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Abstract: The lightweight representation of 3D building models has played an increasingly impor-
tant role in the comprehensive application of urban 3D models. Polygonization is a compact and
lightweight representation for which a fundamental challenge is the fidelity of building models. In
this paper, we propose an improved polyhedralization method for 3D building models based on
guided plane segmentation, topology correction, and corner point clump optimization. Improve-
ments due to our method arise from three aspects: (1) A plane-guided segmentation method is used to
improve the simplicity and reliability of planar extraction. (2) Based on the structural characteristics
of a building, incorrect topological connections of thin-plate planes are corrected, and the lamellar
structure is recovered. (3) Optimization based on corner point clumps reduces redundant corner
points and improves the realism of a polyhedral building model. We conducted detailed qualitative
and quantitative analyses of building mesh models from multiple datasets, and the results show that
our method obtains concise and reliable segmented planes by segmentation, obtains high-fidelity
building polygonal models, and improves the structural perception of building polygonization.

Keywords: building mesh polygonization; simplification; plane-guided segmentation; topology
correction; corner point optimization

1. Introduction

With the development needs of smart cities and digital twins, automatic generation of
compact polyhedral building models of large-scale urban scenes from photogrammetric
mesh models has received increasing attention. This not only has direct application in
urban planning, navigation, real estate, and other GIS fields, but also facilitates the storage,
transmission, and drawing of models. Among 3D city objects, buildings are the backbone
of many smart city applications. Structure-from-motion (SfM) [1] and multiview stereo
(MVS) [2] can easily reconstruct scenes from images, enabling vectorized modeling of
buildings. However, there are still very large obstacles to the practical application of
reconstructed building models, mainly due to (1) the large amount of model data and
high memory consumption; (2) surface defects, such as surface holes, noise, distortion,
and missing structures; and (3) structural features that are not prominent and plane, i.e.,
straight-line and angular features of a building that are not prominent, concise or intuitive
enough. GIS applications require lightweight models with low complexity and high
memory requirements [3] and must be expressed in a lightweight way through appropriate
building polyhedron methods. Therefore, this paper directly focuses on model simplicity
and fidelity during building mesh polygonization. We aim to obtain a building polyhedron
representation that is sufficiently concise, has low complexity, and is as faithful to the
original model as possible.
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Polygonization is a low-complexity 3D representation method for building models
that uses less data volume and is more compact while fully describing geometry. The con-
struction methods of compact polyhedral building models are generally divided into three
categories: (1) Constructing facades and roofs—One solution is to project a roof into 2D
space, then optimize the outline, and finally extrude down to obtain a 3D model of the
building [4–6]. Another scheme usually first projects the facade into 2D space to obtain
the facade profile, and then extrudes the profile to 3D to obtain the building walls, namely,
the LOD1 model, and then the flat roof structure, constituting the LOD2 model together
with the LOD1 model, is built. (2) Bounding volume slicing and polygon/polyhedron selec-
tion [7–9]—First, an enclosed body is sliced with the extracted plane primitives, and then
the polygons are retained in the enclosed body [10,11], or the polyhedrons within the
building [12] are selected. (3) Recently, learning-based methods [12–16] have been used
to construct compact polyhedral building models. However, it is not difficult to see that
automatic building-polyhedron modeling still faces some challenges, which mainly include
the following:

(1) Plane extraction—Due to surface defects of the model and deficiencies in existing
plane-segmentation methods, there are problems of undersegmentation or overseg-
mentation, resulting in the inability to extract a concise and appropriate segmented
plane structure;

(2) Topological connections—Buildings are usually composed of many segmented planes,
and topology is the connection relationship between planes. However, the unreli-
ability of plane segmentation leads to problems of missing topology and incorrect
connections between planes.

(3) Accuracy—Due to limitations of the construction methods and the complexity of the
original model, the closeness of the resulting polyhedral model to the original input
model is often unsatisfactory.

In this paper, we address the current problems existing in automatic building polyhe-
dralization by improving three aspects: planar extraction, topology optimization, and polyg-
onal model generation optimization. Our input is a building mesh model reconstructed
by the MVS process, which is extracted from an urban scene by semantic segmentation.
The method is built on three important technical components: first, the planar compo-
nents of the input mesh and their topological relationships in 3D space are detected; then,
the topological connections between planes are connected; and finally, to obtain a simpli-
fied model, we construct a building polygonal model through a process of planar slicing,
polygon selection optimization, and polyhedral corner point processing. Our contributions
are as follows:

(1) A segmentation technique based on guided planes for more concise, adequate, and
accurate detection of segmented planar components on mesh surfaces that makes full use
of planar structure information;

(2) A topology correction method using the thin-slab structure of a building to restore
missing topological connections, eliminate incorrect topological connections, and recon-
struct the vertical thin-slab structure of the building;

(3) A planar assembly method that takes into account corner point structure and
model geometric errors to reduce redundant building corner points while improving the
geometric accuracy of the model.

2. Literature Review

There is a large volume of literature on mesh model polygonization. In this section, we
mainly review approaches directly relevant to our research, namely lightweight/polygonization
mesh models, planar shape detection, plane slicing, and polyhedron construction.

2.1. Lightweight or Polygonization Mesh Model

Lightweight mesh models are essential in the application of 3D models and can re-
duce the amount of model data and facilitate lightweight management. Commonly used
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lightweight mesh methods include quadratic error metric (QEM)-based mesh simplifica-
tion [17] and the polygon reduction algorithm [18]. Li et al. [19] combined plane extraction
with QEM simplification to maintain the plane structural features of buildings when sim-
plifying building mesh models. Another method abstracts mesh models, such as VSA [20],
ACVD [21], and remesh [22], by constructing approximate polygons. Compared with
simplification, polygonization is a more lightweight expression of a mesh model. Usually,
it can be roughly divided into two construction methods. One is the extrusion method.
Bauchet et al. [23] projected a roof into a 2D plane, optimized the contour, and finally
extruded down to obtain a 3D model of the building. Managing the level of detail (LOD) is
intended to differentiate multiscale representations of semantic 3D city models, especially
3D building models. CityJSON [24] was proposed as a lightweight and developer-friendly
alternative to CityGML [25]. Based on LOD rationale, some scholars [5,6,26] have extracted
building roof contours and then extruded cells to their corresponding planes to obtain a
building LOD model. Verdie et al. [4] generated lightweight polygon meshes combined
with global regularization, LOD filtering, and min-cut. Zhu et al. [27] constructed a build-
ing polyhedron model through three steps: semantic segmentation, contour extraction of
roofs, and modeling, and obtained simplified models with semantics at different LODs.
Li et al. [28] extracted roofs from a depth map and then extracted a polygonal model from
the roofs. The second category is based on plane-slice and polyhedral element selection
methods, which are mainly divided into three parts: planar shape detection, plane slice
construction, and polyhedron construction. These works, closely related to the construction
of polyhedral models in this paper, are summarized individually at the beginning of the
next paragraph. The third category is learning-based methods. Conv-mpn [29] reconstructs
vector-graphic building models by using a relational neural architecture. House-GAN [13]
focuses on house layout generation, and Roof-GAN [14] generates roof geometry and
relations for residential houses. Gui et al. [15] proposed a model-driven method that recon-
structs LOD2 building models following a “decomposition-optimization-fitting” paradigm.
Wang et al. [16] extracted building footprints by using multistage attention U-Net, and
finally extracted building 3D information from GF-7 data.

2.2. Planar Shape Detection

Artificial buildings in urban scenes usually have regular geometric structures that
can be expressed abstractly through segmented planes. Plane extraction is the basis of
expression, and much research has been done in this area. It mainly includes two types of
methods based on RANSAC [30] or region growing [31]. The early RANSAC method [30]
takes a point set with unoriented normals as input and provides a set of detected shapes
with associated input points as output. Polyfit [10] extracts a set of planar segments from
the point cloud using RANSAC and refines these planar segments by iteratively merging
plane pairs and fitting new planes. The region-growing method [31] usually determines
the seed patch according to the planarity of the triangular face and grows according to the
distance and normal difference. Oesau et al. [32] detected planes by region growing and
strengthened the regularization relationship of planes. Bouzas et al. [11] performed region
growth based on distance and extracted a building plane reconstructed from the model
rebuilt by MVS reconstruction. Li et al. [19] first denoised a surface reconstructed by MVS
and then extracted plane-by-region growth according to the normal values. Learning-based
methods [33] have also been applied to extract planes, and a parameter-free algorithm
for detecting piecewise-planar shapes from 3D data has been used. Guinard et al. [34]
formulated the piecewise-planar approximation problem as a nonconvex optimization
problem. Zhu et al. [35] proposed a quasi-a-contrario theory-based plane segmentation
algorithm, and the final plane was composed of basic planar subsets with high planar
accuracy. However, the assumptions behind these methods all rely on the reliable extraction
of segmented planes, and the quality of the segmentation directly affects the construction
of polyhedrons. The 3D oblique photogrammetry model usually has surface defects, while
the building surface usually has small-scale fluctuations, resulting in too-fine segmen-
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tation (oversegmentation), too-simplified segmentation, or insufficient plane expression
(undersegmentation). In contrast, our proposed guided-plane segmentation method can
obtain concisely segmented planes without undersegmentation or oversegmentation (see
Section 3.1).

2.3. Planar Slicing and Assembly

Sufficient and effective slicing of the extracted planes is the premise for constructing a
compact polyhedral building model. Mehra et al. [36] focused on the topology of man-made
objects. Nan et al. [10] proposed that the holistic pairwise intersection method is effective,
but pairwise intersections introduce redundant candidate faces and add unnecessary
computation. Fang et al. [8] connected and sliced planes detected from 3D data; the
spatially adaptivity reduced the number of planes to be optimized and the number of slices,
but the selection of parameters made it difficult to take into account all the planes/slices.
Bouzas et al. [11] proposed a structure-graph method by balancing this trade-off between
completeness and computational efficiency. Yan et al. [9] optimized plane topology to
restore the architectural structure of the parapet. However, these methods do not ensure the
correctness and completeness of the topological connections between planes when slicing
planes, and do not make full use of the extracted planes, resulting in structural errors or
missing extractions. We slice the planes after obtaining the correct topological connections
by optimizing the topological connections between the planes.

Correctly assembling polygons formed by planar slices is the key to accurately as-
sembling compact polyhedral building models. There are two main solutions at present.
One is to better describe the shape of the input model by selecting a subset of polygons.
Some scholars [9–11] use binary linear programming; consider data-fitting, face coverage,
and model complexity; and implement manifold and watertight constraints on the polyhe-
dron model. The second solution is to judge the spatial polyhedron subset in the model.
The faces of a polyhedron model are assembled using polygons at the interior and exterior
junction. Verdie et al. [4] and Bauchet et al. [23] labeled the inside/outside of cells by min-
cut [37]. Recently, a learning-based approach was used to construct compact polyhedral
building models. Chen et al. [12] presented a method for urban building reconstruction
by exploiting the learned implicit representation as an occupancy indicator for explicit
geometry extraction. The authors formulated a Markov random field (MRF) [38] to extract
the outer surface of a building via combinatorial optimization. None of these methods
pay attention to the redundant intersection problem when slicing planes, which results in
corners of polyhedron models being represented by multiple intersection points.

We employ planar slicing and polygon selection to lighten and structure the building
mesh model. Specifically, first, we make full use of the planar structure information of
the building model to extract reliable segmented planes; then, we reconstruct the missing
planar topological adjacencies and correct the wrong topological relationships; finally, we
avoid the problem of redundant intersections by processing the corner point clumps and
obtain a compact and high-fidelity watertight building polyhedron model.

2.4. Conclusions of the Literature Review

In summary, most of the current algorithms can remove noise on the surface of the
model, but structure retention and restoration effects remain unsatisfactory. The feature
classification method based on NVT is very sensitive to normal disturbances, and it is
impossible to accurately classify feature points from a noisy model. Our goal is to classify
feature points accurately, to preserve and restore the scene structure of the model when
denoising, and to avoid introducing pseudo-features into the denoised model. More
specifically, in this paper, we first apply joint bilateral filtering to the face normals using
robust guidance normals; afterwards, we classify the feature points accurately by using the
filtered facet normal; finally, we remove noise using anisotropic vertex denoising with a
local geometric constraint to retain the scene structure features of the model and to avoid
pseudo-features.
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3. Methods

The algorithm divides the building model polygonization problem into four stages:
(1) planar extraction based on plane-guided segmentation; (2) topology construction
and topology optimization; (3) plane slicing and corner point clump optimization; and
(4) polyhedron construction and output. The flow of the proposed method is shown in
Figure 1.

Figure 1. Building mesh polyhedron construction process.

3.1. Guided-Based Planar Segmentation

We use a joint constraint of distances and normals to extract the initial segmentation
plane. When growth is based only on normals, the segmentation result is very sensitive to
noise fluctuations on the surface, and smoothly transitioning angles are difficult to segment;
by contrast, when growth is based only on distance, the segmented plane can flip over
angles that do not belong to the plane and can cross the boundary, as shown in Figure 2d.
Moreover, the front and back sides of the thin plate are divided into a plane area, as shown
in Figure 2d. Therefore, we consider both distances and normals in the regional growth
process so that the segmentation process is robust to noise.

Models reconstructed by photogrammetric processes inevitably have some surface
defects, such as surface noise, local distortion, local deformations, and missing structures.
Furthermore, the surface of a building model is usually covered with some small-scale
structures, such as windows, balconies, air conditioning hangers, and tiles. These small-
scale structures cause local uneven fluctuations in the plane structure. Defects and small-
scale fluctuations in the model surface pose a challenge for planar segmentation. On the
one hand, a strict distance threshold or normal threshold of segmentation results in too fine
segmentation (oversegmentation) to obtain a concise and complete representation of the
building plane, as shown in Figure 2b. On the other hand, this problem can be mitigated by
increasing the normal angle threshold and distance threshold of the segmentation process.
However, due to the limitations of traditional segmentation algorithms, this strategy
leads to boundary crossing of the segmentation (undersegmentation) result, resulting
in insufficient extraction of planes and incorrect topological connections between faces,
as shown in Figure 2c.

(a) (b) (c) (d) (e)

Figure 2. Comparison of segmentation results: (a) Original, (b) Oversegmentation, (c) Undersegmen-
tation, (d) SABMP [11], and (e) Ours.

To solve this problem, we propose a strategy of guided segmentation that first extracts
an initial reliable plane as the seed plane; then iteratively guides segmentation, fusion,
and merging through the plane; and finally extracts the plane corresponding to the final
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segmentation. The flow of the plane-guided segmentation method is shown in Figure 3. Our
segmentation algorithm can be summarized as follows: (1) Initial segmentation—We refer
to the segmentation algorithm of support agnostic Bayesian matching pursuit (SABMP);
the difference is that we take two thresholds—the distance from the triangular face to the
reference plane, and the normal angle between the triangular face and the reference plane—
as the growth conditions. (2) Iterative segmentation—During segmentation, the plane
corresponding to a large segmented area (the top 80% sorted by area) is selected as the
guide plane for segmentation in the next iteration. Then, among the mesh surfaces covered
by these guide planes, we choose the triangular face with the smallest noise value as the
initial growth surface; the noise value s of the triangular face is calculated with Equation (1),
and the reference plane of the growth process is the current guide plane rather than
a newly calculated plane every time it grows, until all the guide planes are traversed.
(3) Fusion—Segmentation results containing fewer faces (less than the minimum number
of segmentation faces) are fused to adjacent segmentation results with the closest normal,
and the adjacent segmentation result that satisfies the normal constraint (default 20°,
an empirical value summarized in our experiments) is fused to obtain the new plane
segmentation result. (2) and (3) are iterated until the end of the process. (4) Segmentation
merging—All segmentation results that are codirectional and coplanar (normal angle less
than α1, the default for which is 20°) and close in distance (the default distance is less than
2∆d, and ∆d = n · edge is the distance threshold of segmentation, n is a factor of the average
edge length, with the default value as 1) are merged; edge is the average edge length of the
input mesh model. For details, please refer to Algorithm 1.

s = (1− | cos θ|) + dist(ci, P)
∆d

(1)

where θ is the normal angle between the triangular face and the guided plane, dist(ci, P) is
the distance from the center of mass ci of the triangular face fi to the plane P, and ∆d is the
distance threshold of segmentation. The smaller the difference between the normal of the
triangular plane and the plane (or the smaller the distance), the smaller the noise value.

For models with an unclear surface structure, when the segmentation threshold is set
to a smaller value, more segmented planes are obtained, but the structural expression is
fragmented and the overall structure is incomplete, as shown in Figure 3b; on the other
hand, increasing the threshold can obtain concisely segmented planes, but details are
inevitably lost, as shown in Figure 3c. Since the iterative process takes the guide plane
as the reference, the growth process has a reliable and stable reference plane, which can
better play a suitable guiding role, and the segmentation results of larger planes also affect
the segmentation results of adjacent local small planes to finally obtain more concise and
complete segmentation planes. The results of our guided segmentation model are shown
in Figures 2e and 3d.

(a) (b) (c) (d)

Figure 3. Comparison of segmentation results: (a) Original, (b) Strict threshold, (c) Relaxed threshold,
and (d) Ours.
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Algorithm 1: Guided mesh plane segmentation framework.
Input: Initial mesh Min, number of iterations Niter, angle tolerance ∆n, distance

tolerance ∆d, minimum number of triangles NF in segmentation.
Output: Segmented mesh Mout.

1 Comput Pf aces;
2 RegionGrow(P, f , ∆n,∆d)→Sinit(Initial Segmentation in Figure 1);
3 for i = 0 to Niter do
4 foreach Si ∈ Sinit do
5 Compute s according to Equation (1), obtain face set Noisei in ascending

order of s;
6 Obtain segmentation set Sseg in ascending order of area;
7 Fit the initial plane Pinit in Sseg using RANSAC;
8 end
9 Find the seed planes Queueguidance with the top 80% area of Pinit (Guided

planes in Figure 1);
10 while Queueguidance not empty do
11 Pop a seed plane Pi;
12 RegionGrow(Pi, f , ∆n,∆d)→Snew;
13 end
14 Arrange the ungrown faces in descending order of planarity→ Queueseed;
15 while Queueseed not empty do
16 Pop a seed plane Pi;
17 RegionGrow( f , ∆n,∆d)→Snew;
18 end
19 foreach Si ∈ Snew do
20 Neighbor segmentation Sj with min angle;
21 if NFi < NF or angle(Si, Sj) < α1 then
22 merge Si to Sj;
23 end
24 end
25 Output Snew(plane-guided Segmentation in Figure 1)
26 end
27 while Snew not empty do
28 Si = Snew.top();
29 foreach Sj ∈ Snew do
30 if angle

(
Si, Sj

)
≤ α2 then

31 if dist
(
Si, Sj

)
< 2∆d||dist

(
Sj, Si

)
< 2∆d then

32 re f ineSges.push_back(Sj, angle(Si, Sj));
33 end
34 end
35 end
36 targetseg with min angle in re f ineSges;
37 Merge Si to targetseg;
38 Snew.pop();
39 end
40 Output Mout(Output in Figure 1);

3.2. Topology Correction for Thin-Plate Structures

Based on building mesh polygonization (BMP) [11], according to the boundary adja-
cency relationship of the segmentation, we obtain the topological connection relationship of
the segmentation plane, that is, the plane adjacency topological graph G, which is composed
of node V and the connection relationship E between two nodes G = (V, E). Among these,
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the centroid coordinates of the segmentation represent node V in the topological graph,
and the connection between two adjacent nodes represents edge E. However, narrow, flat,
and thin regions in a building’s structure (called the thin-slab structure in this paper, such
as the top surface of a child wall) are difficult to extract completely by the segmentation
algorithm, as shown in Figure 4b, resulting in incorrect topological connections between
the inner and outer planes of the thin plate.

(a) (b) (c)

Figure 4. Results of thin-plate construction before improvement: (a) Original, (b) Segmentation, and
(c) No correction result.

Based on these considerations, we propose a topology correction scheme for the above
problem. We consider the two planes as the inner and outer surfaces of the thin plate,
and spatially they meet at a distance or fail to intersect, resulting in an incorrect or missing
thin-plate structure (Figure 4c). Therefore, we propose correcting the incorrect topological
relationship between the inner and outer planes of the thin plate by adding new planes;
the detailed example is shown in Figure 5; here, our topological correction is applied only
on the vertical thin plate.

Figure 5. Detailed example of topology correction for thin-plate structures.

Assuming that the segmentation of one side of the thin plate Sp and the other side Sq
are connected in the topology graph, Sp and Sq must be adjacent to a common horizontal
top surface, and there may be zero, one, or two common facades between Sp and Sq. We
optimize thin-plate topology by the following specific steps:

(1) Regularization—Make a plane with a small area in Sp and Sq parallel to a plane with
a large area, such as the thin-plate facade in Figure 5. The effect of regularization is
shown in Figure 5, and regularization helps recover the structure of the thin plate.
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(2) Add a new top facade and define the topological relationship, as shown in Figure 5.
First, we find the location of the new top surface. We obtain the smaller Zmax of
segmentation Sp and Sq through their bounding box (i.e., Bbox); then, if the Zmax
values of Sp and Sq are similar, we add a new plane faclinic that is both adjacent and
perpendicular to Sp and Sq in the topology diagram. If the Zmax difference between
Sp and Sq is large, it means that the elevations of the two facades are different, and a
new plane faclinic is added at the lower elevation position. Finally, we define the
topological relationship of the added top surface. The added top surface faclinic is
adjacent to Sp and Sq. If Sp and Sq have a common neighboring facade, then faclinic
should also be adjacent to their common facade, where the facade is the face that is
nearly perpendicular to the ground.

(3) Add new side facades and define the topological relationship, as shown in Figure 5.
Obtain the location of the new facade: we find the location of the new facade by
a 2-dimensional projection. Specifically, we project the Bbox of Sp and Sq to the
2-dimensional ground Planeground to obtain line segments lp and lp, and the two
endpoints of the line segments are denoted as Ap, Bp and Aq, Bq, as shown in Figure 6.
There are two cases:

• Adding a new facade—If, in addition to Sq, the segmentation Sp adjoins only one
other segmentation Sr or adjoins two facades with a distance less than 2L̄edge ,
a new facade is needed. The Bbox of segmentation SrSr is also projected onto
Planground to obtain the line segment lr. If Ap is the endpoint of line segment
lp and is further away from line segment lr, then the newly added elevation
fn1 will pass through endpoint Ap. Define the topology of fn1: fn1 as adjacent
and perpendicular to the planes corresponding to Sp and Sq; the 2-dimensional
projection is represented by the red dashed segment in Figure 6b, while fn1 is also
adjacent and perpendicular to the top surface faclinic. Note that fn1 is connected
to the horizontal plane adjacent to the smaller segmentation in Sp and Sq.

• Adding two new facades—If Sp is not adjacent to any other facade except Sp, then
two new facades are needed. The two new facades fn1 and fn2 pass through the
endpoints Ap and Bp. Define the topology of fn1 and fn2: fn1 and fn2 as adjacent
and perpendicular to the plane in which Sp and Sq are located, and faclinic is
connected to the horizontal plane adjacent to the smaller segmented plane in Sp
and Sq. The 2-dimensional projection is represented by the red dashed segment
in Figure 6c.

Topology of the added side facades: the newly added facade is adjacent to Sp and Sq
and to their common nonfacade surfaces (the top and bottom adjacent faces).

(4) Remove the incorrect topological connection of the reverse parallel facade present in
a thin plate (the green connecting line in Figure 7b).

(5) The coverage region of the newly added plane—In the segmented planes Sp and Sq,
triangles for which the distance from their center of mass to the newly added plane is
within the specified range (the point-to-plane distance is less than 3L̄edge the average
side length) belong to the covered triangles of this newly added plane.

(6) Merge planes that are coplanar and codirectional.
(7) Topology correction of the inner and outer surfaces of the adjacent thin plates—Since

it is difficult for the segmentation model to take into account thin and narrow areas
existing in the building structure, the inner and outer surfaces of two adjacent thin
plates are also connected incorrectly in the topology diagram, as indicated by the
purple curve in Figure 7b. Figure 7b,c are 2D schematics of the local area of the
thin plate in Figure 5, where the connection of facades f1 and f4 and f2 and f3 adds
two new intersections v14 and v23, respectively. This adds a very small candidate
surface at the corner of the thin-plate structure (the colored area of the 2D schematic
in Figure 7b); however, this candidate surface is very easily lost in the optimization
process, which eventually causes the thin-plate structure to be missing. In fact, in the
actual building structure, f1 and f4 and f2 and f3 should not be connected. To solve
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this problem, we propose “topology correction of the inner and outer surfaces of a
thin plate” to eliminate this kind of incorrect topology connection. Determination
of the inner and outer facades of a thin plates: We intersect the center normal of
the thin plate with the plane in which all the candidate surfaces are located. If the
intersection point is inside the Bbox, then the plane is the inner surface of the thin
plate; if there is no intersection point or the intersection point is outside the Bbox,
then the plane is the outer surface. According to the geometric rules of the actual
building structure, we stipulate that the inner and outer surfaces of the thin plate
are not connected to each other, so the incorrect topological connections (the purple
connections in Figure 7b) between the inner and outer f1 and f4 and f2 and f3 of the
thin plate are eliminated, as shown in Figure 7c. The top of the thin plate is not cut
into multiple small areas, which makes it more likely that the thin plate structure will
not be lost during optimization.

By regularizing the thin-plate facade, adding new planes (fixing the thin-plate topo-
logical connections), and eliminating the incorrect topological connections of the thin plate,
the topological relationships between the inner and outer surfaces of the thin-plate structure
are correctly constructed, and the thin-plate structure of the polygonal model is completely
reconstructed, as shown in Figure 5.

(a) (b) (c)

Figure 6. Two-dimensional projection of a thin-plate structure with increasing facade cases: (a) Thin-
plate segmentation, (b) Adding one plane, and (c) Adding two planes.

(a) (b) (c)

Figure 7. Topology connection correction for thin-plate structures: (a) Thin-plate segmentation,
(b) The wrong topology connection, and (c) Corrected topology connection.

3.3. Corner Point Clump Optimization and Polyhedron Construction

Three extracted adjacent planes form an intersection. However, abstract/approximate
planes do not necessarily strictly intersect at the same intersection position when the
number of adjacent planes is greater than three. When n(n > 3) adjacent planes intersect,
there are C3

n intersection points, each plane will intersect C2
n−1 times with C2

n−1 intersection
points, and there are C3

n−C2
n−1 intersection points not in the current plane. Since the surface

of the model reconstructed based on MVS is not exactly flat, and the segmentation area
may contain some detailed structures, it is difficult for extracted planes with larger areas to
fully and truly express the geometric orientation of the covered surface. The location of the
extracted planes is not realistic and not close enough to fit the real building surface, which
eventually leads to multiple redundant corner points and reduces geometric expression
accuracy. Taking the intersection of four adjacent planes as an example, in the corner at
the top of the house in Figure 8, every three planes intersect to form one intersection point,
and there are four intersections at the top corner of the house, as shown in Figure 8b.
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(a) (b) (c) (d)

Figure 8. Optimization of corner point groups: (a) Segmentation, (b) Polyhedron, (c) SABMP [11],
and (d) Ours.

PolyFit [10] and SABMP [11] form polygons from intersection points and intersection
lines after the planes are intersected and then obtain the preserved closed-flow polygonal
model through optimization. However, these methods do not consider redundant inter-
section points. On the one hand, redundant polygons or triangles composed of redundant
intersection points may appear after optimization, as shown in Figures 8c and 9d; on the
other hand, the resulting model of polygonization can have redundant corner points, such
as the corners in Figures 8c and 9d. In addition, the fidelity of the polygonal model to
represent the original surface needs to be improved. We would like to concurrently simplify
the resultant polygon model and improve model representation accuracy.

(a) (b) (c) (d) (e)

Figure 9. Comparison with SABMP [11] of segmentation and polyhedral models: (a) Original,
(b) SABMP [11], (c) Ours, (d) SABMP [11], and (e) Ours.

To solve the above problem, we propose a two-step strategy based on “corner point
clumps”. We define all intersections Ii, Ij, · · · of the n(n > 3) planes that correspond to
segmented planes S1, S2, · · · , Sn (any one of them is adjacent to the others) as belonging to
a corner point clump C

(
Ii, Ij, · · ·

)
, as shown in the blue circles in Figure 8b, where there

are four corner point clumps. The two-step strategy based on “corner point clumps” is
as follows:

In the first step, constraints are imposed on the optimized result to avoid redundant
triangles/polygons at the corners. In the candidate surface selection stage, a new constraint
term is added: if the polygon candidate plane fi satisfies Equation (2), then the plane
is deleted (xi = 0); I( fi) denotes all constituent intersections of the candidate plane fi,
and Equation (2) represents the case when all constituent intersections of a candidate plane
belong to the same corner point group, as shown in the red polygon/triangle in Figure 8b,
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in which case the candidate face should be deleted. All formulas used in the optimization
are specified in Appendix A.

xi = 0, ∀I( fi) ∈ C
(

Ii, Ij, · · ·
)

(2)

In the second step, simplification of the corner point clusters is implemented. On the
premise of ensuring geometric accuracy, multiple intersection points that remain in the
corner point clumps are merged, while redundant corner points are removed. We hope
that the candidate polygons after intersection merging are better fitted to the surface of
the original mesh and improve the accuracy of the model. Ideally, only one intersection
point is retained in a corner point clump, but we do not do this if the accuracy decreases
after the intersection points are merged. For the two intersection points retained in the
same corner point cluster that can form an edge, we merge them using a method similar
to edge collapse. The intersection points have some reliability because they are obtained
from the intersection of the extracted planes, so we use either one of them as a retained
point during edge collapse. The cost of collapsing from intersection Ii to intersection Ij is
calculated according to Equation (3).

E(Ii ,Ij)
=

NFIi

∑
n=1

Vn

∑
m=1

di
mn (3)

where NFIi is the set of candidate planes adjacent to intersection Ii, Vn is the set of all
vertices of the nth candidate planes in NFIi covering the original region, and di

mn is the
distance from vertex m to its corresponding candidate plane n. Suppose intersection Ii
collapses to intersection Ij. We calculate the cost E(Ii ,Ij)

before the edge collapse operation

and the cost E′
(Ii ,Ij)

after the simulated edge collapse operation. If E(Ii ,Ij)
< E′

(Ii ,Ij)
(the cost

decreases after edge collapse), which means the distance between the polygonal model and
the original surface decreases and the geometric accuracy improves after processing, then
intersection Ii is allowed to collapse to intersection Ij. Conversely, the same strategy is used
to simulate the collapse of intersection Ij to intersection Ii until all redundant intersections
within the corner point clump are visited; the result of corner point clump optimization
is shown in Figure 8d. When the vertex positions of the planar polygons are changed,
the original planar polygon may become two polygons that are not coplanar, and new
triangles may be generated in this process, but the accuracy of the final model will be
improved, and the number of intersection points will be reduced due to the constraint of
Equation (3). As shown in Figure 8, the unoptimized RMS (%Bbox ) in Figure 8c is 0.006279,
and the RMS (%Bbox ) of our optimized result in Figure 8d is 0.00558.

4. Results

To verify the effectiveness of the algorithm, we applied it to a large number of artificial
building mesh models, including the SUM [39] dataset of real-scene models based on
image reconstruction, Nanyang data, Shenyang data, Ningbo data and the Villa model,
noisy surfaces with (House_a, House_b, and Cottage), and the real-scene model Barn
reconstructed by laser point clouds.

4.1. Qualitative Assessment Experiments
4.1.1. Qualitative Comparison of the Segmentation and Polyhedral Results

Figure 10 shows the comparison of the planar segmentation results. Comparing our
segmentation results with those of SABMP [11] (Figure 10) and the model without the plane-
guided strategy (Figure 10c), it can be seen that these segmentation results are the optimal
results among multiple groups of parameters. The segmentation results of SABMP [11]
cross prismatic edges, as shown in Figure 10b. This is because SABMP considers only
the distance and not the normal value when growing regions. Segmentation methods
without guided planes work well for models with simple structures, such as the Barn
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model. However, plane extraction is incomplete for noisy or complex models, such as
Nanyang_3 and Nanyang_5 in Figure 10c; this is because the segmentation algorithm is not
robust to model surface defects and is easily affected by fluctuations in face normals and
vertex positions. In contrast, our planar segmentation boundary is more accurate, clear,
and straight, and the segmented planar extraction results are more prominent, as shown in
Figure 10d.

(a) (b) (c) (d) (e) (f)

Figure 10. Comparison of segmentation and polyhedral models: (a) Original, (b) SABMP [11],
(c) Unguided, (d) Our guided, (e) SABMP [11], and (f) Ours.

4.1.2. Qualitative Comparison of Structure-Aware Results

Structural perceptibility: To better reveal the visual quality of the reconstructed
building models, we demonstrate a number of individual buildings in Figures 10 and 11.
From these visual results, we can see that our approach succeeds in obtaining visually
plausible reconstructions despite the buildings having different structures/styles and
the input mesh models having different densities and different levels of noise. In the
comparison of simplifications, we keep the number of vertices or triangles unchanged and
use QEM [17] and ACVD [21] to simplify models, as shown in Figure 11b,c. Compare to
the results of QEM [17] and ACVD [21], we can see that the planar and linear structures
of buildings are more prominent and more structurally aware in our building models.
In addition, Figure 10 shows that our method extracts more building details compared to
SABMP [11], and structural perceptiveness is improved.

Thin plates: SABMP [11] does not consider vertical thin-slab structures such as child
walls and fences. Due to the limitation of the segmentation method, the planes of such
structures cannot be properly extracted, as shown in Figure 11b. Our proposed plane-
guided segmentation method distinguishes the two sides of a thin-plate structure well,
and combined with the topology optimization strategy in this paper, the thin-slab structure
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of the polyhedral building model is effectively recovered, as shown in Figure 12d. Note that
for Shenyang_a in Figure 12, its polygonization process successfully reconstructs the narrow
thin-plate enclosure without a topology optimization strategy because the segmentation
results accurately extract the top plane of the thin-plate structure.

Corner points: Comparison of the optimization results with respect to corner point
clumps is shown in Figure 9, where we compare our results with those of SABMP. A com-
parison between Figure 9d,e shows that the corner points are more streamlined, and the
geometric connections are closer to the real structure in our building model reconstruction.
With optimization of the corner point clusters, our model can express multiple (greater
than three) planes adjacent to the corner structure using only one vertex.

In contrast to other improved methods, such as Li’s method [9] due to the use of
the “1-ring patch model”, some elongated or narrow structures are ignored in the plane
extraction process, as shown in Figure 13c,f. By contrast, our segmentation results can
extract these narrow planes and build them successfully in the polygonal model, as shown
at the top of the model in Figure 13g.

In addition, we have used our approach for polyhedral structured modeling in a
range of building groups. As shown in Figures 14 and 15, these buildings are modeled
as polyhedrons independently. In Figure 14, the original model has 18,436 vertices and
36,559 triangles, and after simplification, the number of vertices is 2070, the number of
faces is 4124, and the simplification ratios of vertices and triangular faces are 88.77%
and 88.72%, respectively. In Figure 15, the original mesh model has 806,198 vertices and
1,609,613 triangles. After simplification, the number of vertices is 2817, the number of faces
is 5364, and the simplification ratios of vertices and triangular faces are 99.65% and 99.67%,
respectively. Figure 15 shows that the roof structure of the building in the simplified model
is more prominent, the roof ridge line in Figure 14 is clear and straight, and the model has
higher geometric accuracy; thus, the improved method we propose has better structure
perception ability.

4.2. Quantitative Evaluation Experiments
4.2.1. Quantitative Comparison of the Number of Planes and Simplification Capability

To concretely quantify the polygonal models generated by our segmentation algo-
rithm, we analyze the improvement of our method in terms of the number of extracted
planes, and comparison between the output model and the input model in terms of the
amount of data, as shown in Table 1. Our model segments fewer planes, but as seen in
Figures 10, 12 and 13, our plane-guided segmentation method adequately reconstructs
models; therefore, segmentation by our method is more concise and complete. Our guided-
based planar segmentation algorithm makes full use of the extracted plane information
and uses a reliable geometric plane as a guide to integrate noisy and small structures into
the corresponding plane during segmentation, so it can obtain a more complete, concise,
and reliable segmented plane.

Table 1. Information about the simplified polygonal meshes. The polygonal meshes have been
previously triangulated for visualization.

Model Input
Vertices

Input
Faces

SABMP [11] Ours

Planes Output
Vertices

Output
Faces Time (s) Planes Output

Points
Output
Faces Time (s)

SUM _ Building1 15,383 30,143 64 43 82 5.7 55 121 238 27.35
College 33,845 65,614 84 156 308 82.2 93 647 1290 267

Nanyang _ 3 44,380 88,271 93 89 170 12 57 221 438 14.32
House _ b 18,716 37,245 65 52 100 21.3 42 93 162 65.3

Arc 13,631 27,258 75 177 350 3.4 71 144 284 12
SUM _ Building8 3321 6503 37 23 42 1.2 14 10 16 15.6
SUM _ Building9 6295 12,414 47 38 72 0.71 22 30 56 16.5
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(a) (b) (c) (d)

Figure 11. Visual comparison of our method with other simplified techniques for the same number
of vertices or faces: (a) Original, (b) QEM [17], (c) ACVD [21], and (d) Ours.
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(a) (b) (c) (d) (e)

Figure 12. Comparison of segmentations and polyhedrals of thin plate structures with
SABMP [11] models: (a) Original, (b) SABMP [11], (c) Ours, (d) SABMP [11], and (e) Ours.

(a) (b) (c) (d) (e) (f) (g)

Figure 13. Comparison with other methods of segmentation and polyhedral models: (a) Original,
(b) SABMP [11], (c) [9], (d) Ours, (e) SABMP [11], (f) [9], and (g) Ours.
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(a)

(b)

(c)

Figure 14. Application of our technique for building-mesh polygonization on Villa data: (a) Original
with textures, (b) Original, and (c) Our building-mesh polygonization results.

(a) (b)

Figure 15. Application of our technique for building-mesh polygonization on Nanyang data: (a) Orig-
inal and (b) Our building-mesh polygonization results.

Furthermore, our building simplification results have a smaller amount of data due to
corner point clumps, as seen from Table 1. For the models with corner clumps in processing
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(Figure 9), their output vertex number and output triangular surface number are reduced
compared with the results of SABMP [11], as shown in Figure 16, and the figure shows that
our corner point clump algorithm works well in simplifying models.

Figure 16. Comparison of models with corner point clumps in terms of output data size.

4.2.2. Quantitative Comparison of Geometric Accuracy

Geometric accuracy is a key metric for evaluating the results and expressing the
accuracy of polygon models. We evaluate the closeness of our simplified model to the
original model by calculating the Hausdorff distance between the two meshes [40], and we
calculate the RMS (values with respect to the BBox diagonal) of the polygonal model to the
original mesh surface; the results are shown in Figures 17 and 18. Figure 17 compares our
method with SABMP [11], using the model results shown in Figures 9, 10 and 12.

(a)

(b)

Figure 17. Comparison with SABMP [11] of Hausdor f f distance: (a) SABMP [11] and (b) Ours.

For general models without topology correction and corner-point optimization, the ge-
ometric accuracy of our building model is essentially higher than that of SABMP [11].
As seen in Figures 17 and 18, the vertices, edges, and faces of our polyhedral results are
closer to those of the original surfaces. There are two reasons for this: first, due to our
plane extraction step, plane guidance is performed by iteration, and we make full use of
plane information during segmentation. The obtained plane structure is more consistent
with the original representation, and small planar structures can be extracted, but the
plane extraction results are not too finely divided, as shown in Figures 13 and 17; second,
using the dual constraints of distance and normal values during segmentation makes the
boundary of the segmentation region more accurate; thus, the geometric position of the
fitted plane is more accurate.



Remote Sens. 2022, 14, 4300 19 of 24

Figure 18. Comparison with SABMP [11] of RMS values. (a–m) respectively represent different
building models in the quantitative assessment experiments.

For building models with thin-plate structures, our polyhedral results also have higher
structural accuracy than SABMP [11], as shown in Figures 17 and 18. The reason for this,
in addition to the segmentation approach mentioned above, is that thin-slab structures at a
certain scale can be recovered accurately by our proposed thin-plate topology correction
scheme, as shown in Figure 12. The recovery of small-scale thin-plate structures further
improves the geometric accuracy of models.

For buildings with multiple (greater than three) adjacent planes, our polyhedral
models mostly have higher structural accuracy than that of SABMP [11], as shown in
Figures 17 and 18. The reason is not only due to the abovementioned segmentation,
but also because of our corner point clump optimization strategy. On the one hand,
by imposing constraints on the optimization process, erroneous candidate faces can be
eliminated, and on the other hand, such corner structures can be simplified on the premise
of improving the closeness to the original surface, as shown in Figure 9. The exception
is the SUM_Building8 data; our polyhedron has more concise results, and the results of
SABMP [11], although closer to the original surface, perform poorly in terms of regularity.
Combined with Figure 16, it can be seen that our results not only simplify the corner
point clumps but also improve the accuracy of the model and increase the realism of the
representation while reducing the amount of data.

The result of superimposing with the original point cloud is shown in Figure 19.
The point cloud in the first row is a noisy, dense point cloud generated by photogrammetry
based on images, and the point cloud in the second row is a clean point cloud generated by
laser scanning. Superimposing the point clouds and the polyhedral models illustrates the
accuracy of the reconstructed model. The Hausdorff distance also shows that our polyhedral
model can more completely retain the structural parts of buildings, and the areas with
larger errors are basically found at the edges where there is no structure.

4.2.3. Quantitative Comparison of Run Times

Table 1 provides the running-time comparison for the examples shown on a PC with
an Intel Core i7-8550U CPU. It can be seen that our method is less efficient than SABMP [11]
in dealing with most models. There are three reasons for this: first, our method adds a
plane as a guide during segmentation, and the time consumption of iterative segmentation
increases with the number of iterations; second, we add a topology optimization step in the
topology construction, and this topology repair process also increases the reconstruction
time if there is a thin-plate structure in the model; third, we add corner point clumps in the
simplification step, which also increases time consumption when simplifying the model.
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(a) SABMP [11]

(b) Ours

Figure 17. Comparison with SABMP [11] in terms of the Hausdor f f distance.

Figure 18. Comparison with SABMP [11] in terms of RMS values.

reconstructed model. It can also be seen from the Hausdorff distance that our polyhedral model517

can retain the structural part of the building more completely, and the areas with larger errors are518

basically found at the edges where there is no structure.519

(a) Point cloud (b) Segmentation (c) Polyhedron (d) Overlay (e) Hausdorff distance

Figure 19. Comparison of polyhedral results with the original point cloud.

4.2.3. Quantitative Comparison of the Run Times520

Table 1 provides the running time comparison for the shown examples, on a PC with an Intel521

Core i7-8550U CPU. It can be seen that our method is less efficient than the SABMP method [11]522

in dealing with most models. There are three reasons for this: first, our method adds a plane as a523

guide during segmentation, and the time consumption of iterative segmentation increases with the524

number of iterations; second, we add a topology optimization step in the topology construction,525

and this topology repair process also leads to an increase in the reconstruction time if there is526

Figure 19. Comparison of polyhedral results with the original point cloud.

4.3. Discussion
4.3.1. Influence of the Iteration Number on Segmentation

The influence of the number of plane-guided iterations on the segmentation results is
discussed in this section. For example, we analyze the SUM_Building8 model with large
surface fluctuations and the SUM_Building9 model with a flat surface. The number of
iterations, the number of segmentation results, and the segmentation time are listed in the
lower left corner of Figure 20. With other parameters fixed, the number of segmentation
planes decreases when the number of plane guidance iterations increases, and the planar
segmentation results are more streamlined. After a certain number of iterations, the number
of planes and the segmentation results tend to stabilize. On this basis, the number of
iterations continues to increase, and the number of planes and segmentation results rarely
change. The same situation occurs on the SUM_Building9 model with a flat surface,
the difference being that the optimal number of iterations is less for the clean model.
In addition, we found that the number of segmentation planes gradually decreases with the
number of iterations and stabilizes after a certain number of iterations, and the segmentation
results are also more desirable. Since segmentation time increases linearly with the number
of iterative guided-based planar segmentation operations, a higher number of iterations
theoretically leads to a more desirable segmentation result. However, this increases time
consumption. Therefore, the number of iterations should be reduced as much as possible
while maintaining stable segmentation results.

(a) (b) (c) (d) (e)

Figure 20. Effect of the number of iterative bootstraps of the segmentation model on segmentation re-
sults. (a) One iteration, (b) Increased iterations, (c) Increased iterations, (d) Increased iterations, and
(e) Increased iterations.
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4.3.2. Limitations

Our method can obtain more accurate segmentation results, recover thin-plate struc-
tures, and obtain fine polygonal models. However, the algorithm still has several limitations
that need to be addressed: (1) Execution efficiency needs to be improved. Iterative segmen-
tation, topology optimization, and corner point clump processing all slow processing to
some extent, even though they allow the model to achieve better visual effects or higher
accuracy. (2) Parameter settings are not automated. The number of plane-guided segmen-
tation steps and segmentation thresholds need to be set according to the model, which is
not smart enough. For segmentation, the parameter setting depends on the noise level of
the building surface and the complexity of the building structure. The more complex the
structure, the finer the segmentation needed; then, the threshold of segmentation needs to
be stricter to some extent, and the number of iterations increases with the surface noisiness.
(3) Since the planes intersect based on topological connections, the ideal polyhedral model
may not be obtained when dealing with buildings that lack geometric information (e.g.,
missing facades or floors).

5. Conclusions

In this paper, we propose three improvements to SABMP [11] and present a polygo-
nal construction method based on planar guidance, topological repair, and corner point
optimization. Its improvements mainly consists of three parts: A segmentation technique
based on guided planes, thin-plate topology repair, and polyhedron construction based
on corner-point clump optimization. From the quantitative analysis, in terms of geometric
accuracy, our results reduce the distance error by up to 46.61% compared with SABMP [11]
before optimization, which is consistent with the visual comparison results in the qualita-
tive analysis. In terms of being lightweight, our building polyhedral results have a high
simplification ratio of up to 99.67% for building complexes. For most models, our results are
more data-intensive than SABMP [11] due to the more richly detailed structure. However,
for buildings with corner point clump structures, our results have up to 61.90% fewer
triangular faces than SABMP [11]. In general, comparing SABMP [11] with the current
simplification algorithm, this paper achieves the following four goals: (1) improves the
region growth segmentation algorithm, which improves the accuracy and completeness
of plane extraction; (2) restores the thin-plate structure of a building; (3) simplifies corner
point expression, which improves the realism and geometric accuracy of the polygonal
model; and (4) preserves more details of the polygonal model and enhances the structural
awareness of the polygonal model construction algorithm.
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Appendix A. The Formulations of Optimization

Our polyhedral construction process is performed by finding the optimal subset of
the set of polygonal faces from the candidate faces, and the optimization method refers to
SABMP, but we add a new constraint on candidate face (consisting of a cluster of corner
points) rejection for optimization. The selection of candidate faces is defined as a binary
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linear programming problem [41,42], and the objective function contains three energy
terms: data fitting, face coverage, and model complexity. Below, we briefly describe all of
these terms and provide the final full formula.

Face coverage: This term indicates the ratio of the uncovered area of the retained
candidate faces to the area of the Bbox. The smaller the uncovered area, the larger the area
of the candidate faces covering the original mesh, and the smaller the energy value of this
term. This energy term tends to select polygonal faces with high coverage areas from the
candidate faces.

Ec =
1

A(Bbox)

N

∑
i=1

xi · (A( fi)− A(Mi)) (A1)

where A(Bbox) is the bounding box of the input model, A( fi) is the area of the candidate
face fi, and A(Mi) is the area of the candidate surface covering the original mesh area.

Data fitting: This item indicates the ratio of the number of triangles in the original
mesh area covered by the retained candidate faces to the number of triangles in the input
model. The higher the number of triangles covered by the reserved candidate faces,
the lower the energy value of this term. This energy term tends to select polygons with
high coverage from the candidate faces.

E f = 1− 1
|F|

N

∑
i=1

xi · support( fi) (A2)

where |F| is the total number of triangular faces of the input model, and support support( fi)
indicates the number of triangular faces of the candidate face fi covering the original
mesh area.

Polyhedron complexity: This energy term indicates the proportion of non-planar
edges to the total number of edges in the simplified model, and its minimization encour-
ages the creation of large planar structures in the resulting model to avoid discontinuous
structures such as holes.

Ep =
1
|E|

|E|

∑
i=1

complexity (ei) (A3)

where |E| is the total number of edges in the resulting polyhedron, and complexity (ei) is
an indicator function; complexity (ei) has a value of zero if the polygons on both sides of
the edge ei are co-planar in the resulting polyhedron, otherwise the function has a value
of one.

We determine the optimal subset { fi | xi = 1} from the candidate faces by minimizing
the weighted sum of these energies:

min
x

λc · Ec + λ f · E f + λp · Ep

s.t.


xi = 0, ∀I( fi) ∈ C

(
Ii, Ij, · · ·

)
∑

j∈N(ei)
xj = 2 or 0, (1 ≤ i ≤ |E|)

xi ∈ {0, 1}, (1 ≤ i ≤ N)

(A4)

The objective function contains three hard constraints: eliminating polygons consisting
of corner point clumps, and ensuring that the resulting polyhedral model is both watertight
and manifold. For the polyhedral process, we use the default parameter values 0.2, 0.6,
and 0.2 for λ f , λc, and λp, respectively.
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