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Abstract: In this paper, the super-resolution structural point cloud matching (S2-PCM) framework
is proposed for video synthetic aperture radar (SAR) inter-frame registration, which consists of a
feature recurrence super-resolution network (FRSR-Net), structural point cloud extraction network
(SPCE-Net) and robust point matching network (RPM-Net). FRSR-Net is implemented by integrating
the feature recurrence structure and residual dense block (RDB) for super-resolution enhancement,
SPCE-Net is implemented by training a U-Net with data augmentation, and RPM-Net is applied for
robust point cloud matching. Experimental results show that compared with the classical SIFT-like
algorithms, S2-PCM achieves higher registration accuracy for video-SAR images under diverse eval-
uation metrics, such as mutual information (MI), normalized mutual information (NMI), entropy
correlation coefficient (ECC), structural similarity (SSIM), etc. The proposed FRSR-Net can signifi-
cantly improve the quality of video-SAR images and point cloud extraction accuracy. Combining
FRSR-Net with S2-PCM, we can obtain higher inter-frame registration accuracy, which is crucial for
moving target detection and shadow tracking.

Keywords: SAR image registration; RPM; super-resolution network; video-SAR

1. Introduction

Video synthetic aperture radar (SAR) is a SAR system capable of high-frame-rate
imaging, which enables real-time monitoring of the target area by continuously illuminating
the ground target area and processing the received echoes in real-time [1–3]. Due to
the unique advantage of all-day all-weather reconnaissance, video-SAR has been widely
applied in military and civilian applications [4]. However, due to the existence of IMU
measurement errors, there are translation and rotation errors in the video-SAR inter-frame
images, which need to be further registered. The registration accuracy directly affects the
subsequent processing, such as moving target detection and shadow tracking, etc. [5–7].

Traditional image registration methods can be roughly divided into two categories:
intensity-based registration methods and feature-based registration methods [8–10]. The
intensity-based registration methods first obtain the grayscale statistics of images, set the
similarity criterion, and acquire the correspondence between the images by evaluating the
similarity of the corresponding windows of the two images [11]. Widely used similarity
criteria include the normalized cross-correlation [12,13] and mutual information [14–16].
However, the required computational cost for these methods is too large in practice.

The feature-based registration methods usually consist of three steps: feature extrac-
tion, feature matching and transform parameter estimation [8]. Firstly, the significant
features, such as the point features, line features, and area features, are extracted from
images. The features are then matched by calculating the similarities between them. Finally,
the transformation relationship between images is estimated based on reliable feature pairs.
The feature-based registration methods have the advantages of extensive adaptability and
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high registration accuracy. Among them, the scale-invariant feature transform (SIFT) [17]
descriptor is invariant with respect to scale, rotation and illumination changes, which is
one of the most widely used algorithms for optical and radar image registration tasks.

To reduce the dimension of the SIFT descriptor, Ke et al. [18] proposed the PCA-SIFT
algorithm by performing a principal component analysis on the feature vector. To suppress
the speckle noise in SAR images, Dellinger et al. [19] proposed SAR-SIFT, which uses
the exponentially weighted mean ratio to calculate the amplitude and direction of the
gradient. The rotation invariance of the SIFT-like algorithms is achieved by assigning a
dominant direction [17,20] to the key points. However, the speckle noise in the SAR images
greatly affects the calculation of the dominant direction, which severely deteriorates the
registration performance [20,21]. In addition, the SIFT-like registration algorithms often
suffer from high computational complexity in the face of massive feature points.

In recent years, deep-learning-based methods have achieved great success in the
field of image processing, and diverse networks have been applied to image registration.
Wang et al. [22] proposed a network that directly learns the mapping between image
patch pairs and their matched labels. Han et al. [23] extracted features from the two same
convolutional networks to estimate the transformation relationship of the image patches.
The excellent performance of deep learning is achieved based on a large number of training
samples, which means that a large number of paired image blocks need to be given as
training samples. However, it is difficult to obtain a large number of labeled training
samples in SAR image registration for the reason that manual labeling of paired SAR image
blocks is time-consuming and prone to labeling errors [24].

Apart from the above methods, point cloud matching methods, such as iterative
closest point (ICP) [25], Go-ICP [26], deep closest point (DCP) [27], PointNetLK [28],
PCRNet [29], and robust point matching network (RPM-Net) [30], etc., provide a new
approach for image registration. Point cloud is a massive collection of points reflecting the
surface characteristics of an object. Unlike the feature-based methods that construct the
matching relationship according to the distance between features, point cloud contains the
positions of the points only, and the matching relationship is often obtained by solving an
optimization problem.

Since it is hard to extract the features from SAR images due to speckle noise, a point-
cloud-based video-SAR image registration framework is proposed based on the state-of-
the-art RPM-Net due to its robustness in this paper. To improve the registration accuracy,
we extract the structural point cloud between the video-SAR frames via a segmentation
technique. Then, RPM-Net is used to match the structural point clouds of SAR frames.
Considering that the low-resolution SAR images lead to the inaccurate structural point
cloud extraction process, a super-resolution network is designed for better point cloud
extraction in this paper. The main contributions of the methodology of this paper can be
summarized as follows:

1. A super-resolution structural point cloud matching framework for inter-frame reg-
istration of video-SAR is first proposed by integrating FRSR-Net, SPCE-Net with
RPM-Net, which can significantly improve the registration accuracy and stableness of
SAR images.

2. A feature recurrent super-resolution network for video-SAR image super-resolution
is proposed by refining the low-level features with the high-level features through
feature recurrence, which is able to achieve elaborate image reconstruction.

The organization of the remaining sections of this paper is as follows. Section 2 reviews
the principles of RPM-Net. The proposed S2-PCM framework is introduced in Section 3.
Section 4 introduces the proposed FRSR-Net. Experimental results and analysis are given
in Section 5. Finally, the conclusion is given in Section 6.

2. Review on Point Cloud Matching

As one of the most popular point cloud matching methods, the classical point cloud
matching algorithms, including RPM and RPM-Net, are first reviewed in this section.
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RPM-Net [30] was proposed based on the RPM algorithm [31], which consists of two
main modules: a feature extraction network and a parameter prediction network. It uses
a differentiable Sinkhorn [32] layer and annealing [33] to obtain soft assignment values
corresponding to points from hybrid features extracted from spatial coordinates and local
geometry. To further improve the registration accuracy, a secondary network is added to
predict the optimal annealing parameters.

Given the source point cloud X and the reference point cloud Y:

X =
{

xj ∈ R3
∣∣j = 1, . . . , J

}
Y =

{
yk ∈ R3

∣∣k = 1, . . . , K
} (1)

where J and K are the numbers of points of X and Y, respectively, and J is not necessarily
equal to K.

Point cloud registration is to find out the transformation relationship {Rp, tp} between
X and Y, where Rp ∈ SO(3) is a rotation matrix and tp ∈ R3 is a translation vector. To this
end, a matching matrix M ∈ RJ×K is defined to represent the correspondence between
points, where each element mjk can be determined by the following equation:

mjk =

{
1 if point xj corresponds to yk
0 otherwise

(2)

The registration problem can be described as finding the {Rp, tp} and the M that
optimally maps points in X to Y, i.e.,

argmin
M,Rp,tp

J

∑
j=1

K

∑
k=1

mjk

(
‖Rpxj + tp − yk‖

2
2 − α

)
(3)

where ∑K
k=1 mjk = 1, ∀j, ∑J

j=1 mjk = 1, ∀k, and mjk ∈ {0, 1}. These three constraints require
that M must be a permutation matrix. α is a parameter that controls the number of
correspondences rejected as outliers.

In RPM, Equation (3) is minimized by two steps: soft assignment and transformation
relationship estimation. Firstly, the constraint of the permutation matrix is relaxed to a
double random matrix, i.e., mjk ∈ [0, 1]. Therefore, mjk is initialized as:

mjk ← e−β(‖Rpxj+tp−yk‖
2
2−α) (4)

where β is an annealing parameter in each iteration. Then, the matching matrix M is
estimated in the soft assignment. Once the optimal matching matrix is obtained, the
transformation relationship can be computed.

In RPM-Net, the spatial distance in Equation (4) is replaced by the learned hybrid
feature distance. In addition, α and β are obtained by network prediction. Specifically,
RPM-Net solves the optimal transformation relationship by multiple iterations, as shown
in Figure 1. In the ith iteration, the point cloud X is first transformed into the initial

transformed point cloud X̃
i

by the transformation
{

Ri−1
p , ti−1

p

}
estimated in the previous

iteration. Then the feature extraction module extracts the hybrid features of X̃
i

and Y.
Meanwhile, the optimal annealing parameters α and β are predicted by the secondary
parameter prediction network. The initial matching matrix M is calculated using the hybrid
features, and parameters α and β, i.e., mjk is initialized as:

mjk ← e
−β(‖F̃xj

−Fyk ‖
2

2
−α)

(5)

where F̃xj
and Fyk

denote the hybrid features of points x̃j ∈ X̃
i

and yk ∈ Y learned by the

feature extraction network, respectively. Then the final matching matrix Mi can be obtained
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by Sinkhorn normalization with enhanced double random constraints. Next, for each point
xj in X, its corresponding coordinate in Y is calculated as:

ŷj =
1

∑K
k mjk

K

∑
k

mjk•yk (6)

Finally, the transformation relationship is solved by SVD [34].
Since RPM-Net uses the learned feature distances instead of spatial distances to initialize

the matching matrix, it avoids the initialization sensitivity and local minimum problems and is
able to handle partial-to-partial point cloud registration. In addition, it improves the robustness
to outliers by progressively reinforcing the soft assignment of point correspondences through
Sinkhorn [32] and annealing [33], which is applied in this paper.
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3. Super-Resolution Structural Point Cloud Matching Framework

Based on RPM-net, we present the framework of the super-resolution structural point
cloud matching algorithm in detail in this section. In order to use the point clouds to register
the SAR images, the point clouds first need to be extracted, which can be considered a
segmentation problem in deep learning. Furthermore, to ensure the performance of the
registration, the positions of the extracted point clouds should be accurate. However,
for the actual SAR system, the images suffer from low resolution, speckle noise, blur and
defocusing, which greatly reduce the image quality and lead to the difficulty and inaccuracy
of the extraction of point clouds. Therefore, a novel super-resolution structural point cloud
matching framework is presented in this section for better performance.

3.1. Network Structure

The proposed super-resolution structural point cloud matching (S2-PCM) framework
for inter-frame registration of video-SAR consists of a super-resolution network, structural
point cloud extraction network (SPCE-Net) and RPM-Net, as shown in Figure 1.

Firstly, the reference image Iref and the sensed image Isen are fed into a super-resolution
network to improve the resolution and suppress the speckle noise. Most of the current
super-resolution networks [35–40] are designed for optical images, but there are great
differences between the textures of optical images and SAR images. Through experiments,
it is found that the super-resolution network for optical images directly applying to SAR
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images results in poor performance. For this reason, we propose a super-resolution network,
the details of which will be given in Section 4.

After image enhancement, feature point cloud extraction is required for SAR images.
Extracting the point cloud can be achieved by fixing a threshold and selecting the points
with higher intensity. It can also be achieved by segmentation. However, due to the different
observation angles of the circular SAR system and the effect of speckle noise, the intensity
of scattered points varies greatly among different images. The point clouds extracted by
intensity-based methods vary greatly and reduce the registration accuracy significantly.
Thus, we use the segmentation technique to extract the structural point clouds, i.e., point
clouds reflecting the geometric structure of video-SAR frames. Firstly, we manually label
the typical region edges in the video-SAR image to train a structural point cloud extraction
network (SPCE-Net implemented by U-Net [41]). Secondly, the images are fed into the
trained SPCE-Net to obtain the segmented masks. Then, the coordinates are extracted from
the masks to generate the initial point clouds. To reduce the computational cost of the
point cloud matching process, we down-sample the initial point clouds to generate the
final structural point clouds via random sampling. Each structural point cloud contains
approximately 1000 points. Too few points do not reflect the geometric structure of the
image, which reduces the registration accuracy.

We use the trained SPCE-Net to segment the video-SAR frames to generate a sequence of
point clouds, which is applied as the training dataset for RPM-Net. Then, we use the trained
RPM-Net to match the structural point clouds. In order to achieve higher matching accuracy,
RPM-Net requires at least five iterations. It is worth noting that since RPM-Net is a 3D point
cloud registration network, we adapt the 2D point clouds extracted from the SAR images to
RPM-Net by expanding a new dimension and setting it to 0. By feeding the structural point
clouds into RPM-Net, we can obtain the transformation relationship {R′, t′} between images,
where R′ ∈ SO(3) is a rotation matrix and t′ ∈ R3 is a translation vector. Due to the scaling
of super-resolution processing, the transformation relationship estimated by RPM-Net is not
equal to the original one, which should be adjusted before use.

3.2. Transformation Relationship

Assume that the transformation relationship between Isen and Iref is {R, t}, where
R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. According to [42], R, t can
be expressed as:

R =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

cos ψ 0 − sin ψ
0 1 0

sin ψ 0 cos ψ

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


t =

(
tx, ty, tz

)T

(7)

where φ, ψ, and θ denote the rotation angles around the x-axis, y-axis, and z-axis, respec-
tively, and tx, ty, and tz denote the translations in the x-, y-, and z-directions, respectively.
Since the sensed image Isen and the reference image Iref are located only in the x–y plane, it
can be obtained that φ and ψ are 0 and tz is 0. Equation (7) can be simplified as:

R =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


t =

(
tx, ty, 0

)T

(8)

Take any point A(x, y, 0) from Isen and assume that its corresponding point in Iref is
B(x′, y′, 0), and then the relationship between A and B can be expressed as:x′

y′

0

 = R

x
y
0

+ t =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

x
y
0

+

tx
ty
0

 (9)
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cos θ =
O
→
A•O

→
B∣∣∣∣O→A∣∣∣∣∣∣∣∣O→B ∣∣∣∣ (10)

where O is the coordinate origin.
Given the scaling factor S of super-resolution, the points A(x, y, 0) and B(x′, y′, 0) after

scale transformation are A′(Sx, Sy, 0) and B′(Sx′, Sy′, 0), respectively. Thus, the relationship
between A′ and B′ can be expressed as:Sx′

Sy′

0

 = R′

Sx
Sy
0

+ t′ (11)

Similar to Equation (10), we can obtain that the rotation angle around the z-axis of Iref
and Isen after super-resolution is still θ. Thus, combining Equations (9) and (11), it can be
obtained that:

R = R′

t = t′
S

(12)

In a word, the transformation relationship {R′, t′} with a scaling operator between
Iref and Isen is acquired by registration, and the transformation relationship {R, t} without
a scaling operator between the original Iref and Isen can then be obtained according to
Equation (12).

3.3. Training Strategy

Since it is hard to acquire noise-free high-resolution SAR images, we use optical images
to construct the dataset for training a super-resolution network by data augmentation.
Firstly, optical images are converted to grayscale images as high-resolution images for
training. The high-resolution images are Bicubic [43] down-sampled and then blurred
with a point spread function (PSF). Then, speckle noise of level L is added to construct
low-resolution images. As a result, multiple pairs of training data are generated. We choose
L1 loss for training the network, which is defined as:

LSR =
W

∑
y=1

H

∑
x=1
|ISR(x, y)− IHR(x, y)| (13)

where IHR and ISR denote the high-resolution image and the super-resolution image, re-
spectively. W and H are the width and height of the image, respectively.

To train SPCE-Net, we label the images manually. Then the same affine transformation
is applied to the images and the corresponding labels, thus achieving data augmentation
and reducing the workload of image labeling. The dice coefficient [44] is used as the
loss function for training SPCE-Net. It is an ensemble similarity measure function and
calculated as follows:

Dice =
2|T ∩ P|
|T|+ |P| (14)

where T denotes the set of segmented true labels and P denotes the set of output predicted values.
To calculate |T ∩ P|, it is approximated as the sum of the dot product of T and P. |T|+ |P|
denotes a direct summation over all elements of T and P. Thus, Diceloss can be obtained:

Diceloss = 1− Dice (15)

The overall loss Lseg uses the sum of Diceloss and the cross-entropy loss E:

Lseg = Diceloss + E (16)
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For training RPM-Net, we use the original point cloud as the source point cloud X.
Then, we generate a random rotation angle around the z-axis in the range of [−90◦, 90◦]
and a random translation vector in the range of [−300, 300] pixel on the x and y axes,
which results in a transformation relationship {Rgt, tgt}. This transformation relationship is
applied to the source point cloud X to obtain the reference point cloud Y. For each point
cloud, a hyperplane is randomly generated to sample a half-space, and it is continuously
shifted so that 70% of the points are retained. Finally, Gaussian noise is added. We choose
the L1 distance as the loss for training RPM-Net, which is defined as:

Lreg =
1
J

J

∑
j

∣∣(Rgtxj + tgt
)
−
(
Rpredxj + tpred

)∣∣ (17)

where {Rpred, tpred} is the prediction transformation.

4. Feature Recurrence Super-Resolution Network

In this section, we present our proposed feature recurrence super-resolution network
in detail.

Most current super-resolution networks [35–40] for optical images reconstruct high-
resolution images with only a single prediction, ignoring the connection between higher-
level information and lower-level information. Since the resolution degradation of SAR
images is affected by several factors, a single prediction may not be able to accurately
recover the detailed information of the image. To this end, we design a feature recurrence
super-resolution network (FRSR-Net) using the residual dense block (RDB) [40]. FRSR-Net
utilizes a recurrence structure to refine low-level features with high-level features for better
reconstruction of high-resolution SAR images, and the recurrence structure is able to reduce
network parameters.

4.1. Super-Resolution Sub-Network via Feature Recurrence

The proposed FRSR-Net contains three modules: feature extraction, feature enhance-
ment, and image reconstruction, as shown in Figure 2. The feature extraction module
extracts the low-level features of the image. The feature enhancement module is mainly
constructed by RDB, where RDB makes full use of the features of all convolutional layers
within the block and establishes feature-to-feature associations with dense connections.
Then, the local features generated by different RDBs are fused to generate high-level fea-
tures. The image reconstruction module recovers high-resolution images by sub-pixel
convolution [37].

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

4.1. Super-Resolution Sub-Network via Feature Recurrence 

The proposed FRSR-Net contains three modules: feature extraction, feature enhance-

ment, and image reconstruction, as shown in Figure 2. The feature extraction module ex-

tracts the low-level features of the image. The feature enhancement module is mainly con-

structed by RDB, where RDB makes full use of the features of all convolutional layers 

within the block and establishes feature-to-feature associations with dense connections. 

Then, the local features generated by different RDBs are fused to generate high-level fea-

tures. The image reconstruction module recovers high-resolution images by sub-pixel 

convolution [37]. 

 

Figure 2. The architecture of the feature recurrence super-resolution network (FRSR-Net). 

The feature extraction module consists of two cascaded convolutional layers, and a 

ReLU activation function is connected after each convolutional layer. At the tth iteration, 

the low-level feature 
t

l
F , output by the feature extraction network, can be expressed as: 

( )=t

l FE LR
F f I  (18) 

where ( )FE
f  denotes the feature extraction module, and ILR is the input of a low-resolu-

tion image. 

The feature enhancement module consists of a feature compression block (FCB) cas-

caded with I RDBs, and a multi-level feature fusion block (MLFFB) is added last. At the 

tth iteration, the high-level feature 
t

h
F  is obtained by feeding the low-level feature 

t

l
F  

and the hidden feature 
1t

h
F −

 output from the feature enhancement module in the previ-

ous iteration into the feature enhancement module, which can be expressed by the follow-

ing equation: 

( )−= 1,t t t

h EN l h
F f F F  (19) 

where ( )EN
f  denotes the feature enhancement module. At the initial iteration, 

−1t

h
F  is 

initialized to 
t

l
F . Specifically, 

t

l
F  is concatenated with 

−1t

h
F  as the input to FCB to ob-

tain the feature ( )0

t

R
F  as the input to RDB 1. Then, the output of the previous RDB is used 

as the input to the next RDB, i.e., 

( ) ( )

( ) ( )( ) ( )( )( )( )

−

−−

=

 = =  
 

1

0

, , , 1 ,11 0

,

... ...

t t t

FCB l hR

t t t

RDB i RDB i RDB i RDBR i R i R

F f F F

F f F f f f F
 (20) 

Figure 2. The architecture of the feature recurrence super-resolution network (FRSR-Net).

The feature extraction module consists of two cascaded convolutional layers, and a
ReLU activation function is connected after each convolutional layer. At the tth iteration,
the low-level feature Ft

l , output by the feature extraction network, can be expressed as:

Ft
l = fFE(ILR) (18)
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where fFE(•) denotes the feature extraction module, and ILR is the input of a low-
resolution image.

The feature enhancement module consists of a feature compression block (FCB) cas-
caded with I RDBs, and a multi-level feature fusion block (MLFFB) is added last. At the tth
iteration, the high-level feature Ft

h is obtained by feeding the low-level feature Ft
l and the

hidden feature Ft−1
h output from the feature enhancement module in the previous iteration

into the feature enhancement module, which can be expressed by the following equation:

Ft
h = fEN

(
Ft

l , Ft−1
h

)
(19)

where fEN(•) denotes the feature enhancement module. At the initial iteration, Ft−1
h is

initialized to Ft
l . Specifically, Ft

l is concatenated with Ft−1
h as the input to FCB to obtain the

feature Ft
R(0) as the input to RDB 1. Then, the output of the previous RDB is used as the

input to the next RDB, i.e.,

Ft
R(0) = fFCB

(
Ft

l , Ft−1
h

)
Ft

R(i) = fRDB,i

(
Ft

R(i−1)

)
= fRDB,i

(
fRDB,i−1

(
. . .
(

fRDB,1

(
Ft

R(0)

))
. . .
)) (20)

where fFCB(•) denotes FCB, fRDB,i(•) denotes the ith RDB, and Ft
R(i) denotes the local

features of the output of the ith RDB. Finally, the MLFFB connects all the local features and
applies a convolution operation to obtain the high-level feature Ft

h, i.e.,

Ft
h = fMLFFB

(
Ft

R(1), Ft
R(2), . . . , Ft

R(I)

)
(21)

where fMLFFB(•) denotes MLFFB.
The image reconstruction module consists of two convolutional layers and a sub-pixel

convolution block [37], and more details of sub-pixel convolution will be introduced in
Section 4.3. Ft

h is used as the input of the first convolution layer, and then the feature map
is up-sampled by a subpixel convolution block. Finally, ILR is bilinearly interpolated and
added to the output of the image reconstruction module to obtain the reconstruction output
ISR, i.e.,

It
SR = f IR

(
Ft

h
)
+ fup(ILR) (22)

where f IR(•) denotes the image reconstruction module and fup(•) denotes the bilinear
up-sampling.

After Ta rounds of iterations, the output of the Tath iteration is taken as the final
reconstructed image.

4.2. Residual Dense Block

Since the details of SAR images are obscured by the strong speckle noise, the standard
convolutional networks that are composed of simple chain stacking may ignore some
information about each convolutional layer. On the contrary, thee RDB proposed by
Zhang et al. [40] uses dense connection and residual connection, which fully utilizes the
information of the convolutional layer within the block and has the stable characteristic to
extract the detailed information of SAR images. RDB mainly contains dense connection
layers, local feature fusion and local residual learning, as shown in Figure 3.

There are Nc convolutional layers within each RDB, and each convolutional layer
except for the last layer is followed by a ReLU. The dense connection is reflected in the
interconnection between the convolutional layers, i.e., the input of the nth convolutional
layer in RDB is the output of the previous (n − 1) convolutional layers connected to the
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input of RDB. Therefore, the output FR(i,n) of the nth convolutional layer of the ith RDB can
be expressed as:

FR(i,n) = σ
(

Wi,n

[
FR(i−1), FR(i,1), . . . , FR(i,n−1)

]
+ bi,n

)
(23)

where σ denotes the linear activation unit, and Wi,n and bi,n denote the weight and bias of
the nth convolutional layer within the ith RDB, respectively.
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Then, local feature fusion is performed. The output of all convolutional layers within
the current ith RDB and the input of RDB are connected into a 1 × 1 convolutional block,
and the output is obtained as the feature FLF(i):

FLF(i) = fconv,i

([
FR(i−1), FR(i,1), FR(i,2), . . . , FR(i,Nc)

])
(24)

where fconv,i(•) denotes the last convolution operation of the ith RDB. In this way, the local
features of the previous RDB flow into the next RDB by direct concatenation, which can
greatly reduce the number of features and achieve the full utilization of features.

Finally, local residual learning is utilized to better improve the information flow. The
local feature FR(i) of the output of the ith RDB can be expressed as:

FR(i) = FR(i−1) + FLF(i) (25)

4.3. Sub-Pixel Convolution

In super-resolution tasks, the commonly used image up-sampling methods are inter-
polation, deconvolution, and sub-pixel convolution [37]. The parameters of interpolation-
based up-sampling methods are not obtainable by learning, while the deconvolution tends
to introduce a checkerboard effect to the image. In order to ensure the trainability of the
reconstruction parameters and achieve efficient up-sampling, sub-pixel convolution is
applied here.

Sub-pixel convolution, also called pixel shuffling, exploits a channel-to-space conver-
sion method to achieve spatial magnification by rearranging the pixels in multiple channels
of the feature map, as shown in Figure 4. Suppose we need to up-sample the feature map
Fin ∈ RW/r×H/r×cr2

by a factor of r, where W/r, H/r, and cr2 denote the width, height,
and the number of channels of the feature map, respectively. Sub-pixel convolution is used
to obtain the output:

Fout(x, y, c) = Fin(bx/rc, by/rc, c× r×mod(y, r) + c×mod(x, r) + c) (26)

where Fout(x, y, c) is the value at position (x, y) on the cth channel of the output, mod(•)
denotes the remainder operation, and b•c represents the function to find the maximum
integer that does not exceed the given input. For example, a feature map of size 32 × 32 × 4
is up-sampled twice, the number of feature channels is reduced after pixel shuffling, and
the elements are rearranged to obtain an output of 64 × 64 × 1.
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5. Experiments and Results
5.1. Dataset and Setting

DIV2K [40] is a common dataset for super-resolution tasks in optics, containing a total
of 1000 high-resolution images, of which 800 were used for training, 100 for validation and
100 for testing. Therefore, according to the strategy in Section 3.3, we used 800 training
images from DIV2K to construct the dataset for training FRSR-Net and used five validation
images during the training process. In the down-sampling, scaling factors of two, three,
and four were applied, respectively. For testing, we selected several standard test datasets
for the super-resolution task, including Set14 [40], Manga109 [40], and some images from
the test set of DIV2K. Among them, set14 contains 14 optical images and Manga109 consists
of 109 manga, which are commonly used as test datasets in super-resolution tasks. The test
datasets were prepared by the same processing steps as the training dataset.

For training SPCE-Net and RPM-Net, we selected a simulated video-SAR dataset
and a real video-SAR dataset. The real video-SAR dataset contains 500 images, and the
simulated video-SAR data contains 500 images. The networks were trained with these two
datasets separately.

To test the registration performance of our S2-PCM, we selected three test datasets
containing a video-SAR simulation dataset and two video-SAR real datasets. Each test
dataset contains 50 continuous frames. In the later subsection, we refer to the two real
datasets as real dataset 1 and real dataset 2, respectively.

In the super-resolution experiment, the number of iterations was set to 4, and the
number of RDBs was 8 in FRSR-Net. In the registration experiments, the scaling factor of
super-resolution was set to 3, and the registration of each dataset was taken by registering
the later images to the initial frame. The whole experiment was implemented with the
Pytorch open-source framework and trained with the Intel i7-8700 CPU and NVIDIA
GTX-1080 (8G) GPU hardware platform.

5.2. Evaluation Metrics
5.2.1. Super-Resolution Evaluation Metrics

We used the widely used peak signal-to-noise ratio (PSNR) [45] and structural similar-
ity (SSIM) [46] to evaluate the super-resolution performance. PSNR is defined as follows:

PSNR = 10 log10

(
MAX2

I
MSD

)
(27)

where MAXI is the maximum pixel value in the image, and MSD is the mean squared
difference between the two images.

SSIM is a metric that measures the degree of similarity between images. It is more
consistent with the human eye’s judgment of image quality compared with PSNR, which is
defined as follows:

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (28)
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where µx, µy are the means of x and y, σx and σy are the standard deviations of x and y, σxy
is the covariance of x and y, and C1 and C2 are constants.

5.2.2. Registration Evaluation Metrics

In order to quantitatively evaluate the registration performance of S2-PCM, the fol-
lowing evaluation metrics [47,48] were applied. Firstly, we used the symbols M and N
to denote the random variables of the statistical features of the reference image and the
registered image, respectively.

1. Pearson correlation coefficient (PCC):

PCC =
1

l − 1

l

∑
i=1

(
mi − µM

σM

)(
ni − µN

σN

)
(29)

where mi and ni denote the realizations of the random variables M and N, l is the length of
the random variable, µM, µN are the means of M and N, and σM and σN are the standard
deviations of M, N.

2. Mean squared differences (MSD):

MSD =
1
l

l

∑
i=1

(mi − ni)
2 (30)

where mi, ni, and l are the same as in Equation (29).

3. Mutual information (MI):

MI = I(M, N) = ∑
m∈M

∑
n∈N

pM,N(m, n) log
pM,N(m, n)

pM(m)pN(n)
(31)

where pM(m) and pN(n) denote the one-dimensional probability densities of the normal-
ized histograms of M and N, respectively. pM,N(m, n) denotes the two-dimensional joint
probability densities of the normalized joint histograms of M and N.

4. Normalized mutual information (NMI):

NMI =
H(M) + H(N)

H(M, N)

H(M, N) =−∑ pM,N(m, n) log(pM,N(m, n))

H(M) =−∑ pM(m) log(pM(m))

H(N) =−∑ pN(n) log(pN(n))

(32)

where pM(m), pN(n), and pM,N(m, n) are the same as in the above equation, H(M) and H(N)
are the entropies of M and N, respectively, and H(M, N) is the joint entropy of the pair (M, N).

5. Entropy correlation coefficient (ECC):

ECC =

√
2I(M, N)

H(M) + H(N)
(33)

where I(M, N), H(M), and H(N) are given by the above equation.

6. SSIM is given in Section 5.2.1.

Among the above evaluation metrics, MI, NMI, and ECC are information theory-based
evaluation methods, and MSD, PCC, and SSIM are statistical-based evaluation methods.
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5.3. Analysis of Super-Resolution Performance

In this sub-section, we verify and analyze the super-resolution performance of FRSR-
Net. We compare FRSR-Net with two other super-resolution methods. One is the traditional
Bicubic algorithm [43], and the other is the deep learning-based RDN [40]. We train RDN
with the same dataset.

Firstly, we verify the super-resolution performance with three test datasets, and the
experimental results of super-resolution with different scaling factors are shown in Table 1.
It can be seen from Table 1 that all the evaluation metrics of FRSR-Net are superior to the
rest of the compared methods, and it achieves the best performance. The test results of
RDN are the second, and Bicubic is the worst.

Table 1. Average PSNR/SSIM values.

Dataset Scaling Factor Bicubic RDN FRSR-Net

Set14
2 16.8536/0.1850 23.1123/0.5920 23.3392/0.6015
3 16.3669/0.1696 21.5473/0.5301 21.7953/0.5406
4 16.0525/0.1734 20.4009/0.4907 20.6160/0.4986

Manga109
2 15.2934/0.1592 21.8103/0.7003 22.3246/0.7189
3 14.7603/0.1473 20.0737/0.6393 20.3832/0.6554
4 14.4211/0.1583 18.9417/0.6042 19.1847/0.6156

DIV2K
2 17.3878/0.1789 25.2677/0.6623 25.5155/0.6679
3 17.0843/0.1766 23.9786/0.6190 24.1894/0.6245
4 16.9035/0.1918 23.0580/0.5954 23.2885/0.6007

FRSR-Net takes full advantage of the features of different levels of RDB and adopts
a recurrence structure to refine the low-level features with the high-level output features,
which results in better reconstruction performance. Since Bicubic is not able to learn the
mapping from low-resolution images to high-resolution images, it has the worst test results.
Due to the use of the recurrence structure, FRSR-Net applies a smaller number of RDBs
compared with RDN, which results in a smaller number of parameters for the network.
With a super-resolution scaling factor of three, the number of network parameters of FRSR-
Net is about 1.7 million, and that of RDN is about 3.6 million. It can be seen that the number
of parameters used in our method is less than 50% of that of RDN.

The calculation of the above metrics requires noise-free high-resolution images as
reference, but it is not possible to obtain real SAR images without the influence of noise. In
order to verify the super-resolution performance of our method on real SAR images, a real
SAR image is applied to super-resolution with a scaling factor of three. We qualitatively
compare the super-resolution results of the FRSR-Net with the above comparison methods,
as shown in Figure 5.
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It can be seen from Figure 5 that, compared with the remaining two methods, our
method achieves the best visual effect. Specifically, some details of the image are recovered
in the results, the edges of the image are sharpened, and the speckle noise is suppressed.
Compared with the original image, the RDN recovered image detail is not accurate enough,
and it generates some additional textures, as shown by the red circles in the enlarged
subfigure. The super-resolution effect of Bicubic is the worst, which only enlarges the
image and cannot recover image details and suppress speckle noise.

5.4. Analysis of Registration Performance

In this sub-section, we verify the registration performance of our S2-PCM on a simu-
lated dataset and real dataset, respectively. We compare our S2-PCM with three traditional
algorithms, including SIFT, SAR-SIFT and PSO-SIFT [49]. We match the feature points
using the nearest neighbor distance ratio (NNDR) with Euclidean distance and eliminate all
incorrectly matched feature points using the Fast Sample Consensus (FSC) algorithm [50],
which divides the candidate objects in Random Sample Consensus (RANSAC) [51] into
two parts: the sample set with a high correct rate and the consensus set with large correct
matches. Compared with RANSAC, FSC can achieve a greater number of correct feature
point matching with fewer iterations.

5.4.1. Registration Results of Simulation Dataset

The registration results of the simulated dataset are shown in Table 2. It can be seen that
the proposed S2-PCM method is superior to the compared methods with most of the metrics.
However, due to the simplicity of the simulated scenes, the registration performance of
SAR-SIFT and PSO-SIFT is acceptable with most image pairs, and the proposed method has
only a slight superiority over them. Since the moving targets’ shadows in the simulated SAR
images are vivid and similar, we find that the three comparison methods regard the moving
targets’ shadows as feature descriptors. Since the moving targets’ shadows are always
moving, there are some error conversion relationships, which lead to the degradation of
the registration performance.

Table 2. Comparison of SIFT, SAR-SIFT, PSO-SIFT and the proposed method on the simulated dataset.

MI NMI ECC MSD PCC SSIM

SIFT 4.0214 1.5011 0.8167 758.6585 0.5180 0.2684
SAR-SIFT 4.2285 1.5053 0.8192 622.5073 0.5566 0.2867
PSO-SIFT 4.2582 1.5031 0.8179 616.7051 0.5426 0.2929
Proposed 4.2764 1.5058 0.8196 551.6772 0.5921 0.2702

As shown in Figure 6, we select two representative images to show the registration
results of our S2-PCM. Figure 6c,f shows the matching results of the structural point clouds,
where the red points denote the structural point clouds of the sensed images, the blue
points are the structural point clouds of the reference image, and the green points are the
point clouds after being matched. The green point cloud is completely overlapped with
the blue point cloud and has a good registration result. Figure 6d,g is the checkerboard
mosaicked images [24] after registration, and the brightness of the images is adjusted. The
edge continuity between the registered image and the reference image can be seen in the
figure, which indicates the excellent registration performance of our method.
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Figure 6. Registration results on simulated dataset. (a) Reference image. (b) The first sensed image.
(c) Point cloud matching result of the first sensed image. (d) Checkerboard mosaicked image of the
first sensed image. (e) The second sensed image. (f) Point cloud matching result of the second sensed
image. (g) Checkerboard mosaicked image of the second sensed image.

5.4.2. Registration Results of Real Datasets

In the two real test datasets, the images’ quality of real dataset 1 is better than that of
real dataset 2, and some images of real dataset 2 appear defocused. Both have large speckle
noise and brightness variation between images. A comparison of the registration results is
shown in Tables 3 and 4. We can observe from the tables that the registration performance
of our method is superior to other comparison methods on both datasets under MI, NMI,
ECC, MSD, PCC, and SSIM evaluation metrics. Moreover, the registration performance
on dataset 2 is significantly better than the comparison methods, which indicates that the
S2-PCM method is relatively robust to image defocusing. In summary, our method uses
structural point clouds, which reflect the geometric characteristics of images, as matching
features. Due to the enhancement of image details and suppression of speckle noise
by super-resolution, the structural point clouds are extracted more accurately, which is
beneficial for improving registration accuracy. In addition, the RPM-Net, which is robust to
outliers and desensitized to initialization, is used to match the point clouds, which further
improves registration accuracy.

As mentioned in reference [20,21], the calculation of the dominant direction of the
SIFT algorithm is strongly influenced by speckle noise, which will affect the matching
performance of the feature descriptors. During experiments, we find that due to the texture
characteristic of the SAR image, there are sometimes only a few correctly matched feature
point pairs (less than four feature point pairs) persevered by the SIFT-like algorithms after
the FSC algorithm. In this case, the registration fails.



Remote Sens. 2022, 14, 4302 15 of 20

To demonstrate the registration performance of our S2-PCM more intuitively, for each
dataset, we select two representative sensed images and draw the registration results,
as shown in Figures 7 and 8, where Figure 7 shows the results of real dataset 1 and
Figure 8 shows the results of real dataset 2. The matching results of the point clouds
are shown in Figures 7c,f and 8c,f. It can be seen that the green point cloud has almost
been overlapped with the blue point cloud, which shows a good matching performance.
Figures 7d,g and 8d,g are the checkerboard mosaicked images after registration, and we
zoom in for the details in the image. From the figures, we can see that the edges of the image
after registration and the reference image are continuous, and the regions are overlapped
well, which indicates that our S2-PCM method is able to achieve excellent registration
performance.

Table 3. Comparison of SIFT, SAR-SIFT, PSO-SIFT and proposed method on real dataset 1.

MI NMI ECC MSD PCC SSIM

SIFT 3.6440 1.5976 0.8639 136.6799 0.6462 0.6936
SAR-SIFT 3.7013 1.6105 0.8698 118.1341 0.7014 0.7229
PSO-SIFT 3.7276 1.6138 0.8714 119.7662 0.7135 0.7269
Proposed 3.8130 1.6271 0.8777 102.6517 0.7458 0.7544

Table 4. Comparison of SIFT, SAR-SIFT, PSO-SIFT and proposed method on real dataset 2.

MI NMI ECC MSD PCC SSIM

SIFT 3.5571 1.5852 0.8572 187.7355 0.6203 0.6051
SAR-SIFT 3.7284 1.6057 0.8674 147.3779 0.7181 0.6564
PSO-SIFT 3.7644 1.5979 0.8640 149.6696 0.6639 0.6667
Proposed 3.8850 1.6217 0.8753 111.4737 0.7586 0.7083
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5.5. Ablation Study
5.5.1. Super-Resolution Performance with Different Numbers of RDBs

In this sub-section, we analyze the effect of different numbers of RDBs on the super-
resolution performance of FRSR-Net. With a super-resolution scaling factor of three, we
perform experiments on three super-resolution test datasets, and Figure 9 shows the
experimental results.
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It can be seen from Figure 9 that the PSNR and SSIM metrics increase as the number
of RDBs increases, which suggests that increasing the number of RDBs is beneficial to
improving the super-resolution performance of the network. The main reason is that more
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RDBs indicates a deeper network with stronger feature extraction capacity. When the
number of RDBs is greater than eight, we find that PSNR and SSIM increase slightly or
even stop at a certain point. However, as the number of RDBs increases, the network is
more complex and time-consuming. Therefore, we believe that when the number of RDBs
is eight, there is a good balance between network performance and complexity.

5.5.2. Super-Resolution Registration Results with Different Scaling Factors

In this subsection, the effects of different super-resolution scaling factors on the regis-
tration performance are discussed. We reselect 30 real video-SAR images to compare the
registration performance with different super-resolution scaling factors, and the results are
shown in Table 5. From the table, it can be seen that the registration performance of video-
SAR images after super-resolution is significantly better than that without super-resolution,
indicating that the use of super-resolution is beneficial in improving the registration accu-
racy of images. This is mainly because the FRSR-Net highlights the edge features of the
image and suppresses the speckle noise, which makes the extraction of the structural point
cloud easier and more accurate. The best registration performance is achieved when the
scaling factor of the super-resolution is three. A possible reason is that as the scaling factor
increases, the performance of the super-resolution network becomes unstable.

Table 5. Comparison of the registration with different super-resolution scaling factors.

Scaling Factor MI NMI ECC MSD PCC SSIM

1 4.1025 1.6166 0.8734 134.2960 0.7652 0.7007
2 4.1840 1.6401 0.8834 98.3499 0.8570 0.7504
3 4.1887 1.6413 0.8839 95.8823 0.8611 0.7530
4 4.1779 1.6384 0.8827 101.3225 0.8480 0.7471

6. Conclusions

In this paper, the super-resolution structural point cloud matching (S2-PCM) frame-
work is proposed for video-SAR inter-frame registration, which consists of FRSR-Net,
SPCE-Net and RPM-Net. The main conclusions are as follows:

1. Compared with the classical SIFT-like algorithms, S2-PCM has higher registration
accuracy for video-SAR images under diverse evaluation metrics, such as MI, NMI,
ECC, SSIM, etc.

2. By integrating feature recurrence structure and RDB, the proposed FRSR-Net can signifi-
cantly improve the quality of video-SAR images and point cloud extraction accuracy.
Combining FRSR-Net with S2-PCM, we can obtain higher registration accuracy.

3. Increasing the number of RDBs is beneficial in improving the super-resolution per-
formance of FRSR-Net. Experimental results show that when the number of RDBs is
eight, an excellent balance between network complexity and performance is achieved.

4. The scaling factor has a significant effect on the results, and a reasonable super-
resolution scale should be chosen. Too high a super-resolution scaling factor may lead
to the unstable performance of FRSR-Net. Experimental results show that the highest
registration accuracy can be obtained when the scaling factor is three.

Our future work will focus on two aspects. The first is to deal with the linear deformation
in video-SAR images, which might lead to the RPM-Net failure. Furthermore, we will take on
more endeavors on the problem of multi-source point cloud extraction and image registration.
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