Haihe River Basin. The main conclusions of this study
are as follows:

1. For validation based on flux tower EC observations, the results indicate that, except
for MOD16_ET and EB_ET, the R values were all greater than 0.6. The BIAS values of
GLASS_ET were the lowest (2.93 w/m2). GLEAM_ET had the highest R (0.77) value
and the lowest RMSD’ (27.3 w/m2). Overall, the GLEAM data fitted the EC measured
data well, and the RMSD values were relatively low;

2. Based on the validation using the water balance method, the EB_ET, GLEAM_ET,
JRA_ET, PML_ET, and ZK_ET overestimated the values in the Haihe River Basin. The
multi-year averaged monthly evapotranspiration of the WB_ET and the ET products
showed that the EB_ET and GLEAM_ET were in good agreement with the WB_ET. Over-
all, the JRA_ET (R = 0.92, BIAS = 13.72 mm/month, and RMSD′ = 10.96 mm/month)
and GLEAM_ET (R = 0.91, BIAS = 9.14 mm/month, and RMSD′ = 11.00 mm/month)
data have higher accuracies;

3. For the uncertainty analysis based on the TCH method, the average relative un-
certainties of the GLEAM data were significantly lower than those of the other ET
products. The relative uncertainties of the JRA_ET and ZK_ET were relatively high
in the mountainous areas. The PML_ET had higher relative uncertainties in the non-
mountainous areas. The performances of the EB_ET, GLEAM_ET, and MOD16_ET in
the mountainous and non-mountainous areas were relatively equal.

Overall, among the seven products, GLEAM_ET shows the best consistency with the
point EC observations, better consistency with the basin-scale benchmark data, and the
lowest relative uncertainties. We thus recommend GLEAM_ET as the preferred choice
for application among the seven products in the Haihe River Basin. This study offers
useful information for product users to choose the appropriate ET product(s) to conduct
their specific studies and also helps product developers to improve the accuracy of their
ET products.
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